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THE SET OF 2-BY-3 MATRIX PENCILS — KRONECKER
STRUCTURES AND THEIR TRANSITIONS
UNDER PERTURBATIONS*

ERIK ELMROTH! AND BO KAGSTROM'

Abstract. The set (or family) of 2-by-3 matrix pencils A — AB comprises 18 structurally
different Kronecker structures (canonical forms). The algebraic and geometric characteristics of the
generic and the 17 nongeneric cases are examined in full detail. The complete closure hierarchy
of the orbits of all different Kronecker structures is derived and presented in a closure graph that
shows how the structures relate to each other in the 12-dimensional space spanned by the set of
2-by-3 pencils. Necessary conditions on perturbations for transiting from the orbit of one Kronecker
structure to another in the closure hierarchy are presented in a labeled closure graph. The node
and arc labels shows geometric characteristics of an orbit’s Kronecker structure and the change of
geometric characteristics when transiting to an adjacent node, respectively. Computable normwise
bounds for the smallest perturbations (6§A, §B) of a generic 2-by-3 pencil A—AB such that (A+6A)—
A(B + 6 B) has a specific nongeneric Kronecker structure are presented. First, explicit expressions for
the perturbations that transfer A — AB to a specified nongeneric form are derived. In this context
tractable and intractable perturbations are defined. Second, a modified GUPTRI that computes a
specified Kronecker structure of a generic pencil is used. Perturbations devised to impose a certain
nongeneric structure are computed in a way that guarantees one will find a Kronecker canonical
form (KCF) on the closure of the orbit of the intended KCF. Both approaches are illustrated by
computational experiments. Moreover, a study of the behaviour of the nongeneric structures under
random perturbations in finite precision arithmetic (using the GUPTRI software) show for which sizes
of perturbations the structures are invariant and also that structure transitions occur in accordance
with the closure hierarchy. Finally, some of the results are extended to the general m-by-(m + 1)
case.
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1. Introduction. Singular matrix pencils A — AB, where A and B are m-by-n
matrices with real or complex entries, appear in several applications. Examples in-
clude problems in control theory relating to a linear system Ez(t) = Fz(t) + Gu(t),
where E and F are p-by-p matrices, and G is p-by-k. Solvability issues of a sin-
gular system (i.e., det(E) = 0), such as the existence of a solution, consistent ini-
tial values, and its explicit solution can be revealed from the Kronecker structure of
A—AB=F — \E (e.g., see [9], [20]). The problems of finding the controllable sub-
space, uncontrollable modes or an upper bound on the distance to uncontrollability
for a controllable system E#(t) = Fz(t) + Gu(t) can all be formulated and solved in
terms of certain reducing subspaces of the matrix pencil A—AB =[G F|—-A0 E]
(e.g., see [15], [17], [18], [6]).

In most applications it is enough to transfer A — AB to a generalized Schur form
(e.g., to GUPTRI form [7], [8])

A, — \B, * *
(1.1) PHE(A-\B)Q = 0 Areg — ABreg *
0 0 A — \B;
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where P (m-by-m) and Q (n-by-n) are unitary and * denotes arbitrary conforming
submatrices. Here the square upper triangular block A,eg — ABreg is regular and has
the same regular structure as A — AB (i.e., contains all generalized eigenvalues (finite
and infinite) of A — AB). The rectangular blocks A, — AB,. and A; — AB; contain the
singular structure (right and left minimal indices) of the pencil and are block upper
triangular. The singular blocks of right (column) and left (row) indices of grade j are

-2

-2 1 1

(1.2) L= S and L;‘F =

-2 1 A

1

of size j-by-(j + 1) and (j + 1)-by-j, respectively. A, — AB, has only right minimal
indices in its Kronecker canonical form (KCF), indeed the same L; blocks as A — AB.
Similarly, A; — AB; has only left minimal indices in its KCF, the same L;‘r blocks as
A — AB. If A — \B is singular at least one of A, — AB, and A; — AB; will be present
in (1.1). The explicit structure of the diagonal blocks in staircase form can be found
in [8]. If A — AB is regular, A, — AB, and A; — AB; are not present in (1.1) and the
GUPTRI form reduces to the upper triangular block A;eg — ABreg. Staircase forms
that reveal the Jordan structure of the zero and infinite eigenvalues are contained in
Areg - )‘Breg-

Given A—AB in GUPTRI form we also know different pairs of reducing subspaces
(18], [7]. Suppose the eigenvalues on the diagonal of Ayez — ABieg are ordered so that
the first k, say, are in A; (a subset of the spectrum of A;eg —ABreg) and the remainder
are outside A;. Let A,.—AB, be m,-by-n,.. Then the left and right reducing subspaces
associated with A; are spanned by the leading m, 4+ k columns of P and the leading
n, + k columns of @), respectively. When A; is empty, the corresponding reducing
subspaces are called minimal, and when A; contains the whole spectrum the reducing
subspaces are called mazximal.

If A — AB is m-by-n, where m # n, then for almost all A and B it will have the
same KCF, depending only on m and n (the generic case). The generic Kronecker
structure for A — AB withd=n—m > 0is

(13) dia‘g(Laa'"aLaaLa+1a"‘aLa+1)7

where a = |m/d|, the total number of blocks is d, and the number of L,+; blocks
is m mod d (which is 0 when d divides m) [16], [3]. The same statement holds for
d = m —n > 0 if we replace Lo, Lo41 in (1.3) by LL, LT ;. Square pencils are
generically regular, i.e., det(A — AB) = 0 if and only if ) is an eigenvalue. The generic
singular pencils of size n-by-n have the Kronecker structures [19]:

(1.4) diag(Lj, LY _;_1), j=0,...,n—1.

In summary, generic rectangular pencils have only trivial reducing subspaces and no
generalized eigenvalues at all. Generic square singular pencils have the same minimal
and maximal reducing subspaces. Only if A — AB satisfies a special condition (lies
in a particular manifold) does it have nontrivial reducing subspaces and generalized
eigenvalues (the nongeneric case). Moreover, only if it is perturbed so as to move con-
tinuously within that manifold do its reducing subspaces and generalized eigenvalues
also move continuously and satisfy interesting error bounds [5], [7]. These require-
ments are natural in many control and systems theoretic problems such as computing
controllable subspaces and uncontrollable modes.
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Several authors have proposed (staircase-type) algorithms for computing a gen-
eralized Schur form (e.g., see [1], [4], [11]-[14], [16], [20]). They are numerically stable
in the sense that they compute the exact Kronecker structure (generalized Schur form
or something similar) of a nearby pencil A’ — AB’. Let || - ||g denote the Euclidean
(Frobenius) matrix norm. Then § = ||(A — A’, B — B’)|| g is an upper bound on the
distance to the closest (A + 6A, B + 6B) with the KCF of (A’, B’). Recently, articles
about robust software with error bounds for computing the GUPTRI form of a sin-
gular A — AB have been published [7], [8]. Some computational experiments that use
this software will be discussed later.

The existing algorithms do not guarantee that the computed generalized Schur
form is the “most” nongeneric Kronecker structure within distance §. However, if § is
of size O(||(A, B)|| ge), where € is the relative machine precision, we know that (A, B)
is close to a matrix with the Kronecker structure that the algorithm reports. It would
be desirable to have algorithms that could solve the following “nearness” problems:

e Compute the closest nongeneric pencil of a generic A — AB.
e Compute the closest matrix pencil with a specified Kronecker structure.
e Compute the most nongeneric pencil within a given distance 6.

If the closest structure is not unique we are mainly interested in the most non-
generic KCF. From the perturbation theory for singular pencils [5] we know that all
these problems are ill-posed in the sense that the generalized eigenvalues and reduc-
ing subspaces for a nongeneric A — AB can change discontinuously as a function of A
and B. Therefore, to be able to solve these problems we need to regularize them by
restricting the allowable perturbations as mentioned above. In this contribution we
make a comprehensive study of the set of 2-by-3 pencils in order to get a greater un-
derstanding of (i) these “nearness” problems and how to solve them, and (ii) existing
algorithms/software for computing the Kronecker structure of a singular pencil. The
full implications of this “case study” to general m-by-n pencils are topics for further
research.

In the following we give a summary of our contribution and the organization
of the rest of the paper. Section 2 is devoted to algebraic and geometric charac-
teristics of the set of 2-by-3 pencils. In §2.1 we disclose the structurally different
Kronecker structures and show how all the nongeneric structures can be generated by
a staircase-type algorithm, starting from the generic canonical form. Some algebraic
and geometric characteristics of the 18 different Kronecker structures are summarized
in three tables. Section 2.2 introduces the concepts of orbits of matrix pencils and
their (co)dimensions. The codimensions of the orbits of the 2-by-3 matrix pencils,
which depend only on their Kronecker structures [3], are displayed in Table 2.3. They
vary between zero (the generic case) and 12 (= 2mn) for the zero pencil (the most
nongeneric case). Indeed, all 2-by-3 pencils “live” in a 12-dimensional space spanned
by the set of all generic pencils. In §2.3 we derive a graph describing the closure hier-
archy of the orbits of all 18 different. Kronecker structures for the set of 2-by-3 pencils.
The closure graph is presented in Fig. 2.1. By labeling the nodes in the closure graph
with their geometric characteristics and the arcs with the change in geometric charac-
teristics for transiting to an adjacent node, we get a labeled graph showing necessary
conditions on perturbations for transiting from one Kronecker structure to another.
The labeled closure graph is presented in Fig. 2.2 in §2.4.

Section 3 is devoted to an experimental study of how the nongeneric Kronecker
structures behave under random perturbations in finite precision arithmetic, using
the GUPTRI software [7], [8]. Assuming a fixed relative accuracy of the input data,
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structure invariances and transitions of each nongeneric case are studied as a func-
tion of the size of the perturbations added. The results summarized in Table 3.1 are
discussed in terms of tolerance parameters used in GUPTRI for determining the Kro-
necker structure. For large enough perturbations all nongeneric pencils turn generic
(as expected). Some nongeneric cases transit between several nongeneric structures
before turning generic. These transitions always go from higher to lower codimensions,
along the arcs in the closure graph.

In §4 we present computable normwise bounds for the smallest perturbations
(6A,6B) of a generic 2-by-3 pencil A — AB such that (A + §A) — A\(B + éB) has
a specific nongeneric Kronecker structure. Two approaches to impose a nongeneric
structure are considered. First, explicit expressions for the perturbations that transfer
A — AB to a specified nongeneric form are derived in §4.1. In this context tractable
and intractable perturbations are defined. We compute a perturbation (64, 8B) such
that (A+6A) —\(B+6B) is guaranteed to be in the closure of the manifold (orbit) of
a certain KCF. If the KCF found is the intended KCF, then the perturbation is said
to be tractable. If the KCF found is even more nongeneric then the perturbation is
intractable. An intractable perturbation finds any other structure within the closure
of the manifold, i.e., a structure that can be found by traveling along the arcs from the
intended KCF in the closure graph. A summary of these perturbations is presented
in a perturbation graph (Fig. 4.1), where the path to each KCF’s node shows the
tractable perturbation required to find that KCF starting from the generic KCF (an Lo
block). After illustrating intractable perturbations we derive some results regarding
the closest nongeneric Kronecker structure of a generic 2-by-3 (and 1-by-2) pencil. In
the second approach, we use a modified GUPTRI for computing a specified Kronecker
structure of a generic pencil (§4.2). Computational experiments on random 2-by-3
pencils for the two approaches are presented in §4.3. It is the intractable perturbations,
which impose the most nongeneric structure (with highest codimension) for a given
size of the perturbations (e.g., the relative accuracy of the data), that are requested in
applications (e.g., computing the uncontrollable subspace). Finally, in §5 we comment
on the general case and extend our results for the closest nongeneric pencil to a generic
m-by-(m + 1) pencil.

2. Algebraic and geometric characteristics of the set of 2-by-3 matrix
pencils. In this section we disclose the structurally different Kronecker structures and
show how all the nongeneric structures can be generated by a staircase-type algorithm,
starting from the generic canonical form. Moreover, we discuss the codimensions
of associated orbits and derive a closure graph, showing the Kronecker structure
hierarchy of the set of 2-by-3 pencils.

2.1. Structurally different Kronecker structures. The generic case corre-
sponds to A and B of size 2-by-3 both having full row rank and nonintersecting column
nullspaces. This implies that A — AB is strictly equivalent to an Ly block:

2.1) P‘l(A—AB)QzLZE[_O)‘ A ?]:[g : (1’]—,\[(1) ° g].

By inspection, we see that the A- and B-parts of Ly have row rank 2 and non-
intersecting 1-dimensional column nullspaces. The generic canonical form Ly can be
obtained by deleting the last row of J3(0) — AI3, a 3-by-3 Jordan block corresponding
to the zero eigenvalue. J3(0) is the generic canonical form of a 3-by-3 matrix with zero
as a triple eigenvalue and the associated nongeneric Jordan structures are J2(0)&J;(0)
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and J1(0) & J1(0) & J1(0) (i.e., a 3-by-3 zero matrix). Notice that a generic 3-by-3
matrix is diagonalizable with unspecified nonzero eigenvalues (i.e., all Jordan blocks
of size 1-by-1).

In the following we disclose the structurally different nongeneric singular cases of
size 2 x 3. By structurally different we mean that all cases have different Kronecker
structures (canonical forms). There exist 17 different nongeneric singular cases. The
simplest way to construct all nongeneric canonical forms of size 2 x 3 is to generate all
possible combinations of L1, Lo, Ja, J1, R1, N1, Na, L, and LT blocks as in Table
2.1. Algorithms for computing the Kronecker structure of a singular pencil reveal
the right (or left) singular structure and the Jordan structure of the zero (or infinite)
eigenvalue simultaneously. Therefore, we only distinguish the zero and infinite Jordan
structures and put a nonzero and finite eigenvalue in R, a regular 1-by-1 block with
an unspecified eigenvalue. We will use Ry to denote a 2-by-2 block with nonzero
finite eigenvalues, i.e., Ry is used to denote any of the three structures J;(a) & J1(8),
Ji(a) ® Ji(), and Ja(c), where o, 3 # {0,00}. Notice that if Ry = Ja(c) then
A — aB and B has J3(0) in its KCF. It is only for the case Lo @ R that we can have
a Ja(a) block. If we treat these three cases separately we get 19 nongeneric cases, but
for our purposes it is sufficient to define R, as above.

TABLE 2.1
2 x 3 pencils built from different Kronecker and Jordan blocks.

Number of cases  Block structure KCF

1 ] Ly

3 ] ] L1 ® {J1,R1, N1}
I O

5 O ] Lo @ {J1,R1, N1} & {J1, N1}
I O

3 ] Lo & {J2, Rz, N2}

1 |:I| Lo®Li® L]

1 D 2Lo ® LT

3 r-'{ 2Lo ® {J1, R1, N1} ® LT

1 : 3Lo ®2LT

In order to get more insight into the nongeneric structures we would like to show
how all the nongeneric structures can be generated by a staircase-type algorithm.
By dropping the row rank of the A-part and/or B-part of Ly (2.1) and imposing
different sizes of their “common column or row nullspace(s)” (see Table 2.3) we are
able to generate all 17 nongeneric cases starting from the generic canonical form (in
the following denoted A — AB). Algorithmically, we keep the rank of, for example, B
constant and vary the row rank of A while imposing possible sizes of their “common
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nullspace(s).” A decrease of the row rank is done by deleting a nonzero element (= 1)
in the first or second row of A and/or B and the dimension of the common column
nullspace is imposed by permutations of the nonzero elements. After decreasing the
row rank of B by one we repeat the procedure until the row rank of B equals zero.
By doing so we can generate 12 structurally different nongeneric pencils of size 2 x 3.
These correspond to cases 2-13 in Table 2.2, where we display a case number %, the
matrix pair (A4;, B;), r(A;), r(B;), the row ranks of A; and B;, respectively, n(4;, B;),
the dimension of the common column nullspace of A; and B;. Finally, in the last
column we display the generalized Schur forms (GUPTRI forms) which correspond to
the Kronecker block structures displayed in Table 2.1.

TABLE 2.2
Summary of the 18 structurally different 2 x 3 pencils, numbered and presented in the order in
which they are derived in §2.

i A; B; r(A;) r(B;) n(A;, B;) GUPTRI form
vfood] lono] 220 [T 4T
2 [oor] [oro] * 2 o[0T A4
s [ooo) [o00] o 2 v [57 5]
tlooo] [ood] + 2z o[0T 4]
s [ooa] [ooa] 2 2 1 0750 .2]
crre bl s s o [0
oo i) [ooo] v v [T 0]
s [0o00)] [ooa)] © v 2 [05 7]
> [o00) [o0o] * 1 2 [50'0"]
o oo 9] (o302 1 v [58F
wfood] [000] 2 o 1 [0 0 1]
a (D00 [000] 1+ 0 a [801]
s (2001 [0008] o o s [800]
o] foon] 22 o [T 0 0]
w [gov] [oor] 2+ v [N Y]
e [oot] [ooa] v 2 1 [0 5]
" [ooo) (000 v v 1 [57 ]
v [0oa) [ooa) * 1 = 053]

Case 1 in Table 2.2 corresponds to the generic structure. Cases 2-5 are obtained
by keeping r(B;) = 2 and varying r(A4;)(2,1,0) and n(4;, B;)(0,1). In cases 6-10 we
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keep r(B;) = 1 and vary r(A;) (as before) and n(A;, B;)(0, 1,2). Finally, in cases 11-13
r(B;) = 0, r(A;) and n(A;, B;) are varied ((0, 1, 2) and (1, 2, 3), respectively). In cases
8,9, 12, and 13, the matrix pairs have a common row nullspace as well, corresponding
to LI blocks in their KCF. The number of L blocks equals the dimension of the
common row nullspace (1 for cases 8, 9, and 12 and 2 for case 13). Notice that
n(A;, B;) = 2 for three of these four cases and n(A;, B;) = 3 for case 13. However,
n(A4;, B;) = 2 is neither a necessary nor a sufficient condition for a 2-by-3 matrix
pair to have a common row nullspace (see cases 7’ and 9’ below). If we exchange the
roles of A and B in the derivation of the nongeneric forms 2-13 they will appear in a
different order with the Nj blocks and J(0) blocks exchanged.

We have five more cases to retrieve, denoted 1°, 10’, 4’, 7, and 9’ in Table 2.2.
Case x’ denotes a case that has the same row ranks and column nullities as case x,
and is obtained from case x by permuting rows or columns.

Case 1’. By swapping columns 2 and 3 in B; we still have a matrix pair with
r(A4;) =r(B;) = 2 and n(4;, B;) = 0. We denote this pencil case 1’. As can be seen in
Table 2.2, GUPTRI delivers the KCF L; & R; for Ay, — ABy/. After the first step of
deflation in GUPTRI (which identifies that A;,7 = 1,1’ has a 1-dimensional column
nullspace (n(4;) = 1) and that n(A;, B;) = 0,5 = 1,1’) we are left with the pencils:

22) AV —aBM =[0 1]-A[1 0], AP -2BP =[0 1]-x[0 1].

The difference is that n(Agl), B§1)) = 0 while n(AS), Bg,l)) = 1. Is there any algebraic
explanation? We find the answer in the classical characterization of a singular pencil
with a right (column) index [9].

Let the matrix R[A, B, 1] of size (i + 2)m x (i + 1)n be defined by

r A 0 0 T
B A
(2'3) R[A’ B’i] = 0 0 s
: B A
o 0 B |

where A and B are m X n matrices. When it is clear from context we use the
abbreviated notation R[i] for R[A, B,i]. With the notation above we can state the
following theorem.

THEOREM 2.1 (see [9]). The following statements are equivalent.

e A — \B is singular with a right (column) minimal index of lowest degree k > 0,
i.e., A — AB has no right minimal indices of degree < k.

o A — AB is equivalent to the pencil

Ly 0
(24) e x|

where Ly is a kx (k+1) Kronecker block. A’ —\B' may have indices of higher degree.
e R[i] has full column rank r(R[:]) = (i+1)n fori=0,1,...,k—1, while r(R[k]) <
(k + 1)n, or equivalently, the column nullity n(R[{]) =0 fori=0,1,...,k—1 and
n(R[k]) > 0.
By applying Theorem 2.1 to cases 1 and 1’ we see that n(R[1]) = 0,n(R[2]) =1
for case 1 while n(R[1]) = 1,n(R[2]) = 2 for case 1’, which justify that case 1 has
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an Lo block as its KCF and case 1’ has an L; block in its KCF. After the second
deflation of case 1’, GUPTRI is left with the pencil [1] — A[1] which corresponds to
R;, a regular block of size 1 x 1.

Case 10’. By swapping columns 2 and 3 of Bjg we still get a matrix pair with
r(A;) = 2,r(B;) = 1 and n(A;, B;) = n(R[0]) = 1. We denote this pencil case 10’.
This swapping does not change the singular structure. However, the Ny block in case
10 is now split into two regular 1 x 1 blocks N; and Ry, i.e., one infinite eigenvalue is
turned nonzero.

To get the remaining three cases we will swap rows 1 and 2 in A; for ¢ = 4,7, and
9.

Case 4'. If we swap rows 1 and 2 in A4 we still get a matrix pair with r(4;) =
1,r(B;) = 2 and n(4;, B;) = 1. We denote this pencil case 4’. The only difference is
that the J(0) block in case 4 is now split into two regular 1 x 1 blocks J1(0) and Ry,
i.e., one zero eigenvalue is turned nonzero.

A dual form of Theorem 2.1 can be stated for a left (row) minimal index of lowest
degree k > 0. Then LI takes the place of Ly and L[A, B, i] of size (i + 1)m x (i +2)n
replaces R[A, B, 1], where

A B 0 --- 0
(2.5) tag=|% 4 B

L

o --- 0 A B

and we are considering row ranks (or row nullities) of L[A, B,i]. (When it is clear
from context we also here use the abbreviated notation L[i] for L[A, B, i].) We use this
dual form to characterize the last two cases. Notice that n(R[A, B, 0]) is equivalent
to the dimension of the common column nullspace for A and B and that n(L[A, B, 0])
is equivalent to the dimension of the common row nullspace for the two matrices.

Case 7'. By swapping rows 1 and 2 in A7 we still get a matrix pair with r(4;) =
1,r(B;) = 1 and n(A;, B;) = 1. We denote this pencil case 7. However, this swap
imposes a common row nullspace of A7 and By as well, and will therefore change
the singular structure completely. The regular part (J;(0) @ N;) disappears and
is replaced by L; @ L], i.e., the generic singular structure of a 2-by-2 pencil [19)].
n(A;, B;) =n(R[0]) =1 for i = 7 and 7’. For case 7, n(R[1]) = 2,n(L[0]) = 0 while
n(R[1]) = 3,n(L[0]) = 1 for case 7'.

Case 9. By swapping rows 1 and 2 in Ag we still get a matrix pair with r(4;) =
1,r(B;) = 1 and n(A4;, B;) = 2. We denote this pencil case 9. However, Ag: and
By do not have a common row nullspace. Also here the regular part disappears and
Ry @ LT turns into LT, ie., a generic 2-by-1 pencil. n(L[0]) = 1 for case 9, while
n(L[0]) = 0,n(L[0]) = 1 for case 9'.

In Table 2.3 we display ranks of A;, B; and nullities of R[k] and L[k] for some
values of k together with our structurally different singular structures of the set of
2-by-3 pencils. The ordering of the cases is explained in §2.2.

2.2. Orbits and their codimensions. Each of the 18 singular canonical forms
(A;, B;) in Table 2.3 defines a manifold of strictly equivalent pencils in 2mn(= 12)-
dimensional space:

orbit(A4; — AB;) = {P; 1 (A; — AB;)Q; : det(P;)det(Q;) # 0}.
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TABLE 2.3
Geometric characteristics of the 18 structurally different 2 x 3 pencils.

Case | r(A;) r(B;) n(A;,B;) n(R[1]) n(R[2]) n(L[0]) n(L[1]) | KCF Cod(A; — \B;)
1 2 2 0 0 1 0 0 |L 0
v 2 2 0 1 2 0 0 Li®R; 1
2 1 2 0 1 2 0 0 |Li®h 2
6 2 1 0 1 2 0 0 |LieM 2
5 2 2 1 2 3 0 0 |Lo®R2 2
s 1 2 1 2 3 0 0 |Lo®Nh®R: 3

100 | 2 1 1 2 3 0 0 | Lo®N1OR; 3
4 1 2 1 2 3 0 0 Lo®J2 4
10 2 1 1 2 3 0 0 |Lo®N: 4
7 1 1 1 2 3 0 0 |Lo®/i®N: 4
T 1 1 1 3 5 1 2 | LooLioLY 5
3 0 2 1 2 3 0 0 | Lo®2Jy 6
11 2 0 1 2 3 0 0 Lo®2N, 6
9 1 1 2 4 6 0 1 |2LeaL¥ 6
9 1 1 2 4 6 1 2 2Lo®R1OLY 7
8 0 1 2 4 6 1 2 |2Lo@®J1 L] 8
12 1 0 2 4 6 1 2 | 2LodN1®LY 8
13 0 0 3 6 9 2 4 |3Lo@®2L 12

The dimension of orbit(A — AB) is equal to the dimension of the tangent space,
tan(A — AB), to the orbit of A — AB. The tangent space is defined as

(2.6) f(X,Y) = X(A-AB) — (A— AB)Y,

where X is an m x m matrix and Y is an n X n matrix [3]. Since (2.6) maps a space of
dimension m?+n? linearly to a space of dimension 2mn, the dimension of the tangent
space is m? + n? — d, where d is the number of (linearly) independent solutions of
fX,Y)=0.

The codimension is the dimension of the space complementary to the tangent
space, i.e.,

cod(A — AB) = 2mn — dim(tan(A — AB)) = d — (m — n).

The codimensions of the orbits depend only on their Kronecker structures. Demmel
and Edelman [3] show that the codimension of the orbit of an m x n pencil A — AB
can be computed as the sum of separate codimensions:

cod(A — AB) = cjor + CRight 1 CLeft + CJor,Sing + CSing,

where the different components are defined as follows.
The codimension of the Jordan structure is

clor = (@A) +3:N) +5aN+-- =1+ Y (a(N)+3g0() +5a(\) +-),
A#0,00 A=0,00

where the summation is over all eigenvalues and ¢1(A) > g2(A) > ¢3(}) ..., denote the
sizes of the Jordan blocks corresponding to the eigenvalue A. The first part of cyor
corresponds to unspecified eigenvalues different from zero and infinity, which explains
the term —1 in the codimension count.

The codimensions of the right and left singular blocks are

CRight = Z(j —k—1) and crest = Z(j —k-1),

i>k i>k



10 ERIK ELMROTH AND BO KAGSTROM

respectively, where the summation for crignt is over all pairs of blocks L; and Ly, for
which j > k, and the summation for cres is over all pairs of blocks L;f and LT, for
which j > k.

The codimension due to interaction between the Jordan structure and the singular
blocks is

CJor,Sing = (size of complete regular part) - (number of singular blocks).

The codimension due to interaction between right and left singular blocks is

CSing = Z(J +k+ 2))
j’k

where the summation is over all pairs of blocks L; and L{.

The codimensions of our 18 different canonical forms are displayed in the last
column of Table 2.3. We have ordered the cases by increasing codimension. In general,
we see that by making A and B more rank deficient and increasing their “common
nullspace(s)” (n(R[k]) and n(L[k]) for & > 0) we generate nongeneric pencils with
higher codimension. The generic pencil has codimension 0 while the matrix pair
(A,B) = (02x3,02x3) has codimension 12 (= 2mn), i.e., defines a “point” in 12-
dimensional space.

2.3. The closure graph for different Kronecker structures. Since orbit(Lz)
spans the complete 12-dimensional space, it is obvious that all other structures are
in the closure of the orbit of Ls, and it is just as obvious that 3Ly ® 2LY (the zero
pencil) is in the closure of the orbit of any other KCF. Since all other closure relations
are not that obvious, we derive a complete closure graph for the set of 2-by-3 matrix
pencils.

Throughout the paper we display graphs such that orbits (nodes) with the same
codimension are displayed on the same horizontal level.

THEOREM 2.2. For the set of 2-by-3 pencils, the directed graph in Fig. 2.1 shows
all closure relations as follows. One KCF is in the closure of the orbit of another
KCF if and only if there exists a path to its node from the node of the KCF defining
the closure (downwards in the graph).

Proof. First we prove that each arc in the graph corresponds to a closure relation,
and then we prove that these are all arcs that can exist. We prove that one KCF is in
the closure of the orbit of another KCF by showing that the one in the closure is just a
special case of the one defining the closure. We show proofs for each arc starting from
the zero pencil. Since the proof is rather space demanding, we here limit ourselves to
proving one of the arcs and refer the reader to Appendix A for the complete proof.

Starting at the zero pencil, the first arc with nontrivial proof corresponds to the
fact that 2Lo @ J1 @ L{ is in the closure of orbit(2Lo ® Ry & L{). This follows from
the fact that 2Lo @ J; @ L is the special case o = 0 of

[OOa]_)\[OOﬂ]
00 0 00 0}’

which is equivalent to 2L & Ry @ L] for all other o (assuming that 3 is nonzero).
The proofs for all other arcs are done similarly. For some of them, an equivalence
transformation is needed for transformation to KCF. o
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Cod(A — AB)
0

Lo®J1®R1 Lo®R1®N;

Lo®J1&N, 4

\,/

5

12

FI1G. 2.1. A graph displaying the closure hierarchy of the orbits of all 18 different KCF for the
set of 2-by-3 matriz pencils.

2.4. Labeled closure graph showing necessary conditions on perturba-
tions for transiting from one structure to another. One way to interpret a
relation in the closure hierarchy is that a KCF that is in the closure of the orbit of
another KCF “lives” in the space defined by that orbit. That is, if we consider the
closure of the orbit of a nongeneric KCF with certain rank-defects in Table 2.3, then
to be in that closure a KCF must preserve or increase these defects. For example,
since L1 @ J; has rank(A) = 1, no KCF with rank(A) > 1 can be in its closure. A nec-
essary condition for a KCF to be in the closure of orbit(L; @ Ji) is that the geometric
characteristics r(A4) < 1,r(B) < 2,n(A, B) > 0,n(R[1]) > 1,n(R[2]) > 2,n([L[0]) > 0
and n([L[1]) > 0 are satisfied (see Table 2.3). Moreover, the change in geometric
characteristics from, for example, L1 & J1, whose orbit spans a 10-dimensional space
(codimension is 2), to Lo @ J; @ Ry, whose orbit spans a 9-dimensional space (codi-
mension is 3), is nothing but a 1-dimensional restriction of the 10-dimensional space.
We also note that Ly @ J1 @ Ry is in the closure of orbit(Lo & R2), which also spans
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a 10-dimensional space. Indeed, Lo @ J; ® R; spans a 9-dimensional space in the in-
tersection of the two 10-dimensional spaces spanned by the closures of orbit(L; & J1)
and orbit(Lo ® R2).

When looking for perturbations corresponding to the arcs in the graph, a neces-
sary condition for these perturbations is to fulfill the change in geometric characteris-
tics. Indeed, by combining the geometric characteristics in Table 2.3 and the closure
graph we get necessary conditions on perturbations (64, 8B) for transiting from one
structure to another.

We introduce the following labels. Let

[n-(A),0,(B),n(A, B), n(R[1]), n(R[2]), n([Z[0]), n([L[1])]

label the geometric characteristics for one node in the graph, where n,(A) and n,(B)
denote the dimension of the row nullspace in A and B, respectively, and all other
characteristics are as in Table 2.3. Moreover, we label the change in geometric char-
acteristics for transiting from one structure to an adjacent node by

(n,(4),n.(B),n(4, B),n(R[1]),n(R(2]), n({L[0]), n([L{1]))-

In Fig. 2.2 a labeled closure graph is presented, with the geometric characteristics
shown for each KCF and the change in geometric characteristics shown for each arc.

When transiting from one KCF to another, the geometric characteristics of the
source node and the geometric characteristics on the arc are added to give the charac-
teristics of the destination KCF. Since a KCF in the closure of another’s orbit cannot
have a smaller dimensional nullspace for any of the matrices of the labels, the values
on the arcs must all be nonnegative.

Notice that the arc from Lo® J1 ® Ry to Ly ® Jo and the arc from Ly ® R; ® N; to
Ly® N> both have no change in the geometric characteristics. For these transitions the
nonzero finite eigenvalue is turned to a zero eigenvalue and to an infinite eigenvalue,
respectively. This does not affect any of the nullspaces displayed in the labels.

To transit several levels in the closure graph we just add the labels of changes in
geometric characteristics for the arcs that are traveled during the transition. Each
label of changes in geometric characteristics defines necessary conditions on the pertur-
bations (6A,8B) to perform the transit. Later, we will derive perturbations required
to transit from Lo to any of the nongeneric structures. In our derivation, however, for
most cases we transit directly to the intended structure. There are only a few cases
that require compound perturbations that transit via another KCF.

3. Structure invariances and transitions of nongeneric pencils under
perturbations. Since computing the Kronecker structure of a singular pencil is a
potentially ill-posed problem [5], it is interesting to see how the nongeneric cases
behave under perturbations in finite precision arithmetic. We add (uniformly dis-
tributed) random perturbations of different sizes €,(= 1071°,107°,..., 107!) to all
A; and B;, corresponding to the generic and 17 nongeneric cases, and compute their
generalized Schur forms using GUPTRI [7], [8], assuming a fixed relative accuracy
€x(= 1078) of the input data. We repeat this procedure 100 times and study the
structure invariances and transitions of each nongeneric case as a function of the size
of the perturbations added.

GUPTRI has two input parameters EPSU (e, above) and GAP which are used
to make rank decisions in order to determine the Kronecker structure of an input
pencil A — AB. Inside GUPTRI the absolute tolerances EPSUA = ||A||g - EPSU
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Cod(A — AB)
@[uma 1,00] 0
<0001,1,00>
[0001,200] 1

<1,000,00,0> <0,0,1,1,1,0,0> <010,0,0,0,0>

[10,0,1,20,0] [001,230,0] [01,01,20,0] 2

<0,0,1,1,1,0,05 <1,0,000005 <010000,0> £6,0,1,1,1,00>
Lo®R1®N1 )(01,1,2300] 3

<00,0,00003 <10,00000> <0000000>
[1,01,230,0] (zo®nen: 112300 [01,1,230,0] 4

<0001212>
<1001,21,2>
7 T

<1,0,0,0,6,0,0>

<1,012301> <0,1,0,0,0,0,0>

( Lo®241 [1L1,24601] <0011100> 16212300]( Lo®2N1 ) 6
(20,1,23,0,0]
<00,0001,1>
<01,1,2312> GLooRr10L])1124612] <1,01,2312> 7

<1,0,0,0,0,0,0> <0,1,0,0,0,0,0>

2Lo@J1$Lg [21,24,61,2] [122461,2](2Lo®N1OL

<01,1,2312> <1,01,231,2>

(2236924] 12

T
3Lo®2L]

Fi1G. 2.2. The labeled closure graph for all 18 different KCF for the set of 2-by-3 matrixz pencils.

and EPSUB = ||B||g - EPSU are used in all rank decisions, where the matrices A
and B, respectively, are involved. Suppose the singular values of A are computed in
increasing order, ie., 0 < 013 < 03 < -+ < 0k < 041 < ...; then all singular values
or < EPSUA are interpreted as zeros. The rank decision is made more robust in
practice: if o < EPSUA but ox41 > EPSUA, GUPTRI insists on a gap between
the two singular values such that oxy1/0% > GAP. If 0x41/0x < GAP, 041 is also
treated as zero. This process is repeated until an appreciable gap between the zero
and nonzero singular values is obtained. In all of our tests we have used EPSU = 108
and GAP = 1000.0. All computations (in §§3 and 4) are performed on a SUN SPARC
station in double precision complex arithmetic with unit roundoff = O(10~17).

In Table 3.1 we display the computed Kronecker structures of the 17 perturbed
nongeneric pencils for 100 random perturbations for each €,. For each case all struc-

ture invariances and transitions are shown from left to right. The symbol o=
indicates that the Kronecker structure is invariant under perturbations smaller than
€, = 1077, and that the structure changes (at least for some of the 100 tests) for
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TABLE 3.1
Computed Kronecker structures and transitions of 100 perturbed nongeneric 2 x 3 pencils. The
size €n, of each perturbation is shown above the corresponding arrow.

‘, 1074 [ Ly (81) 1 1077 [ L2 (98)1 1077
1": Li®R, — Li®R; (19) - Li®R:1 (2) L

5 -4 _3
2: L1®J1 ELN Ly (18)1 10 {L1€DJ1 (98) } 107, L,

Li®J1 (82) @)

L 92)) o-3 (L (99) 10~2
oo =ty G e,

Ly (63) 10-3 Ly (95) 1072 ( Ly (99) ] 0=
5: Lo@Rzé{éégg; (2(3;} {fégﬁl 2‘3} Li&R: (1>}*L2

L ) B Lo (82) s
4': Lo®J1®R; o, Li®R (17) = §1g§1 (1((3 = L2
Lo®1®R: (82) ey
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<
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perturbations of size 10*. For a size of the perturbations that has not given the
same structure for all 100 tests, all KCF's found are placed within curly brackets with
a number within parentheses after each KCF showing the number of that particular
KCF that has been found. As before, the cases are displayed in increasing codimension
order and the transit KCF forms within curly brackets are ordered similarly.

From Table 3.1 we see that for large enough perturbations all nongeneric struc-
tures turn generic (as expected). GUPTRI finds the same nongeneric structure as
long as e, < tol = min(EPSUA,EPSUB) - GAP. This behaviour is in agreement
with the perturbation theory for singular pencils [5], [7]. Only if A — AB lies in a
particular manifold does it have a nongeneric Kronecker structure with nontrivial re-
ducing subspaces and possibly eigenvalues. Moreover, only if it is perturbed so as to
move continuously within that manifold does its original Kronecker structure remain.
Actually, by choosing a tol > 0, we have thickened the manifolds so that they are no
longer a set of measure zero.

All transitions from the initial case to the final generic case are clearly from cases
with higher codimension to cases with lower codimension. With a closer look we
can also see that all the transitions are performed upwards (or backwards) along the
arcs in the closure graph (Fig. 2.1). This means that the perturbations cure the
rank deficiencies in the nongeneric pencil without contributing any new singularities.
GUPTRI increases the rank in A and B and decreases the size of their “common
nullspace(s),” i.e., the “inverse” operations compared to what we did in §2.1. In other
words, when a pencil A— AB with a given nongeneric KCF is perturbed, by 64 — A6 B
then A — AB is in the closure of orbit((A + §A) — A\(B + 6 B)).

Even if we see that all of the cases transit via some other nongeneric structures
before all 100 tests turn generic, we can also see that if for each case and each size of
the perturbation we only consider the KCF that has been found in most tests, then it
is only for cases 8 and 12 that a transit KCF is found. Notice that all tests for cases
8 and 12 find the same other nongeneric KCF for the smallest perturbation. In other
words, when the perturbation is big enough to change the KCF for most tests of a
case, then the generic KCF is the most likely to be found, except for cases 8 and 12.

How can we explain the behaviour in cases 8 and 127 For these two cases one
matrix is the zero matrix. This means that tol = min(EPSUA, EPSUB) - GAP = 0,
implying that €, > tol already for the smallest perturbation, which in turn explains
why case transitions occur already for the smallest perturbation. Since either EPSUA
or EPSUB is zero, all singular values in the perturbed zero matrix will be interpreted
as nonzero, explaining why A or B is interpreted as a full rank matrix already for
the smallest perturbations. Also notice the “jumps” these transitions correspond to
in the closure graph. The argumentation here also explains why the zero pencil turns
generic for the smallest perturbation.

We end this section by briefly discussing how the case invariances and transitions
are affected by the choice of the fixed relative accuracy of the input data (EPSU).
If we choose EPSU = ¢, then GUPTRI will retrieve the nongeneric structure we
started from for each ¢, considered. Notice that the distance from the input pencil to
the computed Kronecker structure will normally be of size O(EPSU - ||(4, B)||g) [8].
Increasing EPSU means that the case invariances will remain longer before any case
transition takes place. Decreasing EPSU will impose the generic structure sooner. For
example, with EPSU equal to the relative machine precision and ¢, > tol, GUPTRI
will always extract the generic structure. This corresponds to the fact that in infinite
precision arithmetic any nongeneric A — AB can be made generic with arbitrary small
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perturbations. Moreover, travelling upwards in the closure hierarchy can always be
effected with arbitrary small perturbations, while travelling downwards may require
much larger perturbations.

4. Imposing nongeneric structures by perturbing a generic pencil. In
this section we study computable normwise bounds for the smallest perturbations
(6A,8B) of a generic 2-by-3 pencil A — AB such that (A + §A) — A(B + 6B) has a
specific nongeneric Kronecker structure chosen from the 17 nongeneric cases discussed
earlier. Our goal is to find the closest nongeneric pencil and the closest pencil with a
specified nongeneric Kronecker structure of a 2-by-3 generic pencil. We consider two
approaches to impose a nongeneric structure. First we derive explicit expressions for
the perturbations that transfer A — AB to a specified nongeneric form. Second, we
have modified GUPTRI to be able to compute a specified Kronecker structure.

4.1. Explicit perturbations to impose nongeneric structures. In §2 we
saw that by making A and B more rank deficient and increasing their “common
nullspace(s)” we can generate nongeneric pencils with higher codimension. Here we
elaborate on this fact and derive explicit expressions for the perturbations required
to turn an arbitrary generic pencil into each of the 17 nongeneric cases. The norms
of these explicit expressions (measured as ||(6A4,6B)| ) are upper bounds for the
smallest perturbations required. Indeed, for 11 of the structures, the norms are the
exact sizes of the smallest perturbations required.

We need the following notation. The size of the smallest perturbations (64, 6B)
such that R[A + 64, B + 6B, 1] (2.3) of size (i + 2)m X (i + 1)n has a k-dimensional
column nullspace is defined as

(4.1)  dk(R[A, B,i]) = S {ll(64,6B)||5 : n(R[A + 64, B + 6B, i]) = k},

where 6A and 6B vary over all m-by-n matrices with complex (or real) entries. Sim-
ilarly, we define di(L[A, B,1]) as the size of the smallest perturbations that impose
a k-dimensional row nullspace on L[i] (2.5). When it is clear from context we use
the abbreviated notation di(R[i]) and dx(L[i]). Also, let di(A) denote the size of the
smallest perturbations such that rank(A + §A) = min(m,n) — k.

In general, to find di(R[i]) (or di(L[i])) is a type of a structured singular value
problem. For ¢ > 1 it is an open problem to find explicit expressions for di(R[])
and di(L[i]). The following theorem summarizes some of their properties for the case
m=2n=3and k=1.

THEOREM 4.1. For a generic 2-by-3 pencil (A, B) the following inequalities hold:

(4.2) 0 = d1(R[2]) < d1(R[1]) < d1(R[0]),
(4:3) di(R[l]) < di(4), di(R[1]) < di(B),
(4.4) di(R[1])) < di(L1]) < di(L[0]),

(4.5) di(A) < dz(A), di(B) <dz(B), di(R[0]) < d2(R[0]).
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Proof. From Theorem 2.1 it follows that d(R[2]) = 0 for all 2-by-3 pencils (generic
or nongeneric). Decreasing the rank of the 4-by-3 R[A, B, 0] by one gives that R[A +
6A, B + 6B, 0] has only two linearly independent columns. The same perturbations
make the 6-by-6 matrix R[A + 6A, B + 6B, 1] rank deficient (a rank drop from six to
four), showing that (4.2) holds. Similarly, decreasing the rank of A (or B) by one
means that A+ 6A (or B + 6B) only has one linearly independent row. For the same
perturbations R[A + §A, B + 6B, 1] is rank deficient with only one of the first two (or
last two) rows linearly independent, resulting in the inequalities (4.3).

L[1] is row rank deficient if and only if there exists at least one L or LT block in
the KCF. Since all KCFs with at least one L3 block or one LT block have both A and
B rank deficient (see Table 2.3), there will always exist a strictly smaller perturbation
of size d;(A) that only lowers the rank in A. (The same is of course true for B.) Now
applying inequality (4.3) proves the first part of (4.4). The last part follows from
arguments similar to the proof of di(R[1]) < dy(R[0]) above. The inequalities (4.5)
follow from the definition of dj(-). O

Theorem 4.1 will be used to identify the closest nongeneric Kronecker structure
of a generic 2-by-3 pencil. Notice that in general we cannot say anything about the
relationship between d; (R[0]) and d;(A) or d;(B) (see explicit expressions below). By

varying « and § in
{110 _{B 00
A'_[O 0 a]’ B_[O 1 1]’
(i.e., a generic A — AB for nonzero o and ) we show that any of them can be the

smallest quantity (see Table 4.1).

TABLE 4.1
The quantities d1(A), d1(B), and d1(R[0]) for three ezamples.

Parameters di1(A) di(B) di(R[0])
a=08=1 1.000 1.000 0.765
a=01, =1 0.100 1.000 0.451
a=1, =01 1.000 0.100 0.451

The following explicit expressions, derived from the Eckart—Young and Mirsky
theorem for finding the closest matrix of a given rank (e.g., see [10]), appear in our
explicit bounds discussed next:

d1(A) = omin(4), d1(B) = Imin(B),
do(4) = [|Allg, da(B) = |IBl|g»
di(R[A, B,0]) = omin(R[0]), di1(L[A, B,0]) = omin(L[0]),
d2(R[A, B, 0]) = (051 (R[0]) + o2 (RIO])) /2.

Here, 0min(X) and omin—1(X) (With omin(X) < 0min—1(X)) denote the two small-
est nonzero singular values of (a full rank) matrix X.
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4.1.1. Tractable perturbations. In order to make the problem more tractable
we (first) put restrictions on allowable perturbations. We can compute a perturbation
6A — X6B such that (A+ 6A) — A(B + 6B) is guaranteed to fall on the closure of the
manifold (orbit) of a certain KCF. (Necessary conditions on the required perturbations
are given in the labeled closure graph in Fig. 2.2.) If the KCF found is the intended
KCF, then the perturbation is said to be tractable. If the KCF found is even more
nongeneric (i.e., its orbit has higher codimension but belongs to the closure of the
intended manifold), then the perturbation is defined intractable. In other words, a
tractable perturbation finds the generic KCF (i.e., the least nongeneric KCF) in the
closure of the manifold of the intended KCF. An intractable perturbation finds any
other structure in the closure of the same manifold, i.e., any structure that can be
found by traveling along the arcs (downwards) from the intended KCF in the closure
graph in Fig. 2.1.

When computing perturbations such that (A + §A) — A\(B + éB) is given a non-
generic KCF, we compute §A and § B such that one or more of the geometric charac-
teristics presented in Table 2.3 for (A+6A) —A\(B+6B) differ from the characteristics
of the generic (A4, B). In other words, we put restrictions on the size of the perturbed
pencil’s nullspaces so that at least one of them is larger than for the generic case. The
space given by this restriction may contain several nongeneric matrix pencils. For
example, if we restrict the set of pencils to those that have a rank deficiency in the
A-part, this space contains all pencils that fulfill the condition rank(A) < 2. However,
if we compute a perturbation such that rank(A + §A4) < 2, the perturbed pencil will
most likely be the generic (least nongeneric) KCF with a rank-deficient A-part, i.e.,
L1 ® J;. This corresponds to the KCF with rank-deficient A-part whose orbit has the
smallest codimension and the corresponding perturbation (64, 8B) is tractable. The
perturbation is intractable if (A + §A) — A(B + 6 B) has any KCF (with rank(4) < 2)
that is more nongeneric than L; @ J;. The set of possible structures are the ones that
are in the closure of orbit(L; & Ji).

Eleven of the 17 nongeneric structures (2, 6, 5, 7, 7°, 3, 11, 9, 8, 12, and 13)
are imposed by (minimal) tractable perturbations that effectuate one of the following
rank-decreasing operations:

e Rank drop in A and/or B by one or two.

e Rank drop in R[A, B,0] by one or two, i.e., imposing a common one- or
two-dimensional column nullspace.

e Rank drop in L[A, B, 0] by one, i.e., imposing a common row nullspace.

In Table 4.2 the size of the perturbations required to impose each of the eleven
singular structures are displayed. When both d;(A) and d;(B) are involved, the size
of the total perturbations is (d?(A) + d?(B))*/2. The singular cases are reported in
increasing codimension order (see Table 2.3). Since all these perturbations are made
as the smallest possible to impose the required ranks on A, B, R[0] or L[0], these
bounds are attained for each nongeneric form, i.e., the strongest possible, which is
equivalent to the bounds in Table 4.2 being lower bounds. That these perturbations
really give the forms shown in the table follows from the fact that we here are only
considering tractable perturbations and these are the least nongeneric forms that
have the imposed rank-deficiencies (see Table 2.3). For example, by imposing a 1-
dimensional rank drop in A we have restricted the 12-dimensional space to a space
that contains a subset of all nongeneric pencils. Since the perturbation is supposed
to be tractable, the KCF found is the least nongeneric in that space, i.e., L1 & J;.

The rank-decreasing operations performed in Table 4.2 “affect the codimension(s)”



THE SET OF 2-BY-3 MATRIX PENCILS 19

TABLE 4.2
Minimal perturbations of a generic pencil to tmpose 11 of the 17 nongeneric structures.
Case KCF Cod(:) di(A) di(B) di(R[0]) di(L[0]) d2(A) d2(B) d2(R[0])

2 Li®J1 2 X
6 Li® N1 2 X
5 Lo® R2 2 X
7 Lo®J1® N1 4 X X
7! Lo® Ly @Lg 5 X
3 Lo®2J1 6 X
11 Lo®2N; 6 X
9/ 2L0€9LT 6 X
8 2Lo®J1 @L?; 8 X X
12 2LeoMeLy 8 X x
13 3Lo@®2LT 12 X X

in the following way: a rank drop by one in A, B or R[0] increases the codimension
by two, a rank drop by one in L[0] increases the codimension by five, and a rank drop
by two in A, B or R[0] increases the codimension by six.

Two of the remaining six nongeneric forms (4’ and 10’) are imposed by transiting
via a nongeneric form as shown in Table 4.3. For example, to derive perturbations
of the generic A — AB that turn (A + §A, B + 6 B) nongeneric with KCF Lo & J; &
R, we have (6A,6B) = (6A1,6B1) + (6A2,6B3), where (6A1,6B1) is the smallest
perturbation that lowers the rank of A (i.e., ||(6A41,6B1)||g = d1(A), 6By = 02x3)
and (6 Az, 6B2) is the smallest perturbation that imposes a common column nullspace
on (A+6A1,B+6By) (ie., ||[(642,6B2)|| g = di(R[A + §A1, B+ 6B1,0])). In Table
4.3 we show how these forms are constructed. The size of the compound (total)
perturbations (6A4,6B) for the two cases are obtained by adding the perturbations
in Tables 4.2 and 4.3. A = A+ 6A; and B = B+ 6B, in Table 4.3 represent the
“transit” nongeneric pencil. A rank drop by one in R[A, B, 0] in Table 4.3 increases
the codimension by one.

TABLE 4.3
Compound perturbations: Nongeneric structures imposed by transiting via a nongeneric form.

Case KCF Cod(-) Transit KCF di(R[A, B,0])
4 Lo@J19R: 3 LieJi X
10 Lo® N1 Ry 3 L1 & N X

The last four nongeneric structures (1’, 4,10 and 9) require perturbations to parts
of the GUPTRI form of a transiting pencil A — AB:

H( 5 & = _ | 811 812 i3 tin tiz tis

(46) PYA-AB)Q=S-)\T'= [ 0 3y s ] )\[ 0 iy b ],

where some §;;,t;; may be zero. The size of the perturbations (65, 6T) imposed on S
and/or T are displayed in Table 4.4. Case 1’, which transits via the GUPTRI form
of Ly, is retrieved by imposing a common column nullspace of the A- and B-parts
of the deflated 1-by-2 pencil [S22 &23) — A[f22 t23]. For cases 4 and 10 we retrieve
the requested structures by setting elements 315 = 0 and 15 = 0, respectively, in the
GUPTRI forms of A — A\B (4.6). For case 4 we impose a zero multiple eigenvalue in
A — \B. Similarly, a multiple eigenvalue is imposed at infinity for case 10. In other
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TABLE 4.4
Compound perturbations: Nongeneric structures imposed by perturbing the GUPTRI form (de-
noted Transit form) of the generic or some nongeneric pencils.

Case KCF Cod(-) Transit form dj( 2; ;;: ) di( 2; 2: ) d12 ti2
1 Li®R, 1 Lo X
4 Lo®J2 4 Lo®J1®R, X
10 Lo®N: 4 Lo®N1® Ry X
9  2LgoRi®LT 7 Lo®L1oLT X

words, J; & R; and N1 ® R; in A — )\B are turned J, and Ny, respectively. Case 9 is
obtained by giving the A- and B-parts of the L; block in A — AB a common column
nullspace, which turns L, into Lo @ R;. Since P and @ in (4.6) are unitary the
perturbations imposed on A and B are of the same size as §S and 6T'. The size of the
compound (total) perturbations (64, §B) for the four cases is obtained by adding the
appropriate perturbations in Tables 4.2-4.4. The perturbations explicitly imposed for
the four cases in Table 4.4 increase the codimensions by one, except for case 9 where
the rank drop by one increases the codimension by two.

The compound perturbations discussed above are all supposedly tractable, but
are not necessarily optimal. A summary of the explicit perturbations in Tables 4.2—
4.4 is displayed in a perturbation graph in Fig. 4.1, where the nodes are placed at
the same positions as in the closure graph (Fig. 2.1). The paths to a node indicate
different ways to generate the tractable perturbation required to find the KCF of
the node, starting from a generic A — AB. Notice that some arcs are marked with
a bullet and the corresponding paths from a generic pencil to a destination KCF
generate perturbations that are not necessarily optimal (compound perturbations
from Tables 4.3 and 4.4). All other paths correspond to optimal perturbations from
Table 4.2. We clarify the notation in Fig. 4.1 with two examples. Let (6A4;,6B;)
denote the optimal perturbation of size d;(A) that for a generic A—AB gives A—AB =
(A+8A1) — X(B + 6By) the Kronecker structure Ly @ J;. Similarly, let (6A2,6B5)
denote the optimal perturbation of size d;(R[A, B ,0]) that moves A — \B to a pencil
with Kronecker structure Lo® J; @ R;. Then (64, +6A,,6B, +6Bg) is not necessarily
the optimal perturbation for moving a generic pencil to orbit(Ly® J; ® R;). Therefore
the arc to orbit(Lo & J1 @ R1) is marked with a bullet. On the other hand, adding
the perturbations going from orbit(Lz) to orbit(Le & 2J1) via orbit(L; & J1) gives us
the optimal perturbation, which is already shown in Table 4.2.

In order to relate our explicit perturbations to the (labeled) closure graph we
consider 2-dimensional rank drops in Table 4.2 as results of two 1-dimensional rank
drops. In practice, these 2-dimensional rank drops are computed directly. Some of
the perturbations in Table 4.2 do not give a unique path in the graph, since the
generic A — AB in some cases is perturbed in A and B simultaneously. For these
cases all alternative paths are shown in the graph, e.g., there are three different
paths to 2Ly @ J; & L{ and all of them correspond to the same perturbation (in
infinite arithmetic) of size (d3(A) + d?(B))'/2. From the construction of the explicit
perturbations it follows that each arc in the perturbation graph connects a KCF with
another KCF within its orbit’s closure. Therefore, for each arc in the perturbation
graph there exists a corresponding path in the closure graph. It is of course possible
to find other paths in the (labeled) closure graph that give tractable perturbations.

The sizes of the perturbations are shown on the corresponding arcs in the graph,
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Cod(A — AB)

322 323 ]) 0

— 4 ([ o f23

d1 (R[4, B,0])

2
d1 (R[4,B,0])

VAW VEoio| 5

Lo®2J, 2Lo@LT Lo@2N1 ) 6

312 513
dl([ t12 t13 ])

d; B a2 - d2(4)

2Lo®J1 8L 2LooN10LY) 8

a2 (B) - d2(B)

A /dg A - d? A)
12

FiG. 4.1. A graph displaying the tractable perturbations in Tables 4.2-4.4 of a generic 2-by-3
pencil.

with notation as before. The reason for perturbation sizes such as y/d%(A) — d?(A) is
that the total perturbation needed for this 2-dimensional rank drop in A is d2(A) (as
shown in Table 4.2), but it is shown here as a further perturbation of a case where a
perturbation of size d;(A) already has imposed a 1-dimensional rank drop in A.

For each case in Table 4.2 is shown in Fig. 4.1 as a compound perturbation,
even though it can be computed directly, the size of the total perturbation is the
square root of the sum of the squares of the sizes of the components of the pertur-
bation. For example, the case 2Ly @ J; @ L¥ is found by a compound perturbation
(5A,6B) = (6A1,6Bl) + (5A2,5B2) + (5A3,6B3), where ||(6A1,6Bl)”E = dl(A),
|(6A2,6B2)|| 5 = /d%(A) — d%(A), and ||(6As,6Bs)|| 5 = d1(B). The size of the total
perturbation is ||[(64,6B)|z = (d3(A) + (d3(A) — d3(A)) + d3(B))Y/? = (d3(A) +
d?(B))'/2. Notably, since the perturbation di(A) = omin(A) and da(4) = ||A|l5 =
(02:i0_1(A) +02,.(A))/2, the size \/d3(A) — d3(A) is equal to Tmin—1(A).

For each compound perturbation in Tables 4.3 and 4.4, the size of the total
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perturbation is found by adding the components of the perturbation and then com-
puting the norm of the resulting perturbation. However, an upper bound on the
size of the compound perturbation can be achieved by adding the sizes of the com-
ponents of the perturbation. For example, Ly & J; © R; is found by the com-
pound perturbation (64,6B) = (6A1,6B1) + (6A3,6B2), where ||(641,6B1)|p =
d1(A) and ||(6A2,6Bs)||z = di(R[A, B,0]), and an upper bound on ||(§4,8B)||, is

4.1.2. Intractable perturbations and the closest nongeneric structure.
The following example shows a situation where the perturbations incidentally create
extra nongeneric characteristics that raise the codimension of the perturbed pencil
further than devised.

|0 & O _|e 0 0 o
(4.7) A—[O 0 62], B-—[O e 0]’ ez—milne,>0.

Suppose we are looking for the minimal perturbations that impose the structure L, ®
Ji (case 2). They are of size d;(A) with

00 0 000
M’[o 0 —eg]’ ‘53"[0 0 0]'

Incidentally, A and 6B also lower the rank of R[0]. (For this example, 64 and
0B are the minimal perturbations that cause the rank drop, i.e., d1(A) = di(R[0]),
and the minima are attained for the same perturbations.) This fact implies that the
perturbations aimed to impose the nongeneric structure L; & J; (with codimension
two) result in a perturbed pencil with two zero eigenvalues corresponding to the
structure Lo @ Jo with codimension four (case 4). One possible remedy is to further
perturb the undesired nongeneric pencil. To obtain L; & J; we add, for example, the

perturbations
;|6 00 ;10 0 6
A" = [ 00 0} 8B’ = 0 0 0}’

to (A+6A, B+ 6B), where § > 0 is an arbitrary small number. These perturbations
remove the common column nullspace (6B’) and the multiple eigenvalue at zero (64’),
making the compound perturbations tractable. If we start to look for the smallest
perturbations of (A4, B) that impose a common column nullspace that would normally
generate the structure Lo ® Ry (case 5), we also get intractable perturbations and (in
this case) the same structure Lo @ J,. We can also see from the closure graph in Fig.
2.1 that Lo @ J7 is in the closure of each of the two orbits defined by L; & J; and
Lo ® Rs.

Now we turn to the problem of finding the closest nongeneric Kronecker structure
of a generic 2-by-3 pencil. Assume all inequalities relating to d;(R[1]) in Theorem
4.1 are strict. Then the corresponding R[A + 6§ A, B + 6B, 1] is rank deficient, and for
all perturbations of size < d;(R[1]), the (perturbed) matrices A+ §A, B + 6B, R[A +
0A,B+ 6B,0] and L[A + §A, B + 6B, 0] must be of full rank, which correspond to
the case L1 ® R;. Since all other nongeneric cases require rank-deficiency in at least
one of the matrices A + 6A, B + 6B,R[A+ 6A,B + é6B,0], or L[A + 6A, B + 6B, 0]
(see necessary conditions in the labeled closure graph in Fig. 2.2 or Table 2.3), we
can formulate the following corollary.
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COROLLARY 4.2. If the inequalities (4.2) and (4.3) in Theorem 4.1 are strict,
Ly ® Ry with codimension one (case 1’) is the closest (unigque) nongeneric structure
on distance dq(R[1]).

The presumptions of Corollary 4.2 are sufficient (but not necessary) to identify
tractable perturbations that lower the rank of R[1]. If equality holds in any of the
inequalities of Theorem 4.1 (for the same perturbations (64, §B)), we are faced with
intractable perturbations which will result in nongeneric structures with higher codi-
mensions. We collect the different cases in the following corollary, where we list the
closest Kronecker structure and the corresponding equality conditions. Notice that
strict inequalities are assumed otherwise.

COROLLARY 4.3. Assume strict inequalities hold in Theorem 4.1 when nothing
else is stated. Then, if

1. di(R[1]) = d1(R]0]), Lo ® Ry (case 5) is the closest nongeneric form;

2. d1(R[1]) = d1(A), L1 ® J1 (case 2) is the closest nongeneric form;

3. di(R[1]) = di(B), L1 ® N1 (case 6) is the closest nongeneric form.

All forms in Corollary 4.3 have codimension two. Notice that if there exist some
perturbations on distance d;(R[1]) that do not lower the rank of R[0], A, and B,
respectively, then L; @ R; is also at the same distance as Ly & Ry, L1 & J1, and
Ly ® N; for the three cases considered.

Assume that we can have equality in different combinations of the inequalities of
Theorem 4.1. As before, we collect the possible cases in a corollary.

COROLLARY 4.4. Assume two inequalities in Theorem 4.1 are satisfied with equal-
ity for the same perturbations (6A,6B). Then, if

1. d1(R[1]) = d1(R[0]) = d1(A), Lo ® J1 ® Ry (case 4’ with codimension 3) or
Lo & J2 (case 4 with codimension 4) is the closest nongeneric structure;

2. di(R[1]) = d1(R[0]) = d1(B), Lo ® Ry ® Ni (case 10’ with codimension 3)
or Lo ® Ny (case 10 with codimension 4) is the closest nongeneric Kronecker
structure.

Notice that cases 4 and 10 have higher codimensions than cases 4’ and 10, re-
spectively, but have the same algebraic characteristics in terms of the rank of R[k]
and L[k] matrices as is seen in Table 2.3. The reason is that the 2-by-2 regular parts
of cases 4 and 10 have one Jordan block with both eigenvalues specified, which in-
creases the codimension by one compared to cases 4’ and 10’ (both with one eigenvalue
unspecified).

The remark following Corollary 4.3 regarding a nonunique closest Kronecker struc-
ture can also be extended to apply to Corollary 4.4.

In applications (e.g., computing the uncontrollable subspace) we are interested
in finding the most nongeneric structure (with highest codimension) for a given size
of the perturbations. Is it possible to find intractable perturbations that result in a
closest 2-by-3 nongeneric structure with codimension > 4? The answer is no, since all
other cases require a rank drop of at least two in A, B or R[0] or a simultaneous rank
drop in A and B. There always exist strictly smaller perturbations that drop the rank
by one (see (4.5)). Similar arguments also exclude Lo & J; @ Ny with codimension 4
from being the closest nongeneric pencil.

4.1.3. Closest nongeneric structures to a generic 1-by-2 pencil. Since
we do not know any explicit expression for dq(R([1]), it is hard to construct examples
that illustrate different situations described in §4.1.2. By considering 1-by-2 pencils
we overcome this problem. A generic 1-by-2 pencil has the Kronecker structure L, =
[\ 1] =[0 1]— A1 0] = A— AB. The nongeneric structures of size 1-by-2 are
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Lo® Ry, Lo®J1, Lo® Ny, and 2L @ L} with codimensions 1, 2, 2, and 4, respectively.
Which form(s) can be the closest nongeneric structure of a generic 1-by-2 pencil?
e Lo @ R, if there exist perturbations of size d;(R[0]) that do not simulta-
neously decrease the rank of A or B. This is, e.g., fulfilled if dq(R[0]) <
min (d1(A), d1 (B))
o Lo ® Jy if di(R[0]) = d1(A).
e Lo®d N, if d](R[O]) = dl(B)
Moreover, 2Lo @ L} can never be the closest nongeneric structure. The size of the
minimal perturbations that turn A and B to zero matrices is (d3(A4) + d3(B))'/2.
The following example illustrates a case where d;(R[0]) = d1(A) = di(B) and
there exist perturbations of size d;(R[0]) that do not simultaneously decrease the
rank of A or B. Consequently, Lo ® R1,Lo @ J1, and Ly & N; are all the closest
nongeneric Kronecker structure.
Let A=[1 1]and B=[-1 1]. Then R[0] has the singular value decomposition

e 3] -omr= [ 208 R 5](3 0]

d1(R[0]))(= v/2) is attained for the (minimal) perturbations
§A1 [ -1 0
B | 1 0}

while A+6A and B+ 6B remain full rank matrices, resulting in Lo® R; as the closest
nongeneric structure. The perturbations

KA AR

of the same minimal size make R[0], A and R[0], B drop rank, respectively. These
perturbations generate the nongeneric structures Lo @ J; and Lo @ N;, respectively.

4.2. Using GUPTRI to impose nongeneric structures. We have medified
GUPTRI so that, for an m X n generic pencil A — AB as input, it is possible to
impose a generalized Schur form with a specified Kronecker structure. (The modi-
fied GUPTRI also work for imposing a Kronecker structure of higher codimension on
any nongeneric pencil.) Given the block indices that define the specified Kronecker
structure (n;’s and 7;’s of the RZ-staircase and LI-staircase forms [8]), GUPTRI im-
poses the necessary rank deflations in order to compute the specified (nongeneric)
structure. The perturbations induced by these rank deflations are usually tractable.
If the perturbations imposed by GUPTRI are intractable, GUPTRI computes the
corresponding nongeneric structure of higher codimension. The resulting generalized
Schur decomposition can be expressed in finite arithmetic as

A, — A\B, * *
(4.8) PH((A+46A)—\NB+6B))Q = 0 Arg—ABreg  * ,
0 0 Ay — )\B;

where * denotes arbitrary conforming submatrices. Let 62 denote the sum of the
squares of all deleted singular values (imposed as zeros) during the reduction to GUP-
TRI form. Then 6, is an accurate estimate of || (64, 6B)|| g in (4.8). One interpretation
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is that GUPTRI computes an exact generalized Schur decomposition (with the spec-
ified Kronecker structure) for a pencil A’ — AB’ within distance 6, from the input
pencil A — AB. Moreover, §, is an upper bound on the distance from A — AB to the
nearest pencil with the Kronecker structure specified as input to GUPTRI.

Furthermore, this gives us a method for computing an upper bound on the dis-
tance from a generic m-by-n pencil to the closest nongeneric pencil.

o Compute the structure indices (n;’s and 7;’s of the RZ-staircase and LI-staircase
forms [8]) for all g structurally different nongeneric GUPTRI forms of size m xn. This
is a finite integer matching problem.

e Use the modified version of GUPTRI to impose the ¢ nongeneric structures:

(4.9) A —AB; = PH((A+64) = A\(B+6B))Qi, i=1,...,q.

e Compute the matrix pairs corresponding to the ¢ nongeneric structures:

(4.10) A;=PAQY, Bi=PBQI, i=1,...,q
e Compute
(411) 6= 1I£il_l<_lq6i’ (5,; = ”(A - Ai,B - B,)”E

Now § is an upper bound on the closest nongeneric pencil to A — AB and the §;’s
are upper bounds on the closest nongeneric pencils with the Kronecker structure of
Ai - )\B, in (49)

The method described above is quite expensive already for moderate m and n
(see §5) but is perfectly parallel. In a distributed memory environment it is possible
to distribute the block indices for the different Kronecker structures evenly over the
p (< q) processors. Each processor also holds A and B and computes its local § using
the method above. Finally, a global minimum operation over all p processors gives us
6 in (4.11).

4.3. Computational experiments on random 2-by-3 pencils. We have
performed computational experiments on 100 random 2-by-3 pencils A — AB. The
elements of A and B are chosen uniformly distributed in (0,1). For each random
pencil we impose the 17 nongeneric structures using the two approaches discussed in
§84.1 and 4.2.

Table 4.5 displays the mean values of perturbations required to impose each of
the 17 nongeneric forms for 100 random examples. We measure the perturbations for
each example and nongeneric form as ||(A — A, B — B)||g, where A — AB denotes a
nongeneric pencil. The matrices A and B are normalized such that ||A|l; = || B|lg
and [|(4, B) |z = L.

Columns 2 and 3 of Table 4.5 show the §;’s in (4.11) computed by modified
GUPTRI for the pencils A — AB and B — uA, respectively. Column 4 shows the
explicit perturbations of Tables 4.2-4.4. The explicit perturbations that are proved
to be the smallest possible are marked with the superscript *.

In Table 4.6 we display the smallest perturbations (measured as above) required
to impose nongeneric forms of each possible codimension for the same 100 random 2-
by-3 examples. For example, we have three nongeneric structures with codimension 2,
so the smallest perturbations in this case are determined from 300 random examples.
The singular structures (cases) that give the smallest perturbations are shown in
columns directly following columns 2, 4, and 6 of Table 4.6.
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TABLE 4.5
Mean values of perturbations (measured as ||(A — A, B — B)||g) required to impose each of the
17 nongeneric forms for 100 random A — AB of size 2-by-3.

Case A—AB B—pA Explicit Cod(4— AB) Comment

1 0.000 0.000  0.000 0

v 0.160 0.154  0.127 1

2 0.181 0.394  0.181* 2

6 0.378 0.190 0.190* 2

5 0.235 0.227  0.140* 2

4 0.218 0.268  0.211 3
10/ 0.287 0.227  0.220 3

4 0.456 0.533  0.461 4

10 0.538 0.481 0.524 4

7 0.437 0.434  0.281* 4

7 0.589 0.602  0.326* 5

3 0.707 0.707  0.707* 6 A =02x3
11 0.707 0.707 0.707* 6 B = 02x3
9’ 0.399 0.399  0.353* 6

9 0.466 0.460  0.390 7

8 0.737 0.737  0.737* 8 A =02x3
12 0.736 0.736  0.736* 8 B =02x3
13 1.000 1.000 1.000* 12 A= B =02x3

TABLE 4.6
Minimum perturbations (measured as ||(A — A, B — B)|| ) required to impose nongeneric forms
of each possible codimension for 100 random A — AB of size 2-by-3.

Cod(A—AB) A—AB Case B—pA Case Explicit Case
0.000 1 0.000 1 0.000 1

2.107¢ 1 3.107* 1V 1.107% U
0.011 2 0.010 5 0.009 5
0.036 4 0.037 4 0.036 4
0.111 4 0.106 10 0.106 7
0.192 7 0.119 7 0.119 7
0.163 9’ 0.163 9’ 0.153 9
0.233 9 0.224 9 0.184 9
0.707 12 0.707 12 0.707 12
1.000 13 1.000 13 1.000 13

OO UA W= O

Numbers in bold font in Tables 4.5 and 4.6 indicate that the size of the pertur-
bations (distances) computed by modified GUPTRI are the same as for the explicit
perturbations, which for these cases are also shown to be the minimal perturbations.
Numbers marked in italic font in Table 4.5 indicate that modified GUPTRI computed
smaller upper bounds than corresponding bounds for the explicit perturbations.

All explicit perturbations of the 100 2-by-3 random pencils turned out to be
tractable. The results show that the smallest distance from A — AB to a nongeneric
structure with fixed codimension k increases with increasing k, in accordance with the
Kronecker structure hierarchy in Fig. 2.1. Case 1’ with KCF L, @ R; is the closest
nongeneric pencil. Our explicit bound for case 1’ is not proved to be the smallest
possible.

5. Some comments on the general case. The complexity and the intricacies
of the problems considered are well exposed in §§2—4. In the following we discuss some
extensions to general m-by-n pencils. The number of different KCFs grows rapidly
with increasing m and n. Some cases are displayed in Table 5.1.

We have been able to generate 20098 structurally different KCF's for m = 10,n =
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TABLE 5.1
Number of structurally different Kronecker forms of size m-by-n (m <n).

n: 1 2 3 4 5 6 7 8 9 10
4 5 5 5 5 5 5 5 5 5

14 18 19 19 19 19 19 19 19

58 59 59 59 59 59

110 145 159 163 164 164 164

271 358 397 411 415 416

SN O
S
[
<3
'Y

20. Notice that for a given m the number of different structures is fixed for n > 2m.
For m > n the number of KCFs are the same as for the transposed pencil. As an
example we show all structurally different 3-by-4 Kronecker forms in Table 5.2, where
as before we let R2 denote a 2-by-2 regular block with any nonzero finite eigenvalues
(see §2.1) and, similarly, we let R3 denote a regular 3-by-3 block.

TABLE 5.2
All 54 structurally different 3-by-4 pencils.

KCF
L3 Lo® R2® N1 2Lo LT
Lo M Lo® Rs 2Lo & N2 & LT
Ly ® Ry Lo® Js 2Lo ® N1 ® L
Ly @ 1 Lo ® J2 ® N1 200 ® 2N, @ LT
Li® N2 Lo® J2® Ry 2Lo® R ® LT
L1 ®2M Lo® J1 ® N2 2Lo®R1 ® N1 ® LT
Li®Ri®N1 Lo J1®2MN 2Lo® Re ® LT
L1 ® Rz Lo®J1®R1® M 2L0€BJ2®L;}
Li® J2 Lo ® J1 ® R2 2Lo ® J1 ® Ly
Li®J1 &N Lo ® J1 © J2 2Lo® J1 ® N1 ® LT
Li®J1® R Lo®2J1 & M 2Lo®J1 ® Ry @ Ly
Li®2J; Lo®2J1 ® Ry 2L ®2J, @ LT
2L, & LT Lo®3J; 2Lo® Ly © 2L
Lo ® N3 Lo® Ly LY 3Lo® LY & LY
Lo®N1®Nz Lo®L1®L; 3L069N1€B2L§
Lo ®3N: LoeaLleaNleang 3Lo ® R1 @ 2L
Lo®Ri@®N2 Lo®Li®Ri®Ly 3LodJ1®2L
Lo®Ri®2N1 Lo®Li®Ji®Ly 4Lo®3LY

It is possible to extend Theorem 4.1 to general m-by-(m + 1) pencils.
THEOREM 5.1. For a generic m-by-(m+1) pencil (A, B) the following inequalities
hold:

(5.1) 0 = di(R[m]) < di(R[m —1]) <--- < dy(R[0]),
(5.2) di(R[m —1]) < di(4), di(R[m —1]) < di(B),
(5.3) di(R[m —1]) < di(Lfm —1]) < --- < d1(L[0)),

di(A) < dr+1(A4)
(5.4) dk(B) <dk+1(B) k=1,....m—1.
dk(R[0]) < dr+1(R[0))
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Proof. From Theorem 2.1 it follows that d; (R[m]) = 0 for all m-by-(m+1) pencils
(generic or nongeneric). A perturbation that lowers the column rank in R[k — 1] will
always lower the rank in R[k], since a dependence between columns in R[k — 1] will
make the corresponding columns in

A 0
Rlk]=| B R[k—1]
0

linearly dependent, proving (5.1). A perturbation that reduces the rank in A (or B)
will cause a linear dependence among the m first (or last) rows of

A 0
Rim —1] =
0 B

Since R[m — 1] is square (m? + m) x (m? 4+ m), the row rank-deficiency is equivalent
to R[m — 1] being column rank deficient, which proves (5.2). The relations between
di1(L[k]),k = 0,...,m — 1 in (5.3) can be similarly proved as the corresponding re-
lations between the R[k]-matrices in (5.1). For the first inequality in (5.3) we recall
the fact that a row rank-deficient L[m — 1] is equivalent to at least one LI block
(k=0,..., or m—1) in the KCF. To match the dimensions of the pencil, the KCF
must contain at least one L; block (i = 0,..., or m — 2) which is equivalent to R[]
being column rank deficient. Hence row rank-deficient L[m — 1] is equivalent to R[]
being column rank deficient for some ¢ = 0,...,m — 2. Now, the first inequality of
(5.3) is obtained by applying (5.1) to the relation between R[i] and R[m — 1]. As in
Theorem 4.1, the inequalities (5.4) follow from the definition of dj(-). o

We can see that the closest nongeneric structure to a generic m-by-(m + 1) pencil
is on distance d;(R[m — 1]). Notably, when all inequalities relating to di(R[m — 1])
in Theorem 5.1 are strict, (5.1) excludes any Ly, blocks for k < m — 1 in the KCF of
any pencil on distance dy(R[m — 1]) from the generic case. Similarly, (5.2) excludes
any J; or N; blocks, and (5.3) the existence of L{ blocks. Altogether, this extends
Corollary 4.2 to m-by-(m + 1) pencils.

COROLLARY 5.2. If all inequalities relating to di(R[m — 1]) in Theorem 5.1 are
strict, the closest nongeneric structure to a generic m-by-(m+1) pencil is Ly,—1 ® Ry
(with codimension 1) on distance di(R[m — 1]).

Corollary 5.2 can be used to characterize the distance to uncontrollability for a
single input single output linear system E#(t) = Fz(t) + Gu(t), where E and F' are
p-by-p matrices, G is p-by-1, and E is assumed to be nonsingular. The linear system
is completely controllable (i.e., the dimension of the controllable subspace equals p)
if and only if A — AB = [G|F — AE] is generic. Under the assumptions in Corollary
5.2, the closest uncontrollable system is on distance d;(R[p — 1]), corresponding to
the nongeneric structure L,_; @ R; (with the eigenvalue of R; finite and nonzero but
otherwise unspecified).

Since B has full row rank A—AB = [G|F—\E] can have neither infinite eigenvalues
nor L}" blocks in its KCF. Therefore, it can only have finite eigenvalues and L; blocks
in its KCF (and GUPTRI form) and the number of L; blocks is equal to the number
of columns of G. For p = 2 the possible uncontrollable systems correspond to cases
1’, 2,5, 4, 4 and 3 of Table 2.3.
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Generalizations of Corollaries 4.3 and 4.4 to m-by-(m + 1) pencils are straight-
forward, but there are several more cases to distinguish. The formulations and tech-
nicalities are omitted here.

Some results for general matrix pencils relating to problems studied here are pre-
sented in [2]. Eigenvalue perturbation bounds are used to develop computational
bounds on the distance from a given pencil to one with a qualitatively different Kro-
necker structure.

Appendix A. Proof of Theorem 2.2.

Proof. First we prove that each arc in the graph corresponds to a closure relation,
and then we prove that these are all arcs that can exist. We prove that one KCF is in
the closure of the orbit of another KCF by showing that the one in the closure is just
a special case of the one defining the closure. We show proofs for each arc starting
from the zero pencil.

Before looking at each arc we note that there is a symmetry regarding row ranks
and column nullities between the Kronecker structures with J; and N; blocks replaced
(see Table 2.3). From this we see that some of the proofs below that are shown for J;
blocks can be similarly done for the corresponding case with N; blocks. Typically we
must work with specific elements in A instead of B or vice versa. For these cases we
will just mention this similarity without repeating the computations.

In the following, a, B, 7, 8, and ¢ are supposed to be nonzero elements when
nothing else is stated.

e 3Ly @ 2LY is in the closure of orbit(2Lo ® J; & L¥), since 3Ly @ 2L{ is the

special case o = 0 of
00 0| A\ 0 0 «
0 0O 00 0}

which is equivalent to 2Lg & J; & Lg for all nonzero a.

e 3Ly @ 2L¥ is in the closure of orbit(2Ly & N; & LY) follows from similar
arguments based on the symmetry between J; and N; blocks.

e 2Ly ® J1 ® LY is in the closure of orbit(2Lo & Ry & L), since 2Ly & J; & LE
is the special case a = 0 of

0 0 af A\ 00 p
0 0O 00 0]
which is equivalent to 2Lo ® Ry @ L{ for all nonzero c.
e 2Ly ® N1 @ L] is in the closure of orbit(2Lo & Ry & L) follows from similar
arguments.
e 2Ly ® J1 ® LY is in the closure of orbit(Lo @ 2J;), since 2Ly @ J; ® L is the
special case a = 0 of
(000 0]_,[0 0 8]
| 0 0 O | | 0 o 0]’

which multiplied by a permutation matrix can be shown to be equivalent to

(00 0] _ [0 a 0]
(00 0] “J0 0 B8]

and this pencil is equivalent to Ly & 2J; for all nonzero a.
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2Lo ® Ny @ L¥ is in the closure of orbit(Lo @ 2N;) follows from similar
arguments.
2Ly ® Ry @ L] is in the closure of orbit(2Lo ® L¥), since 2Ly & Ry & L] is
the special case 8 = 0 of

|

00 a 00
[OOﬂ]_)‘[OO

which for nonzero 3 is shown to be equivalent to 2Ly @ LT by the following
equivalence transformation
1
ol

BE(eosl-leeaD 3] -[e2e]- e

2Lo @ Ry ® L¥ is in the closure of orbit(Lo & Ly @ LY), since 2Ly ® Ry ® L
is the special case 3 = 0 of

[OOa]_)\[Oﬂfy]
0 00 00 0]

which for nonzero (3 is shown to be equivalent to Lo® L1 ® L3 by the following
equivalence transformation

S 2

w3}

B(ss][o23)) |

2Lo® LT is in the closure of orbit(Lo® J; ® Ny ), since 2Lo @ LT is the special
case v =0 of

BRG]

This is shown by the following equivalence transformation:

BRI R B R HHR S

which is identical to 2Lo & LT. That the pencil (A.1) is equivalent to Ly &
J1 & N; for all nonzero ~ follows from the equivalence transformation:

[ R S R R

o ©
|
[y
2 o
——
Il
—

O O
o = O
_ o O

2Lo ® LT is in the closure of orbit(Ly & Jz), since 2Ly ® LT is a permutation

of
0 0 « ) 0 0 O
0 0O 00 8|’
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which is the special case v = 0 of

00 af_ A\ 0 v O
0 0O 00 g8}’
and this pencil is equivalent to Ly & J2 for all nonzero ~.

2Ly @ LT is in the closure of orbit(Lg & N) follows from similar arguments.
Lo® L, ® LY is in the closure of orbit(Lo @ Jo), since 2Lo & LT is the special

case 3 =0 of
0 0 « Y 0 v O
0 0O 00 g8\’

which is equivalent to Lo & Js for all nonzero S.

Lo®L1®LY is in the closure of orbit(Lo® N2) follows from similar arguments.
o Lo® L, ® LY is in the closure of orbit(Lo & J; & Ny), since Lo & Ly & L is
the special case 8 = 0 of

BRG]

This follows from the equivalence transformation

1o](fooal_,[ovs (1)2_% _[oo1]_,fo1
01 000 000 Y Y171000 00
00 1
That (A.3) is equivalent to Lo @ J; @ N; for nonzero § is shown in (A.2).
Lo ®2J; is in the closure of orbit(Lg & J2), since Lo @ 2.J; is the special case

a =0 of
0 0 « Y 0 8 0
0 0O 00 ~ |’

which is equivalent to Lo @ J> for all nonzero a.
Lo @ 2N, is in the closure of orbit(Ly @ Ny) follows from similar arguments.
Lo @ Js is in the closure of orbit(Lg @ J; @ R;), since Ly @ Jo is the special

case 3 =0 of
0 0 o Y 0 v O ’
0 0 p 0 0 ¢

which for nonzero £ is shown to be equivalent to Lo® J1 & R; (with eigenvalue
B/6) by the following equivalence transformation

Bl(BHRGH)

o _[000]_/\[010]
ﬁg 004 001/

Ly® N is in the closure of orbit(Lo® N1 & R; ) follows from similar arguments.
Lo ® J; & N; is in the closure of orbit(Lo & J; @ Ry), since Lo @ J; & Ny is
the special case v = 0 of

[000]_/\[0;30]
0 0 « 00 ~v|°

which is equivalent to Lo & J; & R; for all nonzero 7.

ORI+ O
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e Ly ® Jy @ N is in the closure of orbit(Lo & N; & R;) follows from similar
arguments.

o Lo®J; DR is in the closure of orbit(L; & Jy), since Lo® J1 @ R; is equivalent
to Lo & Ry & Ji, which is the special case o = 0 of

a g 0] A\ 0 0

0 0 O 0 6|’
which for nonzero o is shown to be equivalent to L; @ J; by the following
equivalence transformation

HIGEREHI

o Ly®N1@R; is in the closure of orbit(L,®N;) follows from similar arguments.
e Lo®J1 ® Ry is in the closure of orbit(Ly @ Ry), since Lo @ J1 @ R; is the

special case a = 0 of
0 a 0] A\ 0 ~ O
0 0 g 0 0 6}

which is equivalent to Ly @ R5 for all nonzero a.
e Lo®J1®R; is in the closure of orbit(Ly® Ry) follows from similar arguments.
e L) @ J; is in the closure of orbit(L; @ Ry), since L; & J; is the special case

B =0of

a 0 0 A\ 0 v O

0 0 g8 00 6|’
which is equivalent to L1 & R; for all nonzero 8.

e L; @ N is in the closure of orbit(L; & R;) follows from similar arguments.
e Ly @ Ry is in the closure of orbit(L; @ R;), since Lo @ Ry is the special case

a =0 of
a B 0 Y 0 6 0
0 0 v 0 0 €|’

which for nonzero « is shown to be equivalent to L, @ R; (with eigenvalue
v/€) by the following equivalence transformation

(Rt

e Ly ® Ry is in the closure of orbit(Ls), since Lo spans the complete 12-
dimensional space.
Now we have shown that all arcs in the graph are valid. It remains to show that
there are no arcs missing. This can be done by examining the KCF's that cannot be
in the closure of each other.

o

Y

OQI»—!Qh
S Ol

S ORI
Ol I
B
Ao O
O =
o o
aR O
| S
|
>
| p— |
o o
O =
= o
—_

| —— |
Il
—
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First we remark that one necessary condition for a KCF to be in the closure of
the orbit of another is that it must have higher codimension than the one defining the
closure.

Since Lo® N1 ® Ry, Lo ® N3, and Lo @ 2N, all require that A has full rank (= 2),
none of them can be in the closure of orbit(L; & J;), since that KCF requires A to
have rank = 1. (Of course this also implies that none of these three KCFs can be in
the closure of the orbit of Lo & J1 @ Ry, Lo @ 2J1, or any other KCF that is in the
closure of orbit(L; & J1).)

From the symmetry for J; and N; blocks, we see that neither Ly & J; & Rq, nor
Lo @ Ja, nor Lo @ 2J; can be in the closure of orbit(L; & Ny), since they require B to
have full rank and L; & N; has rank(B) = 1.

Since 2Lo ® J; ® LI and 2Ly @ Ry @ L have a B of rank 1, neither of them can
be in the closure of orbit(Ly & 2N7) since that KCF requires a 2-dimensional rank
deficiency in B. By similar arguments for the rank of A we see that 2Lo® Ny @® L and
2Lo® R; @ L¥ cannot be in the closure of orbit(Lo ®2J1). Since we have investigated
all presumptive KCF's the proof is complete. ]
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