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THE SET OF 2-BY-3 MATRIX PENCILS KRONECKER
STRUCTURES AND THEIR TRANSITIONS

UNDER PERTURBATIONS*

ERIK ELMROTHt AND BO K/GSTRM?

Abstract. The set (or family) of 2-by-3 matrix pencils A- AB comprises 18 structurally
different Kronecker structures (canonical forms). The algebraic and geometric characteristics of the
generic and the 17 nongeneric cases are examined in full detail. The complete closure hierarchy
of the orbits of all different Kronecker structures is derived and presented in a closure graph that
shows how the structures relate to each other in the 12-dimensional space spanned by the set of
2-by-3 pencils. Necessary conditions on perturbations for transiting from the orbit of one Kronecker
structure to another in the closure hierarchy are presented in a labeled closure graph. The node
and arc labels shows geometric characteristics of an orbit’s Kronecker structure and the change of
geometric characteristics when transiting to an adjacent node, respectively. Computable normwise
bounds for the smallest perturbations (SA, 5B) of a generic 2-by-3 pencil A-AB such that (A+SA)-
A(B + 5B) has a specific nongeneric Kronecker structure are presented. First, explicit expressions for
the perturbations that transfer A- AB to a specified nongeneric form are derived. In this context
tractable and intractable perturbations are defined. Second, a modified GUPTRI that computes a
specified Kronecker structure of a generic pencil is used. Perturbations devised to impose a certain
nongeneric structure are computed in a way that guarantees one will find a Kronecker canonical
form (KCF) on the closure of the orbit of the intended KCF. Both approaches are illustrated by
computational experiments. Moreover, a study of the behaviour of the nongeneric structures under
random perturbations in finite precision arithmetic (using the GUPTRI software) show for which sizes
of perturbations the structures are invariant and also that structure transitions occur in accordance
with the closure hierarchy. Finally, some of the results are extended to the general m-by-(m + 1)
case.
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1. Introduction. Singular matrix pencils A- AB, where A and B are m-by-n
matrices with real or complex entries, appear in several applications. Examples in-
clude problems in control theory relating to a linear system E&(t) Fx(t) + Gu(t),
where E and F are p-by-p matrices, and G is p-by-k. Solvability issues of a sin-
gular system (i.e., det(E) 0), such as the existence of a solution, consistent ini-
tial values, and its explicit ’solution can be revealed from the Kronecker structure of
A- AB F- AS (e.g., see [9], [20]). The problems of finding the controllable sub-
space, uncontrollable modes or an upper bound on the distance to uncontrollability
for a controllable system E&(t) Fx(t) + Gu(t) can all be formulated and solved in
terms of certain reducing subspaces of the matrix pencil A- AB _= [G F]- A[0 E]
(e.g., see [15], [17], [18], [6]).

In most applications it is enough to transfer A- AB to a generalized Schur form
(e.g., to GUPTRI form [7], [8])
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where P (m-by-m) and Q (n-by-n) are unitary and denotes arbitrary conforming
submatrices. Here the square upper triangular block Areg- ABreg is regular and has
the same regular structure as A- AB (i.e., contains all generalized eigenvalues (finite
and infinite) of A- AB). The rectangular blocks Ar ABr and At- ABt contain the
singular structure (right and left minimal indices) of the pencil and are block upper
triangular. The singular blocks of right (column) and left (row) indices of grade j are- 1 ] -1(1.2) Lj and L"-

-A 1
-A
1

of size j-by-(j + 1) and (j + 1)-by-j, respectively Ar ABr has only right minimal
indices in its Kronecker canonical form (KCF), indeed the same Lj blocks as A- AB.
Similarly, At ABt has only left minimal indices in its KCF, the same Ly blocks as
A- AB. If A- AB is singular at least one of Ar ABr and At ABt will be present
in (1.1). The explicit structure of the diagonal blocks in staircase form can be found
in [8]. If A- AB is regular, Ar ABr and At- ABt are not present in (1.1) and the
GUPTRI form reduces to the upper triangular block Areg ABreg. Staircase forms
that reveal the Jordan structure of the zero and infinite eigenvMues are contained in
Areg ABreg.

Given A-IB in GUPTRI form we also know different pairs of reducing subspaces
[18], [7]. Suppose the eigenvalues on the diagonal of nreg- Breg are ordered so that
the first k, say, are in A1 (a subset of the spectrum of Areg ABreg) and the remainder
are outside A1. Let Ar- ABr be mr-by-hr. Then the left and right reducing subspaces
associated with A1 are spanned by the leading mr + k columns of P and the leading
nr + k columns of Q, respectively. When A1 is empty, the corresponding reducing
subspaces are called minimal, and when A1 contains the whole spectrum the reducing
subspaces are called maximal.

If A- IB is m-by-n, where rn # n, then for almost all A and B it will have the
same KCF, depending only on rn and n (the generic case). The generic Kronecker
structure for A IB with d n rn > 0 is

(1.3) diag(L,..., L, La+l, La+l ),

where c Lm/dJ, the total number of blocks is d, and the number of La+l blocks
is rn mod d (which is 0 when d divides rn) [16], [3]. The same statement holds for
d m- n > 0 if we replace L,L+I in (1.3) by LT,LT+I Square pencils are
generically regular, i.e., det(A,AB) 0 if and only if A is an eigenvalue. The generic
singular pencils of size n-by-n have the Kronecker structures [19]:

(1.4) diag(Lj, TLn_j_l) j O, n 1.

In summary, generic rectangular pencils have only trivial reducing subspaces and no
generalized eigenvalues at all. Generic square singular pencils have the same minimal
and maximal reducing subspaces. Only if A- AB satisfies a special condition (lies
in a particular manifold) does it have nontrivial reducing subspaces and generalized
eigenvalues (the nongeneric case). Moreover, only if it is perturbed so as to move con-
tinuously within that manifold do its reducing subspaces and generalized eigenvalues
also move continuously and satisfy interesting error bounds [5], [7]. These require-
ments are natural in many control and systems theoretic problems such as computing
controllable subspaces and uncontrollable modes.
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Several authors have proposed (staircase-type) algorithms for computing a gen-
eralized Schur form (e.g., see [I], [4], [11]’-[14], [16], [20]). They are numerically stable
in the sense that they compute the exact Kronecker structure (generalized Schur form
or something similar) of a nearby pencil A- AB. Let II" lie denote the Euclidean
(Frobenius) matrix norm. Then 5 _-- II(A- AI, B- B’)IIE is an upper bound on the
distance to the closest (A + 5A, B + 5B) with the KCF of (A’, B’). Recently, articles
about robust software with error bounds for computing the GUPTRI form of a sin-
gular A- AB have been published [7], [8]. Some computational experiments that use
this software will be discussed later.

The existing algorithms do not guarantee that the computed generalized Schur
form is the "most" nongeneric Kronecker structure within distance 5. However, if 5 is
of size O(II(A,B)IIE), where is the relative machine precision, we know that (A,B)
is close to a matrix with the Kronecker structure that the algorithm reports. It would
be desirable to have algorithms that could solve the following "nearness" problems:

Compute the closest nongeneric pencil of a generic A- AB.
Compute the closest matrix pencil with a specified Kronecker structure.
Compute the most nongeneric pencil within a given distance 5.

If the closest structure is not unique we are mainly interested in the most non-
generic KCF. From the perturbation theory for singular pencils [5] we know that all
these problems are ill-posed in the sense that the generalized eigenvalues and reduc-
ing subspaces for a nongeneric A- AB can change discontinuously as a function of A
and B. Therefore, to be able to solve these problems we need to regularize them by
restricting the allowable perturbations as mentioned above. In this contribution we
make a comprehensive study of the set of 2-by-3 pencils in order to get a greater un-
derstanding of (i) these "nearness" problems and how to solve them, and (ii) existing
algorithms/software for computing the Kronecker structure of a singular pencil. The
full implications of this "case study" to general m-by-n pencils are topics for further
research.

In the following we give a summary of our contribution and the organization
of the rest of the paper. Section 2 is devoted to algebraic and geometric charac-
teristics of the set of 2-by-3 pencils. In 2.1 we disclose the structurally different
Kronecker structures and show how all the nongeneric structures can be generated by
a staircase-type algorithm, starting from the generic canonical form. Some algebraic
and geometric characteristics of the 18 different Kronecker structures are summarized
in three tables. Section 2.2 introduces the concepts of orbits of matrix pencils and
their (co)dimensions. The codimensions of the orbits of the 2-by-3 matrix pencils,
which depend only on their Kronecker structures [3], are displayed in Table 2.3. They
vary between zero (the generic case) and 12 (= 2ran) for the zero pencil (the most
nongeneric case). Indeed, all 2-by-3 pencils "live" in a 12-dimensional space spanned
by the set of all generic pencils. In 2.3 we derive a graph describing the closure hier-
archy of the orbits of all 18 different, Kronecker structures for the set of 2-by-3 pencils.
The closure graph is presented in Fig. 2.1. By labeling the nodes in the closure graph
with their geometric characteristics and the arcs with the change in geometric charac-
teristics for transiting to an adjacent node, we get a labeled graph showing necessary
conditions on perturbations for transiting from one Kronecker structure to another.
The labeled closure graph is presented in Fig.. 2.2 in 2.4.

Section 3 is devoted to an experimental study of how the nongeneric Kronecker
structures behave under random perturbations in finite precision arithmetic, using
the GUPTRI software [7], [8]. Assuming a fixed relative accuracy of the input data,
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structure invariances and transitions of each nongeneric case are studied as a func-
tion of the size of the perturbations added. The results summarized in Table 3.1 are
discussed in terms of tolerance parameters used in GUPTRI for determining the Kro-
necker structure. For large enough perturbations all nongeneric pencils turn generic
(as expected). Some nongeneric cases transit between several nongeneric structures
before turning generic. These transitions always go from higher to lower codimensions,
along the arcs in the closure graph.

.In 4 we present computable normwise bounds for the smallest perturbations
(SA, 5B) of a generic 2-by-3 pencil A B such that (A + 5A) (B + 5B) has
a specific nongeneric Kronecker structure. Two approaches to impose a nongeneric
structure are considered. First, explicit expressions for the perturbations that transfer
A- AB to a specified nongeneric form are derived in 4.1. In this context tractable
and intractable perturbations are defined. We compute a perturbation (SA, 5B) such
that (A+ 5A) A(B + 5B) is guaranteed to be in the closure of the manifold (orbit) of
a certain KCF. If the KCF found is the intended KCF, then the perturbation is said
to be tractable. If the KCF found is even more nongeneric then the perturbation is
intractable. An intractable perturbation finds any other structure within the closure
of the manifold, i.e., a structure that can be found by traveling along the arcs from the
intended KCF in the closure graph. A summary of these perturbations is presented
in a perturbation graph (Fig. 4.1), where the path to each KCF’s node shows the
tractable perturbation required to find that KCF starting from the generic KCF (an L2
block). After illustrating intractable perturbations we derive some results regarding
the closest nongeneric Kronecker structure of a generic 2-by-3 (and l-by-2) pencil. In
the second approach, we use a modified GUPTRI for computing a specified Kronecker
structure of a generic pencil (4.2). Computational experiments on random 2-by-3
pencils for the two approaches are presented in 4.3. It is the intractable perturbations,
which impose the most nongeneric structure (with highest codimension) for a given
size of the perturbations (e.g., the relative accuracy of the data), that are requested in
applications (e.g., computing the uncontrollable subspace). Finally, in 5 we comment
on the general case and extend our results for the closest nongeneric pencil to a generic
m-by-(m + 1) pencil.

2. Algebraic and geometric characteristics of the set of 2-by-3 matrix
pencils. In this section we disclose the structurally different Kronecker structures and
show how all the nongeneric structures can be generated by a staircase-type algorithm,
starting from the generic canonical form. Moreover, we discuss the codimensions
of associated orbits and derive a closure graph, showing the Kronecker structure
hierarchy of the set of 2-by-3 pencils.

2.1. Structurally different Kronecker structures. The generic case corre-
sponds to A and B of size 2-by-3 both having full row rank and nonintersecting column
nullspaces. This implies that A- AB is strictly equivalent to an L2 block:

I-A 1 0] [0 10]_A[1 0 0 ](2.1) P-I(A-AB)Q=L2- - 1 0 0 1 0 1 0

By inspection, we see that the A- and B-parts of L2 have row rank 2 and non-
intersecting l-dimensional column nullspaces. The generic canonical form L2 can be
obtained by deleting the last row of J3(0) AI3, a 3-by-3 Jordan block corresponding
to the zero eigenvalue. J3(0) is the generic canonical form of a 3-by-3 matrix with zero
as a triple eigenvalue and the associated nongeneric Jordan structures are J2(0) Jl(0)
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and J1 (0) @ J1 (0)@ J (0) (i.e., a 3-by-3 zero matrix). Notice that a generic 3-by-3
matrix is diagonalizable with unspecified nonzero eigenvalues (i.e., all Jordan blocks
of size 1-by- 1).

In the following we disclose the structurally different nongeneric singular cases of
size 2 x 3. By structurally different we mean that all cases have different Kronecker
structures (canonical forms). There exist 17 different nongeneric singular cases. The
simplest way to construct all nongeneric canonical forms of size 2 x 3 is to generate all
possible combinations of L1, L0, J2, J, R1, N, N2, LoT, and L1T blocks as in Table
2.1. Algorithms for computing the Kronecker structure of a singular pencil reveal
the right (or left) singular structure and the Jordan structure of the zero (or infinite)
eigenvalue simultaneously. Therefore, we only distinguish the zero and infinite Jordan
structures and put a nonzero and finite eigenvalue in R, a regular 1-by-1 block with
an unspecified eigenvalue. We will use R2 to denote a 2-by-2 block with nonzero
finite eigenvalues, i.e., R2 is used to denote any of the three structures J1 (c) (R) J (/),
Jl(C) (R) Jl(C), and J2(o), where , = {0, c}. Notice that if R2 J2(a) then
A aB and B has J2(0) in its KCF. It is only for the case L0 R2 that we can have
a J2(a) block. If we treat these three cases separately we get 19 nongeneric cases, but
for our purposes it is sufficient to define R2 as above.

TABLE 2.1
2 3 pencils built from different Kronecker and Jordan blocks.

Number of cases Block structure KCF

L2

L1 {J1,R1,N1}

Lo {JI R1, N1} {J, N1}

Lo {J2, R2 N2}

Lo @ L @L

2Lo @ L1T

2Lo {J1, R1, N1} LoT

3L0 @ 2LoT

In order to get more insight into the nongeneric structures we would like to show
how all the nongeneric structures can be generated by a staircase-type algorithm.
By dropping the row rank of the A-part and/or B-part of L2 (2.1) and imposing
different sizes of their "common column or row nullspace(s)" (see Table 2.3) we are
able to generate all 17 nongeneric cases starting from the generic canonical form (in
the following denoted A- AB). Algorithmically, we keep the rank of, for example, B
constant and vary the row rank of A while imposing possible sizes of their "common
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nullspace(s)." A decrease of the row rank is done by deleting a nonzero element (= 1)
in the first or second row of A and/or B and the dimension of the common column
nullspace is imposed by permutations of the nonzero elements. After decreasing the
row rank of B by one we repeat the procedure until the row rank of B equals zero.
By doing so we can generate 12 structurally different nongeneric pencils of size 2 x 3.
These correspond to cases 2-13 in Table 2.2, where we display a case number i, the
matrix pair (A, B), r(A), r(B), the row ranks of A and B, respectively, n(A, B),
the dimension of the common column nullspace of Ai and Bi. Finally, in the last
column we display the generalized Schur forms (GUPTRI forms) which correspond to
the Kronecker block structures displayed in Table 2.1.

TABLE 2.2
Summary of the 18 structurally different 2 x 3 pencils, numbered and presented in the order in

which they are derived in 2.

Ai Bi r(Ai) r(Bi) n(Ai,Bi) GUPTRI form

0 1 0 1 0 0
2 2 0

0 0 1 0 1 0 0 -) 1

o o 1 o 1 o 0 o -)

[0 0 0] [1 0 0] o 2 1 [0 - 0
o o 0 0 I 0 0 o -/k

o o 0 0 o 1 0 o -.X
0 1 0 0 1 0

2 :2 1
0 1-) 0

0 0 i 0 0 I 0 0 1--/

0 1 0 1 0 0
2 1 06

0 0 1 0 0 0 0 0 1

7
0 0 1 0 0 0 0 0 1

8
0 0 0 0 0 0

0 1 2
0 0 0

9
0 0 0 0 0 0 0 0 0

10
0 1 0]00 1

0 0 0]01 0
2 1 1

0 1 --A]00 1

13
0 0 0 0 0 0 0 0 0

0 1 0 1 0 0
2 2 0

0 0 1 0 0 1 0 0 1--A

0 0 1 0 0 1 0 0 1
0 0 0 0 1 0

1 2 1
0-) 0

0 0 1 0 0 1 0 0 1-,

0 01100 0
0 1 0]00 0

1 1 1 00 -)0 01
0 0 0]00 1

0 01100 0
1 1 :2

0 0 -,X]00 1

Case 1 in Table 2.2 corresponds to the generic structure. Cases 2-5 are obtained
by keeping r(Bi) 2 and varying r(Ai)(2, 1, 0) and n(Ai, Bi)(0, 1). In cases 6-10 we
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keep r(B) 1 and vary r(Ai) (as before) and n(A, B)(0, 1, 2). Finally, in cases 11-13
r(Bi) 0, r(Ai) and n(Ai, B) are varied ((0, 1, 2) and (1, 2, 3), respectively). In cases
8, 9, 12, and 13, the matrix pairs have a common row nullspace as well, corresponding
to LoT blocks in their KCF. The number of LoT blocks equals the dimension of the
common row nullspace (1 for cases 8, 9, and 12 and 2 for case 13). Notice that
n(A, B) 2 for three of these four cases and n(A, B) 3 for case 13. However,
n(A,B) 2 is neither a necessary nor a sufficient condition for a 2-by-3 matrix
pair to have a common row nullspace (see cases 7’ and 9’ below). If we exchange the
roles of A and B in the derivation of the nongeneric forms 2-13 they will appear in a
different order with the Nk blocks and Jk(O) blocks exchanged.

We have five more cases to retrieve, denoted 1’, 10’, 4’, 7’, and 9’ in Table 2.2.
Case x’ denotes a case that has the same row ranks and column nullities as case x,
and is obtained from case x by permuting rows or columns.

Case 1’. By swapping columns 2 and 3 in B1 we still have a matrix pair with
r(A) r(B) 2 and n(A, B) 0. We denote this pencil case 1’. As can be seen in
Table 2.2, GUPTRI delivers the KCF L1 (R) R1 for A, ABe,. After the first step of
deflation in GUPTRI (which identifies that A, i 1, 1 has a l-dimensional column
nullspace (n(A)= 1) and that n(A, B)= 0, i 1, 1’) we are left with the pencils:

(2.2) A1)-)B1)-- [0 1] -,[1 0], A)-)B)-- [0 1] -,[0 1].

())The difference is that n(A1), B)) 0 while n(A), B, 1. Is there any algebraic
explanation? We find the answer in the classical characterization of a singular pencil
with a right (column) index [9].

Let the matrix R[A, B, i] of size (i + 2)m (i + 1)n be defined by

(2.3) R[A,B,i]

A 0 0

B A "’.

0 ". ". 0

". B A
0 0 B

where A and B are m n matrices. When it is clear from context we use the
abbreviated notation R[i] for R[A, B, i]. With the notation above we can state the
following theorem.

THEOREM 2.1 (see [9]). The following statements are equivalent.
A- )B is singular with a right (column) minimal index of lowest degree k >_ O,

i.e., A- AB has no right minimal indices of degree < k.
A- iB is equivalent to the pencil

where Lk is a k (k + 1) Kronecker block. A-AB may have indices of higher degree.
R[i] has full column rankr(R[i]) (i+l)n fori O, 1,... ,k-i, while r(R[k]) <

(k + 1)n, or equivalently, the column nullity n(R[i]) 0 for i O, 1,... ,k 1 and
> 0.

By applying Theorem 2.1 to cases 1 and 1’ we see that n(R[1]) 0, n(R[2]) 1
for case 1 while n(R[1]) 1, n(R[2]) 2 for case 1’, which justify that case 1 has
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an L2 block as its KCF and case 1’ has an L1 block in its KCF. After the second
deflation of case 1’, GUPTRI is left with the pencil [1] -/kill which corresponds to
R1, a regular block of size 1 1.

Case 10’. By swapping columns 2 and 3 of B10 we still get a matrix pair with
r(Ai) 2, r(Bi) 1 and n(A,B) n(R[0]) 1. We denote this pencil case 10’.
This swapping does not change the singular structure. However, the N2 block in case
10 is now split into two regular 1 1 blocks N1 and R, i.e., one infinite eigenvalue is
turned nonzero.

To get the remaining three cases we will swap rows 1 and 2 in A for i 4, 7, and
9.

Case 4’. If we swap rows 1 and 2 in Aa we still get a matrix pair with r(A)
1, r(Bi) 2 and n(A, B) 1. We denote this pencil case 4’. The only difference is
that the J2(0) block in case 4 is now split into two regular 1 1 blocks Jl(0) and R1,
i.e., one zero eigenvalue is turned nonzero.

A dual form of Theorem 2.1 can be stated for a left (row) minimal index of lowest
degree k >_ 0. Then L takes the place of Lk and L[A, B, i] of size (i + 1)m (i + 2)n
replaces R[A, B, i], where

(2.5) L[A,B,i]

A B 0 0

0 A B "’.

0 0 A B

and we are considering row ranks (or row nullities) of L[A, B, i]. (When it is clear
from context we also here use the abbreviated notation L[i] for L[A, B, i].) We use this
dual form to characterize the last two cases. Notice that n(R[A, B, 0]) is equivalent
to the dimension of the common column nullspace for A and B and that n(L[A, B, 0])
is equivalent to the dimension of the common row nullspace for the two matrices.

Case 7’. By swapping rows 1 and 2 in A7 we still get a matrix pair with r(A)
1, r(B) 1 and n(Ai, B) 1. We denote this pencil case 7’. However, this swap
imposes a common row nullspace of AT, and BT, as well, and will therefore change
the singular structure completely. The regular part (J1(0)(R) N1) disappears and
is replaced by L (R) LoT, i.e., the generic singular structure of a 2-by-2 pencil [19].
n(A, B) n(R[0]) 1 for 7 and 7’. For case 7, n(R[1]) 2, n(L[0]) 0 while
n(R[1]) 3, n(n[0])= 1 for case 7’.

Case 9’. By swapping rows 1 and 2 in A9 we still get a matrix pair with r(A)
1,r(Bi) 1 and n(A,B) 2. We denote this pencil case 9’. However, Ag, and
B9, do not have a common row nullspace. Also here the regular part disappears and
R1 (R) LoT turns into nT, i.e., a generic 2-by-1 pencil, n(L[0]) 1 for case 9, while
n(n[0]) 0, n(L[0])= 1 for case 9’.

In Table 2.3 we display ranks of A, B and nullities of R[k] and L[k] for some
values of k together with our structurally different singular structures of the set of
2-by-3 pencils. The ordering of the cases is explained in 2.2.

2.2. Orbits and their codimensions. Each of the 18 singular canonical forms
(Ai, B) in Table 2.3 defines a manifold of strictly equivalent pencils in 2mn(- 12)-
dimensional space:

orbit(Ai- ABi) {P-I(A ABi)Qi" det(Pi)det(Qi) % 0}.
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TABLE 2.3
Geometric characteristics of the 18 structurally different 2 3 pencils.

Case r(A{) r(B{) n(A{,B{) n(R[1]) n(R[2]) n(L[0]) n(L[1])
1
1’
2
6
5
4’
lO’
4

7’

11
9’
9
8
12

2 2 0 0 1 0 0
2 2 0 1 2 0 0
1 2 0 1 2 0 0
2 1 0 1 2 0 0
2 2 1 2 3 0 0
1 2 1 2 3 0 0
2 1 1 2 3 0 0
1 2 1 2 3 0 0
2 1 1 2 3 0 0
1 1 1 2 3 0 0
1 1 1 3 5 1 2
0 2 1 2 3 0 0
2 0 1 2 3 0 0
1 1 2 4 6 0 1
1 1 2 4 6 1 2
0 1 2 4 6 1 2
1 0 2 4 6 1 2
0 0 3 6 9 2 4

KCF Cod(A{
L2 0
L10R1 1
LI @J1 2
LI @N 2
LoR2 2
LoJR1 3
Lo@N1 (R 3
Lo J2 4
Lo N2 4
Lo J ON1 4
LolL1 LTo 5
Lo@2J 6
Lo(R)2N1 6
2LoOLT1 6
2Lo(R1L 7
2LoJ (R)L 8
2Lo@N1 I. 8

3Lo2L 12

The dimension of orbit(A- AB) is equal to the dimension of the tangent space,
tan(A- AB), to the orbit of A- AB. The tangent space is defined as

(2.6) f(Z, Y) X(A- AB) (A- AB)Y,

where X is an m m matrix and Y is an n x n matrix [3]. Since (2.6) maps a space of
dimension m2 +n2 linearly to a space of dimension 2ran, the dimension of the tangent
space is m2 + n2- d, where d is the number of (linearly) independent solutions of
f(Z,Y) =0.

The codimension is the dimension of the space complementary to the tangent
space, i.e.,

cod(A B) 2ran dim(tan(A B)) d (m n).
The codimensions of the orbits depend only on their Kronecker structures. Demmel
and Edelman [3] show that the codimension of the orbit of an m n pencil A- B
can be computed as the sum of separate codimensions:

cod(A AB) Cjor -}- CRight -- CLeft "- CJor,Sing t_ CSing,

where the different components are defined as follows.
The codimension of the Jordan structure is

CJr E (ql(’)- 3q2(A)+ 5q3(A)+ 1) + E (q(A)+ 3q2(A)+ 5q3(A)+...),
X0, X=0,

where the summation is over all eigenvMues and q (A) > q2(A) > q3(A)..., denote the
sizes of the Jordan blocks corresponding to the eigenvalue A. The first part of Cjor

corresponds to unspecified eigenvalues different from zero and infinity, which explains
the term -1 in the codimension count.

The codimensions of the right and left singular blocks are

CRight E(J k 1) and CLeft E(J k 1),
j>k j>k



10 ERIK ELMROTH AND BO KAGSTR)M

respectively, where the summation for CRight is over all pairs of blocks Lj and Lk, for
which j > k, and the summation for CLeft is over all pairs of blocks L and L, for
which j > k.

The codimension due to interaction between the Jordan structure and the singular
blocks is

CJor,Sing (size of complete regular part). (number of singular blocks).

The codimension due to interaction between right and left singular blocks is

CSing E(J + k + 2),
j,k

where the summation is over all pairs of blocks Lj and L.
The codimensions of our 18 different canonical forms are displayed in the last

column of Table 2.3. We have ordered the cases by increasing codimension. In general,
we see that by making A and B more rank deficient and increasing their "common
nullspace(s)" (n(R[k]) and n(L[k]) for k >_ 0) we generate nongeneric pencils with
higher codimension. The generic pencil has codimension 0 while the matrix pair
(A,B) (023,023) has codimension 12 (= 2ran), i.e., defines a "point" in 12-
dimensional space.

2.3. The closure graph for different Kronecker structures. Since orbit(L2)
spans the complete 12-dimensional space, it is obvious that all other structures are
in the closure of the orbit of L2, and it is just as obvious that 3L0 (R) 2L0T (the zero
pencil) is in the closure of the orbit of any other KCF. Since all other closure relations
are not that obvious, we derive a complete closure graph for the set of 2-by-3 matrix
pencils.

Throughout the paper we display graphs such that orbits (nodes) with the same
codimension are displayed on the same horizontal level.

THEOREM 2.2. For the set of 2-by-3 pencils, the directed graph in Fig. 2.1 shows
all closure relations as follows. One KCF is in the closure of the orbit of another
KCF if and only if there exists a path to its node from the node of the KCF defining
the closure (downwards in the graph).

Proof. First we prove that each arc in the graph corresponds to a closure relation,
and then we prove that these are all arcs that can exist. We prove that one KCF is in
the closure of the orbit of another KCF by showing that the one in the closure is just a
special case of the one defining the closure. We show proofs for each arc starting from
the zero pencil. Since the proof is rather space demanding, we here limit ourselves to
proving one of the arcs and refer the reader to Appendix A for the complete proof.

Starting at the zero pencil, the first arc with nontrivial proof corresponds to the
fact that 2L0 (R) J1 (R) L is in the closure of orbit(2L0 (R) R1 (R) L). This follows from
the fact that 2L0 (R) J1 (R) L is the special case a 0 of

0 0 0 0 0 0

which is equivalent to 2L0 (R) R1 (R) LoT for all other a (assuming that/ is nonzero).
The proofs for all other arcs are done similarly. For some of them, an equivalence

transformation is needed for transformation to KCF. [:!
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FIG. 2.1. A graph displaying the closure hierarchy of the orbits of all 18 different KCF for the
set of 2-by-3 matrix pencils.

2.4. Labeled closure graph showing necessary conditions on perturba-
tions for transiting from one structure to another. One way to interpret a
relation in the closure hierarchy is that a KCF that is in the closure of the orbit of
another KCF "lives" in the space defined by that orbit. That is, if we consider the
closure of the orbit of a nongeneric KCF with certain rank-defects in Table 2.3, then
to be in that closure a KCF must preserve or increase these defects. For example,
since L1 (R) J1 has rank(A) 1, no KCF with rank(A) > 1 can be in its closure. A nec-
essary condition for a KCF to be in the closure of orbit(L1 (R) J1) is that the geometric
characteristics r(A) <_ 1, r(B) <_ 2, n(A, B) _> 0, n(R[1]) _> 1,n(R[2]) _> 2, n([L[0]) >_ 0
and n([L[1]) >_ 0 are satisfied (see Table 2.3). Moreover, the change in geometric
characteristics from, for example, L1 ) J1, whose orbit spans a 10-dimensional space
(codimension is 2), to L0 (R) J1 (R) Rx, whose orbit spans a 9-dimensional space (codi-
mension is 3), is nothing but a l-dimensional restriction of the 10-dimensional space.
We also note that L0 (R) J1 (R) R1 is in the closure of orbit(L0 (R) R2), which also spans
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a 10-dimensional space. Indeed, L0 @ J1 (R) R1 spans a 9-dimensional space in the in-
tersection of the two 10-dimensional spaces spanned by the closures of orbit(L1 (R) J1)
and orbit(L0 @ R2).

When looking for perturbations corresponding to the arcs in the graph, a neces-
sary condition for these perturbations is to fulfill the change in geometric characteris-
tics. Indeed, by combining the geometric characteristics in Table 2.3 and the closure
graph we get necessary conditions on perturbations (SA, 5B) for transiting from one
structure to another.

We introduce the following labels. Let

[nr (A), nr (B), n(A, B), n(R[1]), n(R[2]), n([L[0]), n([L[1])]

label the geometric characteristics for one node in the graph, where n,.(A) and
denote the dimension of the row nullspace in A and B, respectively, and all other
characteristics are as in Table 2.3. Moreover, we label the change in geometric char-
acteristics for transiting from one structure to an adjacent node by

(n(A), n(B), n(A, B), n(R[1]), n(R[2]), n([L[0]), n([L[1])}.

In Fig. 2.2 a labeled closure graph is presented, with the geometric characteristics
shown for each KCF and the change in geometric characteristics shown for each arc.

When transiting from one KCF to another, the geometric characteristics of the
source node and the geometric characteristics on the arc are added to give the charac-
teristics of the destination KCF. Since a KCF in the closure of another’s orbit cannot
have a smaller dimensional nullspace for any of the matrices of the labels, the values
on the arcs must all be nonnegative.

Notice that the arc from L0 (R) J1 @ R1 to L0 (R) J2 and the arc from L0 (R)R (R)N to
L0N2 both have no change in the geometric characteristics. For these transitions the
nonzero finite eigenvalue is turned to a zero eigenvalue and to an infinite eigenvalue,
respectively. This does not affect any of the nullspaces displayed in the labels.

To transit several levels in the closure graph we just add the labels of changes in
geometric characteristics for the arcs that are traveled during the transition. Each
label of changes in geometric characteristics defines necessary conditions on the pertur-
bations (SA, 5B) to perform the transit. Later, we will derive perturbations required
to transit from L2 to any of the nongeneric structures. In our derivation, however, for
most cases we transit directly to the intended structure. There are only a few cases
that require compound perturbations that transit via another KCF.

3. Structure invariances and transitions of nongeneric pencils under
perturbations. Since computing the Kronecker structure of a singular pencil is a
potentially ill-posed problem [5], it is interesting to see how the nongeneric cases
behave under perturbations in finite precision arithmetic. We add (uniformly dis-
tributed) random perturbations of different sizes n(-- 10-1, 10-9, 10-1) to all
A and B, corresponding to the generic and 17 nongeneric cases, and compute their
generalized Schur forms using GUPTRI [7], [8], assuming, a fixed relative accuracy
eu(= 10-8) of the input data. We repeat this procedure 100 times and study the
structure invrinces and transitions of each nongeneric case as a function of the size
of the perturbations added.

GUPTRI has two input parameters EPSU ( above) and GAP which are used
to make rank decisions in order to determine the Kronecker structure of an input
pencil A- .B. Inside GUPTRI the absolute tolerances EPSUA IIAIIE. EPSU
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FIG. 2.2. The labeled closure graph for all 18 different KCF for the set of 2-by-3 matrix pencils.

and EPSUB IIBIIE. EPSU are used in all rank decisions, where the matrices A
and B, respectively, are involved. Suppose the singular values of A are computed in
increasing order, i.e., 0 _< al _< a2 _< _< ak _< ak+l _< ...; then all singular values
ak < EPSUA are interpreted as zeros. The rank decision is made more robust in
practice: if a} < EPSUA but a+l _> EPSUA, GUPTRI insists on a gap between
the two singular values such that ak+l/ak >_ GAP. If a}+l/a} < GAP, ak+l is also
treated as zero. This process is repeated until an appreciable gap between the zero
and nonzero singular values is obtained. In all of our tests we have used EPSU 10-s

and GAP 1000.0. All computations (in 3 and 4) are performed on a SUN SPARC
station in double precision complex arithmetic with unit roundoff O(10-17).

In Table 3.1 we display the computed Kronecker structures of the 17 perturbed
nongeneric pencils for 100 random perturbations for each en. For each case all struc-

ture invariances and transitions are shown from left to right. The symbol ----+

indicates that the Kronecker structure is invariant under perturbations smaller than
en 10-x, and that the structure changes (at least for some of the 100 tests) for
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TABLE 3.1
Computed Kronecker structures and transitions of 100 perturbed nongeneric 2 3 pencils. The

size en of each perturbation is shown above the corresponding arrow.

1" LI@R1 lo { L2 (81) (98)
LiaR1 (19) } 10 { L2 L2L,R ()

2" LIJ1 lO { L2 (18) (98)
LIJ1 (82) }1 { L2 L2LJ ()

LN (2) OR (1)

. oeR .R (S),R (4) L2

LoR2 (9) LoR2 (1) LiaR1

(1) (1)

LoJIOR (82) LIJ (1)
LoJIR (1)

10"noNR { L2 (90) (98) LLo*R2 (2))

{L2 (22)}4. LoJ: LoJR () L
LoJ ()

LoN2 (75) LoN2 (1)

" 01N11 IN1 (la) 1 11
LoJIN1 (82) LIJ

7" Lo*LI*L1 LiaR1 (7) 1 L2
LIN (12) LR
Lo@LIL (78)

lo-O
3" Lo2J1 L2

lo-lO
11" Lo@2N1 L2

o (1) ooR ()
2Lo*L (48) LI*J1 (2)

(99)
(1) } lo L2

L2

(6) 10 L2

(2) LI@R1

(93)

(97)
(3) } lo L2

L2 (80)
9: 2Lo@RIL’ lo )Lo@JIR1 (33) 10 LoR2 (1)} 1 L2 (96)1L2LoNIR1 (16) LICRI (4)J

(LoRL (4) L ()]
LoJR

8" 2LoJIL 1-LIN1 l{L2 (2)1o-5{L2 (24)11o-4L2 (86)1L2LN (os)] LIR ()}Ln (4)LN (4)J

{ {LJ (82) LJ (2)
lo-O

13" 3Lo2L L2
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perturbations of size 10-x. For a size of the perturbations that has not given the
same structure for all 100 tests, all KCFs found are placed within curly brackets with
a number within parentheses after each KCF showing the number of that particular
KCF that has been found. As before, the cases are displayed in increasing codimension
order and the transit KCF forms within curly brackets are ordered similarly.

From Table 3.1 we see that for large enough perturbations all nongeneric struc-
tures turn generic (as expected). GUPTRI finds the same nongeneric structure as
long as en < tol min(EPSUA, EPSUB). GAP. This behaviour is in agreement
with the perturbation theory for singular pencils [5], [7]. Only if A- AB lies in a
particular manifold does it have a nongeneric Kronecker structure with nontrivial re-
ducing subspaces and possibly eigenvalues. Moreover, only if it is perturbed so as to
move continuously within that manifold does its original Kronecker structure remain.
Actually, by choosing a tol > 0, we have thickened the manifolds so that they are no
longer a set of measure zero.

All transitions from the initial case to the final generic case are clearly from cases
with higher codimension to cases with lower codimension. With a closer look we
can also see that all the transitions are performed upwards (or backwards) along the
arcs in the closure graph (Fig. 2.1). This means that the perturbations cure the
rank deficiencies in the nongeneric pencil without contributing any new singularities.
GUPTRI increases the rank in A and B and decreases the size of their "common
nullspace(s)," i.e., the "inverse" operations compared to what we did in 2.1. In other
words, when a pencil A- AB with a given nongeneric KCF is perturbed, by 5A- ASB
then A B is in the closure of orbit((A + 5A) ,k(B + 5B)).

Even if we see that all of the cases transit via some other nongeneric structures
before all 100 tests turn generic, we can also see that if for each case and each size of
the perturbation we only consider the KCF that has been found in most tests, then it
is only for cases 8 and 12 that a transit KCF is found. Notice that all tests for cases
8 and 12 find the same other nongeneric KCF for the smallest perturbation. In other
words, when the perturbation is big enough to change the KCF for most tests of a
case, then the generic KCF is the most likely to be found, except for cases 8 and 12.

How can we explain the behaviour in cases 8 and 12? For these two cases one
matrix is the zero matrix. This means that tol min(EPSUA, EPSUB) GAP 0,
implying that en > tol already for the smallest perturbation, which in turn explains
why case transitions occur already for the smallest perturbation. Since either EPSUA
or EPSUB is zero, all singular values in the perturbed zero matrix will be interpreted
as nonzero, explaining why A or B is interpreted as a full rank matrix already for
the smallest perturbations. Also notice the "jumps" these transitions correspond to
in the closure graph. The argumentation here also explains why the zero pencil turns
generic for the smallest perturbation.

We end this section by briefly discussing how the case invariances and transitions
are affected by the choice of the fixed relative accuracy of the input data (EPSU).
If we choose EPSU e then GUPTRI will retrieve the nongeneric structure we
started from for each en considered. Notice that the distance from the input pencil to
the computed Kronecker structure will normally be of size O(EPSU. II(A,B)IIE [8].
Increasing EPSU means that the case invariances will remain longer before any case
transition takes place. Decreasing EPSU will impose the generic structure sooner. For
example, with EPSU equal to the relative machine precision and e > tol, GUPTRI
will always extract the generic structure. This corresponds to the fact that in infinite
precision arithmetic any nongeneric A- AB can be made generic with arbitrary small
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perturbations. Moreover, travelling upwards in the closure hierarchy can always be
effected with arbitrary small perturbations, while travelling downwards may require
much larger perturbations.

4. Imposing nongeneric structures by perturbing a generic pencil. In
this section we study computable normwise bounds for the smallest perturbations
(hA, 5B) of a generic 2-by-3 pencil A AB such that (A + 5A) )(B + 5B) has a

specific nongeneric Kronecker structure chosen from the 17 nongeneric cases discussed
earlier. Our goal is to find the closest nongeneric pencil and the closest pencil with a
specified nongeneric Kronecker structure of a 2-by-3 generic pencil. We consider two
approaches to impose a nongeneric structure. First we derive explicit expressions for
the perturbations that transfer A- AB to a specified nongeneric form. Second, we
have modified GUPTRI to be able to compute a specified Kronecker structure.

4.1. Explicit perturbations to impose nongeneric structures. In 2 we
saw that by making A and B more rank deficient and increasing their "common
nullspace(s)" we can generate nongeneric pencils with higher codimension. Here we
elaborate on this fact and derive explicit expressions for the perturbations required
to turn an arbitrary generic pencil into each of the 17 nongeneric cases. The norms
of these explicit expressions (measured as I](hA, hB)IIE) are upper bounds for the
smallest perturbations required. Indeed, for 11 of the structures, the norms are the
exact sizes of the smallest perturbations required.

We need the following notation. The size of the smallest perturbations (hA, 5B)
such that R[A + hA, B + 5B, i] (2.3) of size (i + 2)rn x (i + 1)n has a k-dimensional
column nullspace is defined as

(4.1) dk(R[A,B,i])= min {I](hA, hB)]IE’n(R[A+hA, B+hB, i])=k},
($A,$B)

where 5A and 5B vary over all m-by-n matrices with complex (or real) entries. Sim-
ilarly, we define dk(L[A, B, i]) as the size of the smallest perturbations that impose
a k-dimensional row nullspace on L[i] (2.5). When it is clear from context we use
the abbreviated notation dk(R[i]) and dk(L[i]). Also, let d(A) denote the size of the
smallest perturbations such that rank(A + hA) min(rn, n) k.

In general, to find d(R[i]) (or d(L[i])) is a type of a structured singular value
problem. For >_ 1 it is an open problem to find explicit expressions for dk(R[i])
and dk(L[i]). The following theorem summarizes some of their properties for the case
rn 2, n 3 and k 1.

THEOREM 4.1. For a generic 2-by-3 pencil (A, B) the following inequalities hold:

(4.2) 0 dl (R[2]) < dl (RIll) _< d (R[0]),

(4.3) d(R[1]) _< dl(A), d(R[1]) _< dl(B),

(4.4) d (RIll) < dl (L[1]) <_ d (L[0]),

(4.5) dl(A) < d2(A), dl(B) < d2(B), d(R[0]) < d2(R[0]).
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Proof. From Theorem 2.1 it follows that d(R[2]) 0 for all 2-by-3 pencils (generic
or nongeneric). Decreasing the rank of the 4-by-3 R[A, B, 0] by one gives that R[A +
hA, B / 5B, 0] has only two linearly independent columns. The same perturbations
make the 6-by-6 matrix R[A + hA, B + 5B, 1] rank deficient (a rank drop from six to
four), showing that (4.2) holds. Similarly, decreasing the rank of A (or B) by one
means that A + 5A (or B + 5B) only has one linearly independent row. For the same
perturbations R[A + 5A, B + 5B, 1] is rank deficient with only one of the first two (or
last two) rows linearly independent, resulting in the inequalities (4.3).

L[1] is row rank deficient if and only if there exists at least one LoT or L1T block in
the KCF. Since all KCFs with at least one LoT block or one L1T block have both A and
B rank deficient (see Table 2.3), there will always exist a strictly smaller perturbation
of size dl(A) that only lowers the rank in A. (The same is of course true for B.) Now
applying inequality (4.3) proves the first part of (4.4). The last part follows from
arguments similar to the proof of dl (RIll) _< dl(R[0]) above. The inequalities (4.5)
follow from the definition of dk(’). [:l

Theorem 4.1 will be used to identify the closest nongeneric Kronecker structure
of a generic 2-by-3 pencil. Notice that in general we cannot say anything about the
relationship between 41 (R[0]) and 41 (A) or dl(B) (see explicit expressions below). By
varying a and fl in

A-
0 0

B=
0 1 1

(i.e., a generic A- AB for nonzero a and/) we show that any of them can be the
smallest quantity (see Table 4.1).

TABLE 4.1
The quantities dl (A), dl (B), and 41 (R[0]) for three examples.

Parameters dl (A) dl (B) dl (R[0])
C fl 1 1.000 1.000 0.765
C 0.1, 1 0.100 1.000 0.451
C 1, fl 0.1 1.000 0.100 0.451

The following explicit expressions, derived from the Eckart-Young and Mirsky
theorem for finding the closest matrix of a given rank (e.g., see [10]), appear in our
explicit bounds discussed next:

dl(A) (Tmin(A), dl(B) crmin(B),

d2(A) IIAIIE, d2(B) I[BIIE,

dl(R[A, B, 0]) ffmin(R[0]), dl(L[A, B, 0]) rmin(L[0]),

r2 2 1/2d2(R[A,B, O]) (min_l(R[0]) -b (rmin(R[0]))

Here, rmin(X and min-1 (X) (with 7min(X rmin_ (X)) denote the two small-
est nonzero singular values of (a full rank) matrix X.
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4.1.1. Tractable perturbations. In order to make the problem more tractable
we (first) put restrictions on allowable perturbations. We can compute a perturbation
5A ASB such that (A / 5A) A(B + 5B) is guaranteed to fall on the closure of the
manifold (orbit) of a certain KCF. (Necessary conditions on the required perturbations
are given in the labeled closure graph in Fig. 2.2.) If the KCF found is the intended
KCF, then the perturbation is said to be tractable. If the KCF found is even more
nongeneric (i.e., its orbit has higher codimension but belongs to the closure of the
intended manifold), then the perturbation is defined intractable. In other words, a
tractable perturbation finds the generic KCF (i.e., the least nongeneric KCF) in the
closure of the manifold of the intended KCF. An intractable perturbation finds any
other structure in the closure of the same manifold, i.e., any structure that can be
found by traveling along the arcs (downwards) from the intended KCF in the closure
graph in Fig. 2.1.

When computing perturbations such that (A / 5A) ,(B + 5B) is given a non-
generic KCF, we compute 5A and 5B such that one or more of the geometric charac-
teristics presented in Table 2.3 for (A+SA)- ,k(B +SB) differ from the characteristics
of the generic (A, B). In other words, we put restrictions on the size of the perturbed
pencil’s nullspaces so that at least one of them is larger than for the generic case. The
space given by this restriction may contain several nongeneric matrix pencils. For
example, if we restrict the set of pencils to those that have a rank deficiency in the
A-part, this space contains all pencils that fulfill the condition rank(A) < 2. However,
if we compute a perturbation such that rank(A + 5A) < 2, the perturbed pencil will
most likely be the generic (least nongeneric) KCF with a rank-deficient A-part, i.e.,
L @ J. This corresponds to the KCF with rank-deficient A-part whose orbit has the
smallest codimension and the corresponding perturbation (SA, 5B) is tractable. The
perturbation is intractable if (A + 5A) )(B + 5B) has any KCF (with rank(A) < 2)
that is more nongeneric than L @ J. The set of possible structures are the ones that
are in the closure of orbit(L1 @ J).

Eleven of the 17 nongeneric structures (2, 6, 5, 7, 7’, 3, 11, 9’, 8, 12, and 13)
are imposed by (minimal) tractable perturbations that effectuate one of the following
rank-decreasing operations:

Rank drop in A and/or B by one or two.
Rank drop in R[A,B, 0] by one or two, i.e., imposing a common one- or
two-dimensional column nullspace.
Rank drop in L[A, B, 0] by one, i.e., imposing a common row nullspace.

In Table 4.2 the size of the perturbations required to impose each of the .eleven
singular structures are displayed. When both d(A) and dy(B) are involved, the size
of the total perturbations is (d(A) / d(B)) 1/2. The singular cases are reported in
increasing codimension order (see Table 2.3). Since all these perturbations are made
as the smallest possible to impose the required ranks on A, B, R[0] or L[0], these
bounds are attained for each nongeneric form, i.e., the strongest possible, which is
equivalent to the bounds in Table 4.2 being lower bounds. That these perturbations
really give the forms shown in the table follows from the fact that we here are only
considering tractable perturbations and these are the least nongeneric forms that
have the imposed rank-deficiencies (see Table 2.3). For example, by imposing a 1-
dimensional rank drop in A we have restricted the 12-dimensional space to a space
that contains a subset of all nongeneric pencils. Since the perturbation is supposed
to be tractable, the KCF found is the least nongeneric in that space, i.e., L1 (R) J1.

The rank-decreasing operations performed in Table 4.2 "affect the codimension(s)"
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TABLE 4.2
Minimal perturbations of a generic pencil to impose 11 of the 17 nongeneric structures.

Case KCF Cod(.) dl(A) dl(B) dl (R[0]) d (L[0]) d2(A) d2(B) d2 (R[0])
2 L@J 2 x
6 LIN1 2 x
5 Lo(R2 2
7 LoJ1 (R)N 4 x x
7’ Lo@LI @L 5 x
3 Lo@2J1 6 x
11 Lo2N 6 x
9’ 2Lo@LTI 6 x
8 2Lo@JI@L 8 x x
12 2Lo@NI @LoT 8 x x
13 3Lo@2L 12 x x

in the following way: a rank drop by one in A, B or R[0] increases the codimension
by two, a rank drop by one in L[0] increases the codimension by five, and a rank drop
by two in A, B or R[0] increases the codimension by six.

Two of the remaining six nongeneric forms (4’ and 10’) are imposed by transiting
via a nongeneric form as shown in Table 4.3. For example, to derive perturbations
of the generic A AB that turn (A + 5A, B + 5B) nongeneric with KCF L0 @ J1 @
R1 we have (SA, SB) (SA1,SB1)+ (SA2,SB.), where (SA,SB1) is the smallest
perturbation that lowers the rank of A (i.e., 11(SA,SB)IIE d(A), 5BI 02x3)
and (5A2, 8B2) is the smallest perturbation that imposes a common column nullspace
on (A + 5A,B + 5B) (i.e., 11(SA2, SB2)IIE d(R[A + 5A,B + 5B1,0])). In Table
4.3 we show how these forms are constructed. The size of the compound (total)
perturbations (SA, 8B) for the two cases are obtained by adding the perturbations
in Tables 4.2 and 4.3. fI A + 5A and B + 5B in Table 4.3 represent the
"transit" nongeneric pencil. A rank drop by one in Rift.,/, 0] in Table 4.3 increases
the codimension by one.

TABLE 4.3
Compound perturbations: Nongeneric structures imposed by transiting via a nongeneric form.

Case KCF Cod(.) Transit KCF dl(R[A,B,O])
4’ Lo Jl RI 3 LI J x
I0’ Lo N RI 3 LI NI x

The last four nongeneric structures (1’, 4, 10 and 9) require perturbations to parts
of the GUPTRI form of a transiting pencil A- AB:

(4.6) pH(ffi-/J)Q -,- 11 12 13 ) tll t_12 t_13
0 22 23 0 t22 t23

where some ij, {ij may be zero. The size of the perturbations (5, 5) imposed on

and/or T are displayed in Table 4.4. Case 1’, which transits via the GUPTRI form
of L2, is retrieved by imposing a common column nullspace of the A- and B-parts
of the deflated 1-by-2 pencil [22 23]- A[{22 {23]. For cases 4 and 10 we retrieve
the requested structures by setting elements 2 0 and 12 0, respectively, in the
GUPTRI forms of A- AB (4.6). For case 4 we impose a zero multiple eigenvalue in- A/. Similarly, a multiple eigenvalue is imposed at infinity for case 10. In other
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TABLE 4.4
Compound perturbations: Nongeneric structures imposed by perturbing the GUPTRI form (de-

noted Transit form) of the generic or some nongeneric pencils.

Case KCF Cod(.) Transit form dl( 22 23 dl( 2 13 12 12
1’ LIR 1 L2
4 LoJ2 4 LoJR1
10 Lo@N2 4 Lo NI @R1

x
x

words, J1 (R) R1 and N1 @ R1 in fi,- A/ are turned J2 and N2, respectively. Case 9 is
obtained by giving the A- and B-parts of the L block in .- A/ a common column
nullspace, which turns L1 intoL0 @ R1. Since P and Q in (4.6) are unitary the
perturbations imposed on and/ are of the same size as 5S and ST. The size of the
compound (total) perturbations (iA, iB) for the four cases is obtained by adding the
appropriate perturbations in Tables 4.2-4.4. The perturbations explicitly imposed for
the four cases in Table 4.4 increase the codimensions by one, except for case 9 where
the rank drop by one increases the codimension by two.

The compound perturbations discussed above are all supposedly tractable, but
are not necessarily optimal. A summary of the explicit perturbations in Tebles 4.2-
4.4 is displayed in a perturbation graph in Fig. 4.1, where the nodes are placed at
the same positions as in the closure graph (Fig. 2.1). The paths to a node indicate
different ways to generate the tractable perturbation required to find the KCF of
the node, starting from a generic A- AB. Notice that some arcs are marked with
a bullet and the corresponding paths from a generic pencil to a destination KCF
generate perturbations that are not necessarily optimal (compound perturbations
from Tables 4.3 and 4.4). All other paths correspond to optimal perturbations from
Table 4.2. We clarify thenotation in Fig. 4.1 with two examples. Let (6_A1,6_B1)
denote the optimal perturbation of size dl (A) that for a generic A-AB gives A-AB
(A + 6A1) A(B + 6B1) the Kronecker structure 51 gl. Similarly, let (6A2,6B2)
denote the optimal perturbation of size dl(R[-, , 0])that moves~ . A/ to a pencil
with Kronecker structure L0(R)J @R1. Then (6A1 +6A2, 6B1 +6B2) is not necessarily
the optimal perturbation for moving a generic pencil to orbit(L0 (R) J1 (R) R1). Therefore
the arc to orbit(L0 (R) J1 ( R1) is marked with a bullet. On the other hand, adding
the perturbations going from orbit(L2) to orbit(L0 (R) 2J) via orbit(L1 (R) g) gives us
the optimal perturbation, which is already shown in Table 4.2.

In order to relate our explicit perturbations to the (labeled) closure graph we
consider 2-dimensional rank drops in Table 4.2 as results of two 1-dimensional rank
drops. In practice, these 2-dimensional rank drops are computed directly. Some of
the perturbations in Table 4.2 do not give a unique path in the graph, since the
generic A- AB in some cases is perturbed in A and B simultaneously. For these
cases all alternative paths are shown in the graph, e.g., there are three different
paths to 2L0 @ J1 @ LoT and all of them correspond to the same perturbation (in
infinite arithmetic) of size (d(A) + d21(B)) /2. From the construction of the. explicit
perturbations it follows that each arc in the perturbation graph connects a KCF with
another KCF within its orbit’s closure. Therefore, for each arc in the perturbation
graph there exists a corresponding path in the closure graph. It is of course possible
to find other paths in the (labeled) closure graph that give tractable perturbations.

The sizes of the perturbations are shown on the corresponding arcs in the graph,
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t22 t23

dl dl (R[0])i :1

d(L[0])

Cod(A- AB)

t12 t13

12

FIG. 4.1. A graph displaying the tractable perturbations in Tables 4.2-4.4 of a generic 2-by-3
pencil.

with notation as before. The reason for perturbation sizes such as v/d2(A)- d(A) is
that the total perturbation needed for this 2-dimensional rank drop in A is d2(A) (as
shown in Table 4.2), but it is shown here as a further perturbation of a case where a
perturbation of size dl(A) already has imposed a 1-dimensional rank drop in A.

For each case in Table 4.2 is shown in Fig. 4.1 as a compound perturbation,
even though it can be computed directly, the size of the total perturbation is the
square root of the sum of the squares of the sizes of the components of the pertur-
bation. For example, the case 2Lo (R) J1 (R) LoT is found by a compound perturbation
(A,B) (AI,B1) + ((A2,(B2) + (6A3,B3), where II(AI,B1)IIE dl(A),
11(5A2, 5B2)IIE v/d(A) d21(A), and 11(6A3, 5B3)IIE dl(B). The size of the total
perturbation is II(bA, bB)IIE (d(A) + (d(A) d(A)) + d(B))/2 (d2(A) +
d(B)) 1/2. Notably, since the perturbation dl(A) (Tmin(A) and d2(A) IIAIIE

2 aLin(A 1/2 v/d22(A d(A) is equal to Crmin_l(A).(rmin_I(A) + the size

For each compound perturbation in Tables 4.3 and 4.4, the size of the total
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perturbation is found by adding the components of the perturbation and then com-
puting the norm of the resulting perturbation. However, an upper bound on the
size of the compound perturbation can be achieved by adding the sizes of the com-
ponents of the perturbation. For example, L0 J1 @ R1 is found by the com-
pound perturbation (A,B) (AI,B1)+ (A2,B2), where II(AI,B1)IIE
dl(A) and II(hA2, hB2)IIE dl(R[.,/,0]), and an upper bound on II(hA, hB)IIE is

dl (A) + dl (R[A, B, 0]).
4.1.2. Intractable perturbations and the closest nongeneric structure.

The following example shows a situation where the perturbations incidentally create
extra nongeneric characteristics that raise the codimension of the perturbed pencil
further than devised.

(4.7) A=
0 0 e2

B=
0 e4 0 e2=m.in ei>0.

Suppose we are looking for the minimal perturbations that impose the structure L1 @
J1 (case 2). They are of size dl (A) with

5A=
0 0 -e2

5B=
0 0 0

Incidentally, 5A and 5B also lower the rank of R[0]. (For this example, 5A and
5B are the minimal perturbations that cause the rank drop, i.e., dl(A) dx(R[0]),
and the minima are attained for the same perturbations.) This fact implies that the
perturbations aimed to impose the nongeneric structure L1 J1 (with codimension
two) result in a perturbed pencil with two zero eigenvalues corresponding to the
structure Lo (R) J2 with codimension four (case 4). One possible remedy is to further
perturb the undesired nongeneric pencil. To obtain L J1 we add, for example, the
perturbations

5AI
0 0 0 0 0 0

to (A + 5A, B + 5B), where 5 > 0 is an arbitrary small number. These perturbations
remove the common column nullspace (bB’) and the multiple eigenvalue at zero (bA’),
making the compound perturbations tractable. If we start to look for the smallest
perturbations of (A, B) that impose a common column nullspace that would normally
generate the structure Lo @ R2 (case 5), we also get intractable perturbations and (in
this case) the same structure Lo @ J2. We can also see from the closure graph in Fig.
2.1 that Lo @ J2 is in the closure of each of the two orbits defined by L1 J and
L0 R2.

Now we turn to the problem of finding the closest nongeneric Kronecker structure
of a generic 2-by-3 pencil. Assume all inequalities relating to dl(R[1]) in Theorem
4.1 are strict. Then the corresponding R[A + 5A, B / 5B, 1] is rank deficient, and for
all perturbations of size _< dl(R[1]), the (perturbed) matrices A + 5A, B + 5B, R[A +
5A, B + 5B, 0] and L[A + 5A, B + 5B, 0] must be of full rank, which correspond to
the case L1 R1. Since all other nongeneric cases require rank-deficiency in at least
one of the matrices A + 5A, B + 5B, R[A + 5A, B + 5B, 0], or L[A + 5A, B + 5B, 0]
(see necessary conditions in the labeled closure graph in Fig. 2.2 or Table 2.3), we
can formulate the following corollary.
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COROLLARY 4.2. If the inequalities (4.2) and (4.3) in Theorem 4.1 are strict,
L1 ( R1 with codimension one (case 1’) is the closest (unique) nongeneric structure
on distance d (R[1]).

The presumptions of Corollary 4.2 are sufficient (but not necessary) to identify
tractable perturbations that lower the rank of RIll. If equality holds in any of the
inequalities of Theorem 4.1 (for the same perturbations (hA, 5B)), we are faced with
intractable perturbations which will result in nongeneric structures with higher codi-
mansions. We collect the different cases in the following corollary, where we list the
closest Kronecker structure and the corresponding equality conditions. Notice that
strict inequalities are assumed otherwise.

COROLLARY 4.3. Assume strict inequalities hold in Theorem 4.1 when nothing
else is stated. Then, if

1. dl(R[1]) d(R[0]), Lo R2 (case 5) is the closest nongeneric form;
2. d(R[1]) d(A), L (R) J (case 2) is the closest nongeneric form;
3. d (RIll) d (B), L1 ( N1 (case 6) is the closest nongeneric form.

All forms in Corollary 4.3 have codimension two. Notice that if there exist some
perturbations on distance dl(R[1]) that do not lower the rank of R[0],A, and B,
respectively, then L (R) R1 is also at the same distance as L0 G R2, L G J1, and
L (R) N for the three cases considered.

Assume that we can have equality in different combinations of the inequalities of
Theorem 4.1. As before, we collect the possible cases in a corollary.

COROLLARY 4.4. Assume two inequalities in Theorem 4.1 are satisfied with equal-
ity for the same perturbations (iA, B). Then, if

1. 41(R[1]) dl(R[0]) d (A), no ( J @ R1 (case 4’ with codimension 3) or

Lo (R) J2 (case 4 with codimension 4) is the closest nongeneric structure;
2. dl(R[1]) dl(R[0]) d(B), Lo (R) R (R) N1 (case 10’ with codimension 3)

or Lo (R) N2 (case 10 with codimension 4) is the closest nongeneric Kronecker
structure.

Notice that cases 4 and 10 have higher codimensions than cases 4’ and 10,’ re-
spectively, but have the same algebraic characteristics in terms of the rank of R[k]
and L[k] matrices as is seen in Table 2.3. The reason is that the 2-by-2 regular parts
of cases 4 and 10 have one Jordan block with both eigenvalues specified, whi.ch in-
creases the codimension by one compared to cases 4’ and 10’ (both with one eigenvalue
unspecified).

The remark following Corollary 4.3 regarding a nonunique closest Kronecker struc-
ture can also be extended to apply to Corollary 4.4.

In applications (e.g., computing the uncontrollable subspace) we are interested
in finding the most nongeneric structure (with highest codimension) for a given size
of the perturbations. Is it possible to find intractable perturbations that result in a
closest 2-by-3 nongeneric structure with codimension > 4? The answer is no, since all
other cases require a rank drop of at least two in A, B or R[0] or a simultaneous rank
drop in A and B. There always exist strictly smaller perturbations that drop the rank
by one (see (4.5)). Similar arguments also exclude L0 (R) J (R) N with codimension 4
from being the closest nongeneric pencil.

4.1.3. Closest nongeneric structures to a generic 1-by-2 pencil. Since
we do not know any explicit expression for dl(R[1]), it is hard to construct examples
that illustrate different situations described in 4.1.2. By considering 1-by-2 pencils
we overcome this problem. A generic 1-by-2 pencil has the Kronecker structure L1
[- 1] [0 1]- [1 0] A- B. The nongeneric structures of size 1-by-2 are
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L0@ R1, L0 @ J1, L0 @N, and 2L0 @LoT with codimensions 1, 2, 2, and 4, respectively.
Which form(s) can be the closest nongeneric structure of a generic l-by-2 pencil?

L0 R if there exist perturbations of size d(R[0]) that do not simulta-
neously decrease the rank of A or B. This is, e.g., fulfilled if dl(R[0]) <
min (dl (A), dl (B)).
L0 @J if dl (R[0]) dl (n).
L0 @ N if d (R[0]) d (B).

Moreover, 2L0 LoT can never be the closest nongeneric structure. The size of the
minimal perturbations that turn A and B to zero matrices is (d(A)+ d(B))/2.

The following example illustrates a case where d(R[0]) d(A) dl(B) and
there exist perturbations of size dl(R[0]) that do not simultaneously decrease the
rank of A or B. Consequently, Lo R1, Lo J1, and L0 (R) N1 are all the closest
nongeneric Kronecker structure.

Let A [1 1] and B [-1 1]. Then R[0] has the singular value decomposition

R[0] B =UEVT =- 1/v 1/x/ 0
-1 0]

dl(R[0])(= x/) is attained for the (minimal) perturbations

hA 0

while A+A and B+B remain full rank matrices, resulting in Lo (R)R as the closest
nongeneric structure. The perturbations

of the same minimal size make R[0], A and R[0], B drop rank, respectively. These
perturbations generate the nongeneric structures L0 (R) J1 and L0 (R) N1, respectively.

4.2. Using GUPTRI to impose nongeneric structures. We have modified
GUPTRI so that, for an m x n generic pencil A- AB as input, it is possible to
impose a generalized Schur form with a specified Kronecker structure. (The modi-
fied GUPTRI also work for imposing a Kronecker structure of higher codimension on
any nongeneric pencil.) Given the block indices that define the specified Kronecker
structure (n’s and r’s of the RZ-staircase and LI-staircase forms [8]), GUPTRI im-
poses the necessary rank deflations in order to compute the specified (nongeneric)
structure. The perturbations induced by these rank deflations are usually tractable.
If the perturbations imposed by GUPTRI are intractable, GUPTRI computes the
corresponding nongeneric structure of higher codimension. The resulting generalized
Schur decomposition can be expressed in finite arithmetic as

(4.8) pH ((A + 6A) A(B + 6B))Q 0 Areg ,Breg *
0 0 A-B

where denotes arbitrary conforming submatrices. Let 52 denote the sum of the
squares of all deleted singular values (imposed as zeros) during the reduction to GUP-
TRI form. Then 5 is an accurate estimate of II(hA, 5B)IIE in (4.8). One interpretation
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is that GUPTRI computes an exact generalized Schur decomposition (with the spec-
ified Kronecker structure) for a pencil A’- AB within distance 5 from the input
pencil A- AB. Moreover, 5 is an upper bound on the distance from A- AB to the
nearest pencil with the Kronecker structure specified as input to GUPTRI.

Furthermore, this gives us a method for computing an upper bound on the dis-
tance from a generic m-by-n pencil to the closest nongeneric pencil.

Compute the structure indices (n’s and r’s of the RZ-staircase and LI-staircase
forms [8]) for all q structurally different nongeneric GUPTRI forms of size rn n. This
is a finite integer matching problem.

Use the modified version of GUPTRI to impose the q nongeneric structures:

(4.9) A AB PH((A + 5A) A(B + 5B))Q, i 1,..., q.

Compute the matrix pairs corresponding to the q nongeneric structures:

(4.10) fi. PiAiQ, . PBiQ, i= 1,...,q.

Compute

(4.11) 5 min 5i,
l<i<q

Now 5 is an upper bound on the closest nongeneric pencil to A- AB and the 5i’s
are upper bounds on the closest nongeneric pencils with the Kronecker structure of
Ai- ABi in (4.9).

The method described above is quite expensive already for moderate rn and n
(see 5) but is perfectly parallel. In a distributed memory environment it is possible
to distribute the block indices for the different Kronecker structures evenly over the
p (_< q) processors. Each processor also holds A and B and computes its local 5 using
the method above. Finally, a global minimum operation over all p processors gives us
5 in (4.11).

4.3. Computational experiments on random 2-by-3 pencils. We have
performed computational experiments on 100 random 2-by-3 pencils A- AB. The
elements of A and B are chosen uniformly distributed in (0, 1). For each random
pencil we impose the 17 nongeneric structures using the two approaches discussed in

4.1 and 4.2.
Table 4.5 displays the mean values of perturbations required to impose each of

the 17 nongeneric forms for 100 random examples. We measure the perturbations for
each example and nongeneric form as II(A- ,B-/)IIE, where A/ denotes a
nongeneric pencil. The matrices A and B are normalized such that IIAIIE --IIBIIE
and [I(A,B)I[E- 1.

Columns 2 and 3 of Table 4.5 show the 5i’s in (4.11) computed by modified
GUPTRI for the pencils A- AB and B #A, respectively. Column 4 shows the
explicit perturbations of Tables 4.2-4.4. The explicit perturbations that are proved
to be the smallest possible are marked with the superscript *.

In Table 4.6 we display the smallest perturbations (measured as above) required
to impose nongeneric forms of each possible codimension for the same 100 random 2-
by-3 examples. For example, we have three nongeneric structures with codimension 2,
so the smallest perturbations in this case are determined from 300 random examples.
The singular structures (cases) that give the smallest perturbations are shown in
columns directly following columns 2, 4, and 6 of Table 4.6.



26 ERIK ELMROTH AND BO K/GSTRM

TABLE 4.5
Mean values of perturbations (measured as II(A- fi, B- [)llE) required to impose each of the

17 nongeneric forms for 100 random A- AB of size 2-by-3.

Case A- AB B- A Explicit Cod(A- AB) Comment
1 0.000 0.000 0.000 0
1 0.160 0.154 0.127 1
2 0.181 0.394 0.181" 2
6 0.378 0.190 0.190" 2
5 0.235 0.227 0.140" 2
4 0.218 0.268 0.211 3
10 0.287 0.227 0.220 3
4 0.456 0.533 0.461 4
10 0.538 0.481 0.524 4
7 0.437 0.434 0.281" 4
7 0.589 0.602 0.326* 5
3 0.707 0.707 0.707* 6
11 0.707 0.707 0.707* 6
9 0.399 0.399 0.353* 6
9 0.466 0.460 0.390 7
8 0.737 0.737 0.737* 8
12 0.736 0.736 0.736* 8
13 1.000 1.000 1.000" 12

A 023
S 023

A 02x3
B 02x3

A B 02x3

TABLE 4.6
Minimum perturbations (measured as (A I, B [)II E) required to impose nongeneric forms

of each possible codimension for 100 random A- AB of size 2-by-3.

Cod(A- AB) A- AB Case B- ttA Case Explicit Case
0 0.000 1 0.000 1 0.000 1
1 2.10-4 1 3.10-4 1 1.10-4 1
2 0.011 2 0.010 5 0.009 5
3 0.036 4 0.037 4 0.036 4
4 0.111 4 0.106 10 0.106 7
5 0.192 7 0.119 7 0.119 7
6 0.163 9 0.163 9 0.153 9
7 0.233 9 0.224 9 0.184 9
8 0.707 12 0.707 12 0.707 12
12 1.000 13 1.000 13 1.000 13

Numbers in bold font in Tables 4.5 and 4.6 indicate that the size of the pertur-
bations (distances) computed by modified GUPTRI are the same as for the explicit
perturbations, which for these cases are also shown to be the minimal perturbations.
Numbers marked in italic font in Table 4.5 indicate that modified GUPTRI computed
smaller upper bounds than corresponding bounds for the explicit perturbations.

All explicit perturbations of the 100 2-by-3 random pencils turned out to be
tractable. The results show that the smallest distance from A- AB to a nongeneric
structure with fixed codimension k increases with increasing k, in accordance with the
Kronecker structure hierarchy in Fig. 2.1. Case 1’ with KCF L1 (R) R1 is the closest
nongeneric pencil. Our explicit bound for case 1’ is not proved to be the smallest
possible.

5. Some comments on the general case. The complexity and the intricacies
of the problems considered are well exposed in 2-4. In the following we discuss some
extensions to general m-by-n pencils. The number of different KCFs grows rapidly
with increasing m and n. Some cases are displayed in Table 5.1.

We have been able to generate 20098 structurally different KCFs for m 10, n
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TABLE 5.1
Number of structurally different Kronecker forms of size m-by-n (m

_
n).

m n: 1 2 3 4 5 6 7 8 9 10
1 4 5 5 5 5 5 5 5 5 5
2 14 18 19 19 19 19 19 19 19
3 41 54 58 59 59 59 59 59
4 110 145 159 163 164 164 164
5 271 358 397 411 415 416

20. Notice that for a given m the number of different structures is fixed for n _> 2m.
For m > n the number of KCFs are the same as for the transposed pencil. As an
example we show all structurally different 3-by-4 Kronecker forms in Table 5.2, where
as before we let R2 denote a 2-by-2 regular block with any nonzero finite eigenvalues
(see 2.1) and, similarly, we let R3 denote a regular 3-by-3 block.

TABLE 5.2
All 54 structurally different 3-by-4 pencils.

KCF

It is possible to extend Theorem 4.1 to general m-by-(m + 1) pencils.
THEOREM 5.1. For a generic m-by-(m+ 1) pencil (A, B) the following inequalities

hold:

(5.1) 0 dl (R[m]) < dl (Rim 1]) _<... _< dl (R[0]),

d (R[m 1]) <_ d (A), d (R[m 1]) _< d(B),

(5.3) dl (Rim- 1])

_
dl(Ln- 1]) _<.-. _< d (L[0]),

dk(A) < dk+(A)

(5.4) dk(B) < d+(B) k 1,..., m- 1.

dk(R[O]) < dc+l(R[0])
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Proof. From Theorem 2.1 it follows that dl(R[m]) 0 for all m-by-(m+ 1) pencils
(generic or nongeneric). A perturbation that lowers the column rank in R[k- 1] will
always lower the rank in R[k], since a dependence between columns in R[k- 1] will
make the corresponding columns in

[A 0 ]B
0

linearly dependent, proving (5.1). A perturbation that reduces the rank in A (or B)
will cause a linear dependence among the rn first (or last) rows of

Since Rim- 1] is square (m2 + m) (m2 + m), the row rank-deficiency is equivalent
to Rim- 1] being column rank deficient, which proves (5.2). The relations between
dl(L[k]), k 0,..., rn- 1 in (5.3) can be similarly proved as the corresponding re-
lations between the R[k]-matrices in (5.1). For the first inequality in (5.3) we recall
the fact that a row rank-deficient Lira- 1] is equivalent to at least one L block
(k 0,..., or m 1) in the KCF. To match the dimensions of the pencil, the KCF
must contain at least one L block (i 0,..., or rn- 2) which is equivalent to R[i]
being column rank deficient. Hence row rank-deficient Lira- 1] is equivalent to R[i]
being column rank deficient for some 0,..., m- 2. Now, the first inequality of
(5.3) is obtained by applying (5.1) to the relation between R[i] and Rim- 1]. As in
Theorem 4.1, the inequalities (5.4) follow from the definition of dk(’).

We can see that the closest nongeneric structure to a generic m-by-(m + 1) pencil
is on distance dl (Rim- 1]). Notably, when all inequalities relating to dl (Rim- 1])
in Theorem 5.1 are strict, (5.1) excludes any Lk blocks for k < m- 1 in the KCF of
any pencil on distance dl(R[m- 1]) from the generic case. Similarly, (5.2) excludes
any J or N blocks, and (5.3) the existence of L[ blocks. Altogether, this extends
Corollary 4.2 to m-by-(m + 1) pencils.

COROLLARY 5.2. If all inequalities relating to dl(R[m- 1]) in Theorem 5.1 are

strict, the closest nongeneric structure to a generic m-by-(m + 1) pencil is L,-I R1
(with codimension 1) on distance dl(R[m- 1]).

Corollary 5.2 can be used to characterize the distance to uncontrollability for
single input single output linear system Eic(t) Fx(t)+ Gu(t), where E and F are
p-by-p matrices, G is p-by-l, and E is assumed to be nonsingular. The linear system
is completely controllable (i.e., the dimension of the controllable subspace equals p)
if and only if A- AB _= [GIF- hE] is generic. Under the assumptions in Corollary
5.2, the closest uncontrollable system is on distance dl(R- 1]), corresponding to
the nongeneric structure Lp-1 ) R1 (with the eigenvalue of R1 finite and nonzero but
otherwise unspecified).

Since B has full row rank A-)B [GIF-AE] can have neither infinite eigenvalues
nor L blocks in its KCF. Therefore, it can only have finite eigenvalues and Lj blocks
in its KCF (and GUPTRI form) and the number of Lj blocks is equal to the number
of columns of G. For p 2 the possible uncontrollable systems correspond to cases
1’, 2, 5, 4’, 4 and 3 of Table 2.3.
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Generalizations of Corollaries 4.3 and 4.4 to m-by-(m + 1) pencils are straight-
forward, but there are several more cases to distinguish. The formulations and tech-
nicalities are omitted here.

Some results for general matrix pencils relating to problems studied here are pre-
sented in [2]. Eigenvalue perturbation bounds are used to develop computational
bounds on the distance from a given pencil to one with a qualitatively different Kro-
necker structure.

Appendix A. Proof of Theorem 2.2.

Proof. First we prove that each arc in the graph corresponds to a closure relation,
and then we prove that these are all arcs that can exist. We prove that one KCF is in
the closure of the orbit of another KCF by showing that the one in the closure is just
a special case of the one defining the closure. We show proofs for each arc starting
from the zero pencil.

Before looking at each arc we note that there is a symmetry regarding row ranks
and column nullities between the Kronecker structures with Ji and Ni blocks replaced
(see Table 2.3). From this we see that some of the proofs below that are shown for Ji
blocks can be similarly done for the corresponding case with Ni blocks. Typically we
must work with specific elements in A instead of B or vice versa. For these cases we
will just mention this similarity without repeating the computations.

In the following, a, /3, ,, 5, and e are supposed to be nonzero elements when
nothing else is stated.

3L0 (R) 2L0T is in the closure of orbit(2L0 (R) Ji ( LF), since 3L0 (R) 2L0T is the
special case a 0 of

0 0 0 0 0 0

which is equivalent to 2L0 (R) J1 ( Lv for all nonzero a.

3Lo (R) 2L0T is in the closure of orbit(2Lo @ N1 (R) LoT) follows from similar
arguments based on the symmetry between Ji and Ni blocks.
2Lo (R) J1 (R) LoT is in the closure of orbit(2Lo (R) R1 ( LOT), since 2Lo (R) J1 ( LoT
is the special case a 0 of

0 0 0
-A

0 0

which is equivalent to 2L0 (R) R1 (R) LoT for all nonzero a.

2L0 ( Ni @ LoT is in the closure of orbit(2L0 (R) R1 L) follows from similar
arguments.
2L0 @ J @ LoT is in the closure of orbit(L0 (R) 2J1), since 2L0 (R) J (R) i is the
special case a 0 of

0 0 0 0 a 0

which multiplied by a permutation matrix can be shown to be equivalent to

000 003
and this pencil is equivalent to L0 @ 2J1 for all nonzero a.
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2Lo @ N1 @ LoT is in the closure of orbit(Lo @ 2N1) follows from similar
arguments.
2Lo R1 O LoT is in the closure of orbit(2Lo @ LT), since 2Lo @ R1 @ Lc is
the special case/3 0 of

OOa] [007o0 - oo0

which for nonzero/ i8 shown 0 be equivMen 0 2Lo L by he following
equivMence rnsformion

I I Iil :I00ol- I0011OOa O0
010

001 00000 / -A
00

00 1

2Lo @ R1 LoT is in the closure of orbit(Lo @ L1 (R) LOT), since 2Lo R1 @ LoT
is the special case 3 0 of

0 0 a
0 0 0

-A
0 0 0

which for nonzero is shown o be equivalen o Lo@Lx LoT by Che following
equivalence Cransformaion

] ([ [ 0]) [1 0 0 ] [0 0 1]-A[ 0 1 0]o oo
_

o o - ooo ooo1 000 0
0 0 1

2Lo L1T is in the closure of orbit(Lo ( dl (R) N1), since 2Lo @ L1T is the special
case 9’ 0 of

oo - ooo

This is shown by he following equivalence ransformaion:

1)[ loo]  ooo1_  OOl 11/2 ooa oo6
OlO

OOl ooo0 00 fl
-A

000
O0 1

which is identical to 2Lo (R) LT. That the pencil (A.1) is equivalent to Lo @
J1 (R) N1 for all nonzero 7 follows from the equivalence transformation:

[1--]([00a] [0 8])[!01 P] [0001_ A[010]ooo

2Lo @LT is in the closure of orbit(Lo @ J2), since 2Lo (R) LT is a permutation
of

oo o - ooz
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which is the special case q, 0 of

o00 00
and this pencil is equivalent to Lo (R) J2 for all nonzero 7.
2Lo L1T is in the closure of orbit(Lo @ N2) follows from similar arguments.
L0 [ L L is in the closure of orbit(Lo @ J2), since 2Lo LT is the special
case/ 0 of

o00 00
which is equivalent to Lo J2 for all nonzero 3.
LoL@L is in the closure of orbit(LoN2) follows from similar arguments.
L0 LI LOT is in the closure of orbit(Lo (R) J (R) N), since Lo (R) LI ] LOT is
the special case 3 0 of

oofl
-A ooo

This follows from the equivalence transformation

[ ]([ 1 [ ] ) a

_
0 0 1-A 0 1 00 00a -A 0 0
000 0001 000 0 0

0 0 1

That (A.3) is equivalent to Lo @ J1 @ N1 for nonzero/3 is shown in (A.2).
Lo @ 2J is in the closure of orbit(Lo (R) J2), since Lo (R) 2J is the special case
a=0of

0 0 0 0 0 7

which is equivalent to Lo D J for all nonzero a.

Lo @ 2N1 is in the closure of orbit(Lo D Na) follows from similar arguments.
Lo @ Ja is in the closure of orbit(Lo (R) J ( R), since Lo (R) Ja is the special
case 0 of

o o - o o
which for nonzero is shown o be equivalen o Lo (R) J (R)R (wih eigenvalue
fl/6) by he following equivalence ransformaion

[1 ?]([0 0 a I [0 0])0 . 0 0 -A 0 1 0
0 00 /

-A
0 5

0 Z- 00 001

LOON2 is in the closure of orbit(Lo(R)N (R)R) follows from similar arguments.
Lo @ J1 @ N1 is in the closure of orbit(Lo @ J1 (R) R1), since Lo (R) J (R) N1 is
the special case 7 0 of

0 0 a 0 0 7

which is equivalent to Lo J1 (R) R for all nonzero 7.
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Lo G J1 G N1 is in the closure of orbit(Lo @ N1 (R) R1) follows from similar
arguments.
LoJ1R1 is in the closure of orbit(L1 (R)J1), since Lo(R)J1 R1 is equivalent
to L0 (R) R1 (R) J1, which is the special case a 0 of

0 0 0 5

which for nonzero a is shown to be equivalent to L1 (R) J1 by the following
equivalence transformation

10 a 001-A[00]) 0
0 10

0 0 0 5 000
0

100]-A
001

Lo@N1R1 is in the closure of orbit(Ll(R)N1) follows from similar arguments.
Lo (R) J1 (R) R1 is in the closure of orbit(L0 (R) R2), since Lo (R) J1 (R) R1 is the
special case a 0 of

00Z

which is equivalent to Lo (R) R2 for all nonzero a.
Lo(R)J1 R1 is in the closure of orbit(Lo(R)R2) follows from similar arguments.
L1 ( J1 is in the closure of orbit(L1 (R) R1), since L1 (R) J1 is the special case

=Oof

00Z- 005
which is equivalent to L1 @ R1 for all nonzero

L1 (R) N1 is in the closure of orbit(L1 (R) R1 follows from similar arguments.
Lo (R) R2 is in the closure of orbit(L1 (R) R1), since Lo (R) R2 is the special case
a=Oof

0 q, 0 0 e

which for nonzero a is shown to be equivalent to L1 (R) R1 (with eigenvalue
//e) by the following equivalence transformation

6
0

0 0
O0

-A
O0 1

L1 @ R1 is in the closure of orbit(L2), since L2 spans the complete 12-
dimensional space.

Now we have shown that all arcs in the graph are valid. It remains to show that
there are no arcs missing. This can be done by examining the KCFs that cannot be
in the closure of each other.
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First we remark that one necessary condition for a KCF to be in the closure of
the orbit of another is that it must have higher codimension than the one defining the
closure.

Since Lo (R) N1 (R) R1, Lo (R) N2, and L0 (R) 2N all require that A has full rank (- 2),
none of them can be in the closure of orbit(L1 (R) J1), since that KCF requires A to
have rank 1. (Of course this also implies that none of these three KCFs can be in
the closure of the orbit of Lo (R) J (R) R, L0 @ 2J1, or any other KCF that is in the
closure of orbit(L @ J1).)

From the symmetry for J and N blocks, we see that neither L0 (R) J1 (R) R1, nor

Lo (R) J2, nor L0 (R) 2J1 can be in the closure of orbit(L (R) N), since they require B to
have full rank and L1 (R) N1 has rank(B) 1.

Since 2Lo (R) J1 (R) LoT and 2L0 (R) R (R) LoT have a B of rank 1, neither of them can
be in the closure of orbit(L0 (R) 2N1) since that KCF requires a 2-dimensional rank
deficiency in B. By similar arguments for the rank of A we see that 2L0 (R) N1 (R)L and
2L0 (R (R) LoT cannot be in the closure of orbit(L0 (R) 2J1). Since we have investigated
all presumptive KCFs the proof is complete.

Acknowledgments. We are grateful to Alan Edelman and the referees for con-
structive comments, which have improved both the content and the organization of
the paper.
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ON THE STABILITY OF CHOLESKY FACTORIZATION
FOR SYMMETRIC QUASIDEFINITE SYSTEMS*

PHILIP E. GILLt, MICHAEL A. SAUNDERS$, AND JOSEPH R. SHINNERLt

Abstract. Sparse linear equations Kd r are considered, where K is a specially structured
symmetric indefinite matrix that arises in numerical optimization and elsewhere. Under certain
conditions, K is quasidefinite. The Cholesky factorization PKPT LDLT is then known to exist
for any permutation P, even though D is indefinite.

Quasidefinite matrices have been used successfully by Vanderbei within barrier methods for linear
and quadratic programming. An advantage is that for a sequence of K’s, P may be chosen once and
for all to optimize the sparsity of L, as in the positive-definite case.

A preliminary stability analysis is developed here. It is observed that a quasidefinite matrix is
closely related to an unsymmetric positive-definite matrix, for which an LDMT factorization exists.
Using the Golub and Van Loan analysis of the latter, conditions are derived under which Cholesky
factorization is stable for quasidefinite systems. Some numerical results confirm the predictions.

Key words, indefinite systems, symmetric quasidefinite (sqd) systems, unsymmetric positive-
definite systems, backward stability, condition number, barrier methods, linear programming
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1. Introduction. We define a matrix K to be symmetric quasidefinite (sqd) if
there exists a permutation matrix//that reorders K to the form

(1.1) HKHT=( H AT)A -G

where H E :tnn and G E ’’ are symmetric and positive definite. Such a K is
indefinite and nonsingular. Vanderbei [Van91], IVan94] has shown that sqd matrices
are strongly factorizable; i.e., for every permutation P there exist a diagonal D and a
unit lower-triangular L such that

(1.2) pKpT= LDLT.
We refer to (1.2) as a Cholesky factorization, while emphasizing that K is indefinite
and D has both positive and negative diagonals. The usual stability analysis therefore
does not apply, and the factorization may be unstable.

An example sqd matrix is

1 -e 1 1 -(1 + e) 1

The Cholesky factors exist for all values of e, and can be computed accurately in finite
precision for any e. The symmetrically permuted system

(1.4) pKpT --e 1 1 --e 1 -1 1 -- 1
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has Cholesky factors for any nonzero e, but as noted in IVan91], the factorization
becomes unstable in finite-precision arithmetic as lel - 0.

Strong factorizability is particularly attractive when K is large and sparse and a
direct factorization method is used to solve the linear system of equations

(1.5) Kd r.

As with positive-definite systems, we choose P in (1.2) to reduce fill-in during the
Cholesky factorization. If several similar systems are to be solved, we would like to
use the same "ideal" P for each system, as long as the associated factorizations are
stable. In this paper we examine conditions under which Cholesky factorization may
be used reliably on an sqd matrix K. For the example in (1.3)-(1.4), the analysis
predicts (of course) that lel should not be too small. For certain systems arising
in constrained optimization, it predicts that Cholesky factorization should be stable
until the iterates are in a small neighborhood of the solution.

1.1. Notation. When discussing permutations P, we speak of "sparsity inter-
changes" and "stability interchanges" to indicate the usual criteria for choosing P.
The spectral condition number is a2(K) -= IIKII211K-1112. The following symbols are
used for matrices"

A, G, and H are the block components of an arbitrary sqd matrix K.
B is an arbitrary square nonsingular matrix whose triangular factorization
B LU LDMT exists in exact arithmetic without row or column inter-
changes. (D is diagonal, L and M are unit lower triangular, and DMT= U.
Although such a factorization does not exist for all nonsingular B, when it
does exist, the factors are unique.)
C is a square matrix that is unsymmetric but positive definite.
T and S are the symmetric and skew-symmetric parts of C: T (CwCT)/2,
S (C cT)/2, and C T + S.
LDLT denotes Cholesky factors of a symmetric matrix: L unit triangular, D
diagonal and possibly indefinite.
LBLT denotes factors of a symmetric indefinite matrix: L unit triangular, B
block-diagonal with blocks of order 1 or 2.

2. Connection with the unsymmetric positive-definite case. We seek con-
ditions on sqd matrices K that allow stable computation of the Cholesky factorization
pKpT= LDLT for every permutation P. There is no loss of generality in assuming
H I in (1.1). With this convention, observe that

(2.1) K= ( HA -GAT) =-KI’

where

A G -I,

where I and Im denote the identity matrices of order n and m. The matrix K is
unsymmetric positive definite; i.e., xTIx > 0 for all nonzero x. The main idea of
this paper is that (2.1) can be used to characterize the stability of algorithms for
symmetric quasidefinite matrices in terms of the stability of Gaussian elimination for
unsymmetric positive-definite matrices.
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With/= as above, let/ p[pT for some permutation P. The matrix [ is diagonal
with diagonal entries 1 and -1; thus, in any product of the form . A/, A is equal
to A with some of its columns scaled by -1. Now for every permutation P,

(2.3) pKpT= PI[pT= PIpT(p[PT) (PIpT)[.

It follows that

(2.4) PKPT- LDLT if and only if PImPT- LYMT,

where/ D[ and M _= ILl. The matrices D and/ are diagonal, and L and M are
unit lower triangular as required. Relations (2.1) and (2.4) can be construed as an
alternative proof of Vanderbei’s theorem on the strong factorizability of symmetric
quasidefinite matrices. For if K is sqd, then/ and hence PImPT are positive definite;
therefore the LU factorization of PImPT exists (cf. [GV89, p. 140]); hence, by (2.4),
the LDLT factorization of PKPT exists as well.

Since only column signs are involved, it is trivial to show that (2.4) holds in finite
precision. If/ and/ are the computed factors of PKPT, then/,/[, and/I)/T [/T[
are the computed LU factors of PImPT. Hence any conditions that ensure stability
for the factorization PImPT LDMT will also ensure stability for PKPT LDLT.
In particular, it is safe to factor the quasidefinite matrix PKPT without stability
interchanges if and only if it is safe to factor the unsymmetric positive-definite matrix
PImPT without stability interchanges.

3. When stability interchanges are unnecessary. Throughout this section,
we assume that C is an unsymmetric positive-definite matrix. Let T and S be the
symmetric and skew-symmetric parts of C. Then it is safe to factor C without stability
interchanges if

(i) S is not too large compared to T; and
(ii) T is not too ill-conditioned.

This follows from results of Golub and Van Loan [Gv79], [avsg], which we summarize
next.

3.1. Theorems of Golub and Van Loan. Let C LDMT. In the backward
error analysis of Gaussian elimination, it is shown that the computed solution 2 to
the system Cx r is the exact solution of the perturbed system (C + AC)2 r,
where the size of AC is bounded by an expression involving the sizes of the computed
factors of C; say,/,/, and/rT (cf. (3.1) below). Algorithms that produce/,/, and
/T of SUfficiently bounded size are therefore considered stable.

For general C, row or column interchanges are necessary to ensure the existence
of the factors, and to prevent them from having large elements. For positive-definite
C, however, the following theorems can be used with Assumption 3.1 to obtain a
satisfactory bound on the sizes of the computed factors without stability interchanges.

(When applied to vectors or matrices, the symbols I" and < are to be interpreted
componentwise. The symbol u denotes the unit round-off, and all floating-point
calculations are assumed to conform to the "standard model" described in [GV89,
pp. 61-62].)

ASSUMPTION 3.1 (see [GV89, p. 141]). For some scalar 7 of moderate size,

IIItl I11TIII < IIILI IDI IMTIII.
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THEOREM 3.1 (see [GV79, p. 88]). Let C E jn be positive definite and set
T (C + cT)/2 and S (C cT)/2. If C LDMT, then

THEOREM 3.2 (see [GV89, p. 136, Eqn: (4:1.3)]). Let B e 1R be a matrix
whose LDMT factorization exists, and let L, D, and ]I be the computed factors.
Let & denote the computed solution to the system Bx b, obtained by the usual
methods of forward and backward substitution (cf. [GV89, p. 97, Algorithm 3.2.3]).
Then (B + AB)& b, with

IABI _< u (31BI + 51ZI IDI ITI) + O(u).

From Assumption 3.1 and these theorems, it follows that the computed solution
2 to the positive-definite system Cx r satisfies (C + AC)2 r, with

(3.2) IIACII. _< IIACII _< u (311CI1 + 5" (IITII + IIST-1SII)) + O(u).

Since IITI1 <_ IIcI1:, we have

(3.3) IITII + IIST-1SII. </|1 + IIST-SII}\ IICII..

RESULT 3.1 (see [GV79, p. 92] and [GV89, p. 141]). If C is positive definite, the
factorization C LDMT is stable if w(C) is not too large, where

IIST-SlI.(3.4) w(C) I[CII2

3.2. An alternative indicator. Because it may not always be clear how the
structure of the matrix ST-1S depends on the structure of the original matrix C, we
observe that w(C)

_
0(C), where O(C) is defined next.

RESULT 3.2. If C is positive definite, the factorization C LDMT is stable if
0(C) is not too large, where

(3.5) o(c)-_- IITII 2(T).

When IlSll is not much larger than IITII, and T is not too ill-conditioned, O(C) may
provide an adequate guarantee of numerical stability. The straightforward dependence
of O(C) on T and S makes it easier to estimate than w(C).

In certain contexts, however, 0(C) may be arbitrarily larger than w(C). For
example, suppose C has the form of g in (2.2), with H I, G (1/)I, and
A =/2I. It is easily shown that as/ c, O(C) (9(f)w(C). Thus, a large value of
O(C) should not be automatically interpreted to mean that stability interchanges are
necessary.
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4. Application to quasidefinite matrices. For our purposes, the role of C
is played by PImPT in 2. Since it is easily shown that w and 0 are invariant under
symmetric permutations of their arguments, we assume C K in (2.2). In this case,

T= G
)=

A

so that

ST-IS (-ATG-1A _AH-1AT

From the Golub and Van Loan analysis, stability of the factorization can be guaran-
teed if w(/) _= IIST-1SII2/IIIII2 is not too large. In terms of K rather than/, we
therefore have the following result for sqd matrices of the form (1.1).

RESULT 4.1. If K is sqd, the factorization pKpT= LDLT is stable for every
permutation P if w(K) is not too large, where

(4.1) w(K) mx{l[ATG-All2’ IIAH-ATll2}

As in (3.4)-(3.5), we have w(K) <_ O(K), where the latter is readily computed in
terms of A, H, H-1, G, and G-1.

RESULT 4.2. If K is sqd, the factorization pKpT= LDLT is stable for every
permutation P if O(K) is not too large, where

(4.2) 0(K) max{ilGllillHII2} max{n2(G),n2(H)}.

For example, suppose IIH]I2 _> Ilall. and ]1(-1112 ]1H-1112. Then

2, ila-lll2,O(K) <_
IIHll2

In general,
(i) IIAII2 must not be too large compared to IIHII and IIGII2; and.
(ii) diag(H, G) must not be too ill-conditioned.

5. The condition number of a quasidefinite system. To assess the accuracy
of computed solutions to Kd r with K sqd as in (2.1), we must consider both the
backward stability of the factorization PKPT- LDLT and the forward sensitivity
of d to perturbations in K. That is, given that our computed solution satisfies the
perturbed system

(5.1) (K + AK) r,

how close is to d, the true solution? The usual sensitivity bound takes the form

(5.2) lid- rill < where IIzKII
Ildll 1 c’ IIKII 2(K).
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For general K, the relative perturbation IIAKll/llKII cannot be suitably bounded
without the use of stability interchanges. When K is sqd, however, (3.2) and (3.3)
give a bound on this perturbation that is essentially proportional to 1 + w(C), with
c g

Comb!ning the results of 3-4, we obtain the following in terms of K rather than
/. (Let L and/ be the computed factors of K, and note that t2(/) tc2(K)
2(PKpT).)

ASSUMPTION 5.1. For some scalar of moderate size,

IIItl ItTIIIF IIILI ]DI ILTIII.
THEOREM 5.1. If K is symmetric quasidefinite as in (2.1), and if is the com-

puted solution of Kd r,

lid- < uTn c (K)
IIdl

where nK is the dimension of K, cK depends linearly on n, w(K) is defined in (4.1),
and

(5.4) (K) (1 + w(K))2(K).

A similar result holds with w(K) replaced by 0(K) in (4.2). For the example in
(1.3)-(1.4), the condition number is (K) 1/lel, as we might expect.

Under Assumption 5.1, then, arbitrary symmetric permutations of Kd r (such
as those reducing fill-in) can be solved stably without further permutations as long
as (K) is not too large. We therefore interpret (K) to be the condition number of
Cholesky factorization without interchanges, applied to an sqd system. In algorithms
where sequences of sqd systems are solved, techniques that either reduce (K) or delay
its increase will, by postponing the need for stability permutations and hence allowing
the unhampered use of sparsity permutations, decrease the total computation time
for solving Kd r.

Note that the reduction of (K) is sufficient, but not necessary, for ensuring
the accurate solution of Kd r without interchanging rows and columns for stability.
Indeed, Golub and Van Loan [GV79] exhibit a family of unsymmetric positive-definite
systems C for which w(C) increases without bound but whose computed solutions
remain accurate without the use of stability interchanges. Their example suggests
that in special cases it may be possible to refine the above results to obtain a sharper
bound.

6. An application in numerical optimization. The standard linear program-
ming (LP) problem is

minimize cTx
(6.1)

subject to Ax=b, l<_x<_u,

where A E/R"x" (m

_
n). Barrier methods for computing primal and dual solutions

(x, r) generate a series of sparse symmetric systems; for example, see [LMS92]. Most
authors reduce these to the positive-definite form AH-tATA v, for which Cholesky
factorization is often efficient, as long as A contains no dense columns. We discuss
some alternatives.
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6.1. Regularized LP. In [GMPS91], [GMPS94], we treat the regularized LP
problem

minimize cTx --subject to Ax + Sp b, <_ x <_ u,

where 9’ and 5 are small scalar parameters, typically 10-5. When the optimal (x, r) is
not unique, choosing a positive 9’ and 5 (respectively) aids convergence to a solution
with minimum Ilxll and IIrll. If the constraints Ax b, <_ x <_ u have no solution, a
positive 5 also permits convergence to a meaningful point.

The systems to be solved are

-ATr r A -521

where H0 is diagonal with (Ho)jj >_ O. Choosing 9’ > 0 and 5 > 0 ensures that K is
sqd (though barely!). This was not the original motivation, but in view of Vanderbei’s
work it raises the question: under what conditions is pKpT= LDLT stable for any
permutation P (with D diagonal but indefinite)?

In the notation of 4, we have H H0 + 9’2I and G 52I. It is safe to assume
that IIAII 1 after the LP problem is suitably scaled. As iterations proceed, some
elements of H0 become large and cause IIKII and a2(K) to appear large. We eliminate
this artificial ill-conditioning by symmetrically scaling the large diagonals of K down
to 1. System (6.3) is then equivalent to an sqd system Kd r in which

I1/ 11 1, IIAII 1, IIHII- 1, IIH- II IlCll- lie-ill-
with the 2-norm used throughout. The scaling doe8 not alter AH-AT. Result 4.1
then give8

w(K) max{5-e[lATA[I, IIAH-ATII }
< IIAII2 m x{5-2, IIH- II}
max{5-2, 9’-2}.

Recalling Theorem 5.1, we have the following.
RESULT 6.1. Using pKpT= LDLT, the effective condition number for solving

the sqd system (6.3) with small 9" and
On a typical LP problem, the barrier algorithm generates 20 to 30 K’s that are

increasingly ill-conditioned (even after the large diagonals are scaled to 1). With
reasonable values of 9’ and 5, we can expect pKpT= LDLT to be stable until the
iterates are close to an optimal solution.

6.2. Numerical experiments. To confirm this prediction, we applied our bar-
rier code PDQ1 [GMPS91] to some of the more difficult problems in the Netlib collec-
tion [Gay85]. Table 6.1 defines some terms and Table 6.2 lists the problem statistics.
We requested 6 digits of accuracy in x and r on a DEC Alpha 3000/400 workstation
with about 16 digits of precision. For regularization we set 9’ 5 in the range 10-3 to
10-5 (Larger values perturb the problem noticeably, while smaller values leave little
room for the LDLT factorization to be stable.)

In PDQ1 Version 1.0, the indefinite solver MA27 [DR82], [DR83] is used to factorize
either K itself, or certain reduced matrices KB (obtained by pivoting on diagonals of
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TABLE 6.1
Definitions associated with the barrier code PDQ1 for solving linear programs.

K
KB
nz(K)
PDQ1
MA27
LDLT
LBLT
Htol
factol
ndense
residual
restol

Full KKT system as in (6.3)
Reduced KKT system after pivoting on part of H
Number of nonzeros in K
Code for solving sparse LP and QP problems [GMPS91], [GMPS94]
Code for solving sparse symmetric Kd-- r [DR82], [DR83]
Sparse factors of permuted K or KB with D diagonal
Sparse factors of permuted K or KB with B block-diagonal
PDQI’s stability tolerance for pivots on H (default 10-6)
MA27’s stability tolerance "u" (default 0.01)
Nonzeros in a "dense" column of A (default 10)
IIr- gll/llr]l where is the computed d
Tolerance for invoking iterative refinement (default 10-5)

TABLE 6.2
LP test problems: Approximate dimensions of the constraint matrix A, the full KKT matrix

K, and a typical reduced KKT matrix KB.

grow22 450 950 6000
25fv47 800 1900 11000
pilotja 900 2000 15000

m n nz(.A) Size of K Typical Ks
1400 900
2700 1100
2900 1300

H that are larger than Htol and have fewer than ndense entries in the corresponding
column of A).

The Analyze phase of MA27 typically predicts very sparse LDLT factors, but to
retain stability on indefinite systems, the Factor phase forms LBLT factors if neces-
sary. These factors grow increasingly dense as the iterations proceed (more so than
the combined Analyze/Factor approach used by Fourer and Mehrotra [FM93]).

Stability is measured by testing residuals after the factors of K are used to solve
Kd r. If residual > restol, one step of iterative refinement is performed to correct .
(The effects of refinement with an unstable factorization are analyzed in [ADDS9].) If
residual still exceeds restol, the factors are considered unreliable and factol is increased
in stages towards 1. In the experiments cited here, once the LDLT factors were
abandoned, the remaining LBLT solves were performed reliably with factol 0.01.

6.3. Factorizing K. We first caused the full K to be used every iteration
(Htol-- 102). With the default stability tolerance (factol- 0.01), MA27 computed
LBLT factors at all iterations except the first few. Iterative refinement was seldom
needed, but the factors were two to four times as dense as Analyze predicted. On
problem grow22, nz(LBLT) increased steadily from 20000 to 80000 over 18 iterations,
giving a relatively long runtime.

With factol 0.001 (a little more dangerous), the LBLTsolves were again reliable,
and the factors somewhat more sparse. The values of /and 5 had little effect on the
sparsity of the factors.

We then allowed MA27 to compute LDLT factors as long as possible (factol
10-2). Table 6.3 shows the number of iterations for which the Cholesky solves were
reliable, for various values of 7 and 5. Times are in cpu seconds. With the larger
regularizations, most Cholesky factorizations were stable and efficient. On problem
grow22, nz(LDLT) was 20000. With regularizations 10-5, 10-4, 10-3, refinement
was first requested at iterations 15, 16, 17, and first failed at iterations 16, 17, 17.
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TABLE 6.3
Performance of PDQ1 with various regularizations (% 5), factorizing full KKT systems. The

column labeled LDLT shows how many iterations were performed reliably with (indefinite) Cholesky
factors of K. The remaining iterations used LBLT factors, which become increasingly dense.

grow22

pilotja

/, 5 factol Analyze LDLT LBLT time

10-5 0.01
10-5 10-20
10-4 10-20
10-3 10-20
10-5
10-5
10-4
10-3

0.01
10-2o
10-20
10-2o

10-5 0.01
10-5 10-2o
10-4 10-20
10-3 10-2o

1 0 18 13.4
1 15 3 6.7
1 16 2 5.6
1 16 2 5.5

1 0 23 23.0
1 5 18 24.2
1 17 6 20.4
1 21 2 16.8

1 0 27 37.3
1 5 22 38.6
1 18 9 33.5
1 23 3 26.6

For the last two or three iterations, nz(LBLT) jumped to 80000.
In general, iterative refinement saved several Cholesky factorizations before a

switch was made to LBL. The larger the regularization, the later the need for
refinement (and the later the switch to LBLT). The best performance was obtained
with the largest regularization, 10-3.

Some sensitivity was noted regarding the test for refinement. Earlier experience
with PDQ1 on the first 70 Netlib problems suggested using restol 10-4, but the
present experiments with Cholesky factors revealed an occasional increase in total
iterations, indicating some unnoticed instability. With restol 10-5, the results
here err on the side of "fewer iterations at the expense of earlier refinement, and
hence possible earlier switch to LBLT factors." Perhaps the tests in [ADD89] would
increase the number of iterations for which Cholesky factors could be safely used.

6.4. Reduced KKT systems. We next followed the original PDQ1 strategy of
pivoting on most of the diagonals of H (Htol 10-6, ndense 10). Partitioning
H diag(HN, Hs), A (N B) and pivoting on HN gives a reduced matrix of the
form

B -NHvlNT- 52I

The aim is to help the Factor phase of MA27, since Ks is smaller and "less indefinite"
than K. A penalty is that a new Analyze is needed whenever the makeup of Ks
changes.

Note that Result 6.1 still applies, since we still have a Cholesky factorization of
the full K, permuted by a different P. Table 6.4 therefore shows qualitatively similar
results. The best performance was obtained with 5 10-3 as before, because
Analyze was needed only once, and most iterations survived with LDLT factors.

6.5. Fully reduced systems. Table 6.5 gives results when K was fully reduced
to -(AH-IAT+ 52I) via Htol 10-2, factol 0.0, ndense 100. We write this
matrix as AH-AT for short. It is the one used in most barrier implementations,
such as OB1 [LMS92]. A single Analyze is sufficient for the Cholesky factorizations.
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TABLE 6.4
Performance of PDQ1 with various regularizations, factorizing reduced KKT systems KB. Htol

is 10-2 initially, but is increased to 10-6 after Cholesky factors become unstable. A new Analyze is
then needed each time the size ofKB changes. Best results are obtained with maximum regularization
(, 10-3) because the size of KB depends only on ndense; a single Analyze suJfices.

grow22 10-5 0.01
10-5 10-20
10-4 10-20
10-3 10-20

25fv47 10-5 0.01
10-5 10-20
10-4 10-20
10-3 10-20

pilotja 10-5 0.01
10-5 10-20
10-4 10-20
10-3 10-20

factol Analyze LDLT LBLT time

11 0 18 19.6
5 14 4 11.2
4 15 3 8.6
1 18 1 5.7

14 0 23 18.9
4 20 3 15.3
3 21 2 14.2
1 21 2 12.5

15 0 27 38.0
15 5 22 38.7
3 25 2 25.7
1 25 1 20.9

TABLE 6.5
Performance of PDQ1, factorizing AH-1AT. This is often the most effective method, but

AH-IAT must be formed eJ:ficiently. Not applicable if A contains dense columns.

, i Analyze LDLT time

grow22 10-3 1 17 5.5
25fv47 10-3 1 23 12.4
pilotja 10-3 1 27 29.6

Regularization is essential, given the way "free variables" are handled. (If xj has
infinite bounds, (Ho)jj 0. Problem pilotja has 88 free variables.) We used - 5
10-3 to match the best results in the other tables.

Somewhat surprisingly, AH-1AT was not a clear winner. Since A had no dense
columns in these examples, the Cholesky factors of AH-1ATwere more sparse than the
LDLT or LBLT factors in Tables 6.3 and 6.4, yet the factorization times were slightly
greater. A possible explanation is that the off-diagonals of AH-1AT are formed as a
long list of entries from the sparse rank-one matrices (1/Hjj)aja, which MA27 must
accumulate before commencing the factorization. (The same accumulation is used for
partially reduced KKT systems, but to a lesser degree.)

6.6. Use of MA47. We have recently implemented PDQ1 Version 2.0, in which
MA27 is replaced by the new indefinite solver MA47 [DGR91], [DR94]. Following
[FM93], we have also experimented with looser pivot tolerances in both codes to
improve the sparsity of the numerical factors. In particular, we have initialized factol
at 10-s (increasing it by a factor of 10 whenever refinement fails), and we have run a
larger set of test problems.

With MA27, we do obtain significantly improved performance, though iterative
refinement and tolerance increases are frequently needed as before. In some cases,
factol reaches 0.01 or even 0.1.

With MA47, we have found unexpectedly that refinement is almost never needed.
Reduced KKT systems again give the best performance (Htol 10-s), and milder
regularization seems adequate (7 5 10-4) The first 53 Netlib problems solved to
8 digits of accuracy with a total of only three refinements, two of which caused Htol
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and factol to be raised to 10-7. With tolerances of this nature, most factorizations
are simply LDLT with the Analyze ordering. Any LDLT or LBLT factorizations with
revised orderings are almost equally sparse. The ability to do the reordering provides
stability at negligible cost.

It appears that two features are contributing to MA47’s performance: new sta-
bility tests [DGR91], and the default strategy of amalgamating tree nodes to reduce
indirect addressing. (By themselves, MA27 with amalgamation and MA47 without
amalgamation were not equally successful.) We hope to give fuller results elsewhere.

7. Conclusions. Diverse techniques have been combined here to obtain some
new theoretical and practical results. In the context of barrier methods for linear
programming, full KKT matrices K are known to have advantages over AH-1AT
in the presence of dense columns and free variables. In [GMPS91] we attempted
to improve the performance of MA27’s LBLT factorizations on severely indefinite
systems, but with limited success. Regularization was included there for "numerical
analysis" reasons, ensuring uniqueness and boundedness of solutions.

Around the same time, Vanderbei introduced quasidefinite systems and exploited
the efficiency of LDLT factors on KKT-like matrices. Recognizing that regularized
KKT systems are quasidefinite, and that a closely related system is positive definite,
we were led to the results of Golub and Van Loan on LU factorization without in-
terchanges. From these, we established an effective condition number (K) (5.4) for
Cholesky factorization of sqd systems. Result 6.1 justifies LDLT factorization of sqd
matrices K for the special case of barrier methods for linear programming.

Note that our analysis does not explain the remarkable success that Vanderbei has
had with his LDLT factors of sqd systems. In particular, Vanderbei does not resort to
regularization. Instead, some innovative problem formulation and partitioning gives
a multilevel ordering scheme in which certain diagonal pivots are deferred (notably
zeros). An sqd principal submatrix is chosen and factored as LDLT. The Schur
complement then has an sqd principal submatrix, and so on. We hope that a direct
analysis will eventuate.

Meanwhile, the numerical results obtained here suggest the following approach to
systems Kd r of the form (6.3): Choose the regularizing parameters -, 5 reasonably
large (e.g., 10-3 or 10-4) and pivot on all entries of H for which the column of A is
not too dense. A single Analyze will then suffice, and LDLT factorization should be
efficient and reliable until a good estimate of the solution is reached.

For higher accuracy, we must not forget that implementations based on AH-IAT
are surprisingly reliable and efficient on most reM-world problems [Lus94]. Otherwise,
Vanderbei’s indefinite Cholesky approach is an answer to dense columns and free
variables, as are the LBLT factors in [FM93], [GMPS91], with MA47 now providing
a very welcome boost.
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PRECONDITIONING REDUCED MATRICES*
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Abstract. We study preconditioning strategies for linear systems with positive-definite ma-
trices of the form ZTGZ, where Z is rectangular and G is symmetric but not necessarily positive
definite. The preconditioning strategies are designed to be used in the context of a conjugate-gradient
iteration, and are suitable within algorithms for constrained optimization problems. The techniques
have other uses, however, and are applied here to a class of problems in the calculus of variations.
Numerical tests are also included.
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1. Introduction. We are interested in solving linear systems of the form

(1.1) ZTGZp-- d

via the preconditioned conjugate-gradient method. The matrix ZTGZ is assumed to
be positive definite, although G need not be. Our primary concern is the choice of a
preconditioner for this system.

We intend to apply the techniques within algorithms for solving large nonlinear
optimization problems:

minimize f(x)
subject to g(x) 0, h(x) <_ O,

where f(x), g(x), and h(x) are nonlinear functions (f(x) is scalar valued, g(x) and
h(x) are vector valued). Many algorithms for this problem solve a sequence of linear
systems of the form (1.1). This is true for active set methods [6] as well as stabilized
penalty methods [13]. It is also true for sequential quadratic programming algorithms
[6]. The matrix G G(x) may represent the Hessian of f at the point x, or it may
represent the Hessian of the corresponding Lagrangian function. The matrix Z is
a basis for the tangent subspace defined by the active constraints at x. When the
number of variables is large, it is often appropriate to apply an iterative method to
(1.1), such as a truncated-Newton method [2].

As the solution to the optimization problem is approached, the optimality con-
ditions guarantee that ZTGZ will be positive semidefinite. In nondegenerate cases,
ZTGZ will be positive definite in a neighborhood of the solution. It is always the case
that ZTGZ will be symmetric. For these reasons, the conjugate-gradient method is
normally used to solve (1.1), with safeguards in case ZTGZ is not positive definite [2],
[10]o
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As a simple special case, consider a quadratic programming problem of the form

minimize x f(x) 1/2xTGx cTx
subject to Ax b,

where A is an m n matrix with rn < n, and G is positive definite on the null space
of A. The first-order optimality conditions for the problem are

(1.2) (G A0"I’) ( A c /
(The vector A is the vector of Lagrange multipliers for the constraints.) Then x
xo + Zp where p is the solution to

zGz Z(c- Gxo),

x0 is any solution to the constraints Ax b, and Z is a matrix whose columns form
a basis for the null space of A (i.e., AZ 0). Auxiliary calculations are needed to
compute A.

In this simple case the solution is obtained by solving a single system of the form
(1.1). In more complicated cases a sequence of systems of this form must be solved,
with perhaps both G and Z changing from one system to the next. The null-space
matrix Z can change not only in its entries, but also in its size as the dimension of
the relevant null-space changes.

Some optimization algorithms work directly with the linear system (1.2). This
system is symmetric but not positive definite, and so the traditional conjugate-gradient
method cannot be applied. It is also a larger system than (1.1), having n+m variables
instead of n- m. Preconditioning strategies for (1.2) are discussed in [5], [14]. We
concentrate on the solution of (1.1).

In exact arithmetic, the number of iterations required by the conjugate-gradient
method is bounded by the number of distinct eigenvalues of ZTC,Z. In addition,
from iteration to iteration the method displays a linear rate of convergence with rate
constant (V/-- 1)/(V / 1), where is the condition number of ZTGZ [7].

A preconditioner is a (symmetric) positive-definite matrix K such that K
ZTGZ. System (1.1) is equivalent to the preconditioned system

K-1ZT(Zp K-ld.

The goal is to choose K so that the preconditioned matrix K-1ZTGZ will have a
smaller number of distinct eigenvalues, or a smaller condition number, or both. For
practical purposes, it must be possible to solve linear systems of the form Ky v for
arbitrary v.

If an approximation K ZTGZ is provided then the situation is straightforward,
since the approximation could be used directly within the preconditioned conjugate-
gradient method. In the optimization setting, however, we think it more likely that
only an approximation M G would be available. Such a matrix M might be
generated by the optimization algorithm itself, using for example the techniques in
[11]. Or it might be suggested by the optimization problem. For example, if the
objective function f(x) were derived from a differential equation, an approximation
to the corresponding differential operator G might be available, such as a fast Poisson
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solver. It seems less likely that an approximation to the reduced matrix ZTGZ would
be provided, particularly in cases where Z changes frequently.

In some cases, explicitly forming ZTGZ or ZTMZ will be undesirable. In many
large problems the matrices G and A will be sparse or have special structure, and the
special structure of A will often carry over to Z. Forming the reduced matrices can
destroy this structure. For example, if Ax b corresponds to the simple constraint

xi= 1,

and an orthogonal null-space matrix Z is used, then ZTC,Z will be dense even if G is
sparse.

For these reasons we are interested in constructing K ZT(]Z given Z and a
(symmetric) positive-definite matrix M G. (Z is used within the optimization
algorithm and so is available.) We describe a variety of approximations K that could
be used, even though some of them are likely to be too computationally expensive for
routine use. We also discuss the computation of Z and its influence on the conditioning
of the reduced matrices. Finally, we apply the ideas to a class of problems arising in
the calculus of variations. Numerical tests are presented to illustrate the techniques.

The simplest of the preconditioners that we derive is

K-1 WTM-1W (ZTGZ)-1,

where WT is a left inverse for Z (i.e., WTZ I). In many cases, W can be obtained as
a by-product of the calculations used to obtain Z. The computational effort required
to apply the preconditioner is that required for the "unreduced" preconditioner M,
plus that for W and WT. The numerical tests in 8 indicate that the formula can
be an effective preconditioner for reduced systems. It is this preconditioner that
we would recommend for most applications. Hence, within the conjugate-gradient
method, applying the preconditioner to a vector v would mean calculating K-iv
WTM 1Wv.

The more elaborate preconditioners that we derive require considerably more
computational effort to use, but they can further accelerate the convergence of the
conjugate-gradient method. Whether these preconditioners would be appropriate
would depend on the relative computational costs of applying the preconditioner
(forming K-iv) and computing a matrix-vector product (forming ZTGZv). In cases
where the latter is expensive (see below), the more elaborate preconditioners might
be worthwhile.

In truncated-Newton software, it is common to compute a Hessian-vector product
via finite differencing. In this case G V2f(x) for some nonlinear function .f(x), and

zrazv z  f(z)Zv z + hZv) Vf(x)
h

for some "small" value of h. Thus the cost of the matrix-vector product is proportional
to the cost of evaluating the gradient Vf(x). If evaluating the gradient is expensive,
then the matrix-vector product will be expensive, and could easily become the dom-
inant part of the conjugate-gradient iteration. In such cases we envision the more
elaborate preconditioners being used.

Here is an outline of the paper. Basic topics are in 2. A family of preconditioners
is derived in 3. They are based on an infinite series, whose convergence is the topic
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of 4. Section 5 extends the results to the case where Z is a projection matrix that is
not of full rank. Section 6 focuses on a specific choice of Z commonly used in large-
scale optimization. Section 7 shows how the techniques can be applied to a class of
problems in the calculus of variations. Numerical tests are in 8 and conclusions in

9.
2. Basics. For simplicity we consider the simple case (1.2), treating it, if ap-

propriate, as a single instance of a sequence of linear systems of the same structure.
Hence A is an m n matrix with m < n corresponding to the (perhaps linearized)
constraints. (Ifm n then the solution is determined entirely by the constraints.) For
convenience we assume that rank(A) m. As before, Z is a matrix whose columns
form a basis for the null space of A, so that AZ 0 and rank(Z) n m.

There are two traditional ways of forming Z. The first uses an orthogonal factor-
ization of AT:

AT QR Y Z ( R1)0

where R1 is an m m upper triangular matrix. Then ZTZ I. This technique is
often used on small problems where dense-matrix methods are appropriate.

The second technique (called variable reduction) identifies a subset of the variables
of size m, called a basis. If the first m variables were to be used we would write

A=(B N),

where B is nonsingular. The corresponding matrix Z is given by

This only requires a factorization of the submatrix B, and is better suited to large
sparse problems. It is easily checked that AZ 0, but ZTZ I unless N 0.

In our formulas we will require a left-inverse for Z, i.e., a matrix WT satisfying
WTZ I. If Z is available, a left-inverse for Z is usually available at little or no
additional cost. For example, if Z is formed via an orthogonal factorization of AT, we
can choose WT ZT. If Z is computed via the variable reduction method, we can
choose WT (0, I).

2.1. Some lemmas. Not a great deal can be said in general about the rela-
tionship between G and ZTGZ, so only limited conclusions can be drawn about the
quality of the preconditioners we derive. However, the following lemmas provide some
information. In the discussion that follows, I1" I]- I1" 112.

The first lemma discusses the case where G and M share an eigenvalue-vector pair.
Note that M-G then has an eigenva,lue equal to one. The lemma shows that spectral
information for the original matrix can be used in constructing a preconditioner for
the reduced matrix.

LEMMA 1. Suppose that Gv Av and Mv Av, where v O. If v E range(Z)
then

(ZTGZ)w .kw and (ZTMZ)w )w,

where Zw v.
The next result gives a bound on the norm of a reduced matrix.
LEMMA 2. Let H be an n n matrix. Then IIZTHZII <_ Ilgll IIZII 2.
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The lemma may be used to bound the norm of the difference between the reduced
matrix and its approximation:

II(ZTMZ) (ZTGZ)]I ]IZT(M G)Z][

_
IIM GI] I]Zll 2.

In particular, if Z is an orthogonal matrix the bound becomes

II(ZTMZ) (ZTGZ)II

_
IlM- G[I.

When Z is an orthogonal matrix, we also have the following interlacing property (see

LEMMA 3. Let Z be an n orthogonal matrix and G an n n symmetric matrix
with eigenvalues )1 )n. Let wl >_... >_ wt be the eigenvalues of ZTGZ. Then

An immediate conclusion is that orthogonal reduction will not increase the con-
dition number of a positive-definite matrix. This is stated in the next lemma.

LEMMA 4. Let Z be an orthogonal matrix, and let G be a positive definite matrix.
Then cond(ZTGZ) <_ cond(G).

Unfortunately, the bounds provided in the above lemmas can be tight. For ex-
ample, consider Lemma 4 in the case where G is a diagonal matrix and Z corresponds
to a set of bound constraints. Then ZTGZ is just a principal submatrix of G. If
that submatrix includes the extreme eigenvalues of G then cond(G) cond(ZTGZ).
Therefore, it is not possible to make the results more precise. Any more specific re-
sults would require precise information about the particular submatrix that had been
chosen. Similar pessimistic examples can be found for the other lemmas.

3. Formulas for preconditioners. From a theoretical standpoint, it would be
ideal to precondition ZTGZ using ZT(Z itself. If G is nonsingular, then from the
identity (see [3, p. 87])

Z(ZTGZ)-IZT= G-I G-AT(AG-AT)-AG-

it follows that the inverse of ZTGZ satisfies the identity

(ZTGZ)-I WTG-1W_ WTG-1AT(AG-1AT)-IAG-1W,

where WT is a left-inverse for Z.
In cases where it is inconvenient to use G explicitly (or if G is singular), and a

positive-definite preconditioner M G is given, it is natural to consider using ZTMZ
as a preconditioner for ZTGZ. Linear systems of the form ZTMZy v can be solved
using the formula

(3.1) (ZTMZ)-I WTM-1W_ WTM-1AT(AM-1AT)-IAM-1W.

We assume that linear systems of the form My v can be easily solved. A precondi-
tioner for the conjugate-gradient method must be positive definite. This will be true
for the preconditioners that we derive because M is positive definite.

The preconditioners we consider are based on approximations to the right-hand
side of (3.1). The accuracy of the approximation can be varied, but the more accurate
the approximation, the more computations are required to implement it.
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In certain cases it is possible to use (3.1) in its original form. For example, if m
is small then AM-1AT can be formed explicitly and then either factored or inverted.
(In the case where n- m is small and G is available, ZTGZ can be formed and there
is no need to use an iterative method to solve (1.1).) Even if the component parts of
the right-hand side of (3.1) can be formed, it requires two applications of M-1 as well
as an application of (AM-IAT)- to use it:

(ZTMZ)-Iv WTM-I(I_ AT(AM-1AT)-IAM-)Wv,

making it more than twice as expensive to precondition ZTGZ as to precondition G.
If neither m nor n m is small, then some approximation to (3.1) must be used.

The simplest available is

(3.2) (ZTMZ)- WTM-W.

This approximation requires only one application of M-1 and so is economical. Since

(ZTMZ)- WTM-1W -WTM-AT(AM-1AT)-IAM-W,

there is no guarantee that II(ZTMZ)-1 (WTM-W)[ is small. However, if either
m or n- m is small then the difference is of low rank and (3.2) may be satisfactory.
(If the difference between the matrix and the preconditioner is of rank then the
preconditioned conjugate-gradient method will converge in at most + 1 iterations
with exact arithmetic.)

The preconditioned matrix is

(WTM-1W)(ZTMZ) WT(M-1WZTM)Z.

The eigenvalues of the inner matrix (M-1WZTM) are all either zero or one, since the
corresponding eigenvectors are the columns of M-1W and M-1AT:

(M-1WZTM)(M-1W) M-1W,
(M-WZTM)(M-1AT) O.

This suggests that the preconditioned matrix may be well-suited for the conjugate-
gradient method, since the convergence of this method depends on the number of
distinct eigenvalues of the matrix.

More sophisticated (and more expensive) preconditioners can be obtained by
approximating the inverse of the matrix (ZTMZ). They are based on the power series
expansion

IV (v x)]-i
+ + +...]

where Y X. The series converges if the eigenvalues of (I- XY-) are less than one
in absolute value.

If we let
X ZTMZ and y-1 WTM-1W

in (3.3), then using the first k terms of the series gives the approximation

k

(3.4) (ZTMZ)-I (WTM-W)E (i- T)j

j=0
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where T (ZTMZ)(WTM-1W). (We assume here that the series on the right con-
verges as k - c; see 4.) Taking for example k 0, we obtain the "inverse pre-
conditioner" (3.2). (Formula (3.4) provides the inverse of the preconditioner; all our
formulas will be of this nature, and the preconditioners themselves will not be speci-
fled.) Taking k 1 we obtain the inverse preconditioner

(ZTMZ)- , (WTM-1W) (2I (ZTMZ)(WTM-1W))

Since the inverse preconditioner need not be formed explicitly, it is available at
no expense (once Z and W are available). The expense lies in applying it to a vector:

(ZTMZ)-lv ,. (WTM-1W) (21- (WTM-IW)(ZTMZ)) v.

We can derive an alternative expression for the inverse preconditioner that is more
efficient for computation. Using the relationship

k k

\j+l) rj,
j=0 j=0

we obtain

k

(3.6) (ZTMZ)-1 (WTM-1W) E(-1)J (k+’TJ
\j+l]

j=0

where as before, T (ZTMZ)(WTM-W). This is the form of the inverse precon-
Clitioner used in our computations. However in the following sections we continue to
use the representation given in (3.4), since it is more convenient for mathematical
manipulation.

3.1. An alternative formula. It might appear that the power series expansion
could be used in another way to obtain additional inverse preconditioners. If X
AM-1AT and R is a matrix such that RAT i then a "plausible" choice for an
approximate inverse of X is

y-1 RMRT.

Applying the power series to approximate (AM-AT)-1 on the right-hand side of
(3.1) we obtain

(ZTMZ)- ,. WTM-IW WTM-1ATy- ((I U)J) AM-1W,
\j=O

where U XY- (AMAT)(RM-1RT). As an illustration, if only one term in the
power series is taken, we obtain the inverse preconditioner

(ZTMZ)-1 WTM-I[I_ ATy-1AM-1]W

A left-inverse for AT is usually available from the computation of Z at little or no
additional cost. For example if Z is obtained from an orthogonal factorization of AT
then the left-inverse matrix R (AAT)-A can be computed easily from the factors
of the orthogonalization.
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The following lemma shows that the inverse preconditioners (3.4) and (3.7) are
mathematically identical, and so no new preconditioners are obtained--just an alter-
native formula. In some applications one formula may be easier to apply than the
other. (See also 4.)

The lemma assumes that ATR + WZT I. This assumption ensures that R and
WT are chosen in a "consistent" fashion. It is satisfied when Z is computed via an
orthogonal factorization of A, R (AAT)-IA, and W Z. It is also satisfied when
Z is computed via the variable reduction method, with

(0)o), W=

(In general, given a full-rank matrix Z that is a null-space matrix for A, and a matrix
R that is a left-inverse for AT there exists a unique left-inverse matrix WT for Z such
that ATR + WZT I.)

LEMMA 5. Let RAT I WTZ I, and suppose that ATR + WZT I. Let
Y- RMRT, U (AM-tAT)(RMRT) and T (ZTMZ)(WTM-W). Then for
k>_l,

k-1 I k

WTM-1W WTM-1ATY- (=o(I U) AM-1W (WM-1W) i=0E (I
Proof. It is sufficient to prove that

(a.s) -WTM-1ATy-1 ((I U)k-l) AM-1W (WTM-1W)(I T)1.

The proof is by induction. For k 1 we have

_WTM-ATy-((I U)k-)AM-W
-WTM-1ATY-1AM-W
WTM 1ATRMRTAM 1W

-WTM-I(I_ WZT)M(I- ZWT)M-1W
-WTM-(W_ WZTW- MZWTM-1W + WZTMZWM-W)
-WTM-1 (-MZ(WTM-1W)+ W(ZTMZ)(WTM-1W))
-WTM- (-MZ + W(ZTMZ))(WTM-W)
(I- (WTM-1W)(ZTMZ))(WTM-1W)
(WTM-1W)(I-T).

Assume now that (3.8) is true for k- 1. We shall prove that it is also true for k. Note
from the proof for k 1 that

ATy-AM-1W (-MZ + W(ZTMZ)) (WTM-1W).

We conclude from this that

UAM-W AM-ATy-AM-W

AM- (-MZ + W(ZTMZ))(WTM-1W)
AM-W(ZTMZ)(WTM-1W)AM-1WT.
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Using this relation and the induction hypothesis we obtain

-WTM-1ATy-1 ((I U)k-l) AM-1W
-WTM-1ATy-1 ((I- U)k-2) (AM-1W- UAM-1W)
--WTM-1ATy-1 ((I- U)k-2) (AM-1W(I T))
(WTM-1W)(I T)-1(I T)
(WTM-1W)(I- T)k.

There are several remaining questions, such as what to do if the series does not
converge, how many terms to use, and which of the two equivalent formulas to use.
Convergence is discussed in the next section, the choice of the number of terms to use is
mentioned in 8 when we discuss computational results, and the particular formula to
use would probably just be a matter of which was more convenient, perhaps depending
on the relative magnitudes of m and n m.

4. Guaranteeing convergence. In developing the polynomial preconditioners,
we tacitly assumed that the corresponding infinite series converged. We now explore
the conditions for convergence of the series and discuss strategies to handle the case
where the conditions are not met.

Consider the power series (3.3). It is convergent if the eigenvalues of (I- XY-1)
are less than 1 in absolute value, or equivalently if the eigenvalues of XY-1 lie strictly
between 0 and 2. In our application, where X and y-1 are positive definite, the
eigenvalues of XY-1 will be positive, since XY-1 is similar to a positive-definite
matrix:

Y-- (Xy-1)Y Y-(X)Y-.

Let 1 (’) and An(.) denote the largest and smallest eigenvalues of a matrix, respec-
tively. Then for a positive scalar a such that a < (2/,kl(Xy-1)), the eigenvalues of
aXY-1 will lie strictly between 0 and 2. In turn, the eigenvalues of (I-aXY-1) will
be smaller than 1 in absolute value. We can now use the approximation

X-1 o (o X) -1 o,[Y (Y o X)] -1

aY-l[I + (I a.XY-1) + (I o Xy-1)2 +..-].

The expression on the right is a convergent sequence. Notice that it differs from
(3.3) only in that y-1 is replaced by cY-1. The rate of convergence of the sequence
depends on the particular choice of the scaling parameter c; ideally the eigenvalues
of oXY- should be close to 1. A possible choice is the scaling parameter that
minimizes the largest deviation of the eigenvalues of the scaled matrix from 1. This
gives c 2/ , XY-1) -+- ,n ZY

Choosing a < 2/)I(XY-) guarantees that the resulting preconditioner will be
positive definite. To see this, denote by r/i the eigenvalues of I- aXY-1; the selection

)yof a guarantees that -1 < v/i < 1. Then the eigenvalues of -j=o(I- XY- will be

=0 > 0.
We now obtain the explicit form for the inverse preconditioner that includes the

scaling parameter. Consider first the family of inverse preconditioners represented by
(3.4), and denote as before

T (WTM-1W)(ZTMZ).
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Let a be a scalar such that a < 2/1(T). Applying the above results we obtain

k

(ZTMZ)-1 a(WTM-W) E(I aT)J.
j=0

Alternatively, if we choose to use an inverse preconditioner of the form (3.7), we
obtain

(ZTMZ)-I WTM-1W oWTM-1ATy-I ((I- oU)J)
\j=0

AM-1W,

where U (AM-1AT)(RMRT) and a < 2/(,l(U).
In practice, the largest eigenvalues of U and T are not available. Our tests (8)

indicate that in many cases it is sufficient to use only the first term in the power
series. There is then no need to compute the scaling parameter. In other cases we
must estimate the eigenvalues. (For the purpose of estimation it may be easier to use
bounds on the norms of the matrices.) The following lemma shows that if R and W
satisfy ATR + WZT I, then the eigenvalues of U and T are closely related.

LEMMA 6. Suppose that ATR + WZT I. If m <_ n- m then any nonunit
eigenvalue of U is also an eigenvalue of T, and all other eigenvalues of T are equal to
1. If n- m <_ m then any nonunit eigenvalue of T is also an eigenvalue of U, and all
other eigenvalues of U are equal to 1.

Proof. Let E AM-1W and F ZTMRT. Recalling that ART I we obtain

U AM-1ATRMRT AM-(I- WZT)MRT= I- EF.

Similarly, recalling that ZTW I we obtain

T ZTMZWTM-1W ZTM(I- RTA)M-W I- FE.

Suppose that m _< n- m. We first show that any nonzero eigenvalue of EF is
an eigenvalue for FE. Let A and v be an eigenvalue/vector pair for EF with A # 0.
Then EFv )w, and since A # 0, Fv O. Now FE(Fv) FAy A(Fv). Hence A
is an eigenvalue for FE with associated eigenvector Fv.

Next we show that any eigenvalue of FE that is not an eigenvalue of EF must
be zero. Suppose that FEx #x for some nonzero vector x. Then

EF(Ex) E(FEx) #(Ex).

The above relation can occur in one of three situations: (i) Ex # 0 and tt # 0; in this
case # is a nonzero eigenvalue of EF. (ii) Ex 0 but # 0. (iii) Ex 0; this implies
that # 0. The proof for the case n- m _< n is similar.

The lemma indicates that in estimating the scaling parameter one can use either
U or T, whichever is more convenient. Denote the resulting inverse preconditioners
by

K-I (a, k) WTM-1W-aWTM-1ATy-I((I-aU)J)AM-1W,
\j=O

and
k

K-l(oz, ]g) oz(WTM-1W) E(I ozT)J.
j=0
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The following result shows the relationship between K1 and K2. When 1 they
are equal (as pointed out in 3). Otherwise, assuming they converge, their difference
goes to zero as k increases.

LEMMA 7. Let RAT I and WTZ I, and suppose that ATR+WZT I. Then
fork >_O

g(c,k) g(,k) + (1 -)(WTM-W)(I- (T)k.

Proof. Here we just sketch the proof. First, using arguments similar to those in
Lemma 5, we can show that for j _> 0,

-WTM-ATy- ((I cU)J) AM-IW (WTM-W)(I T)(I

Next, the relationship a(I T) (I aT) (1 a)I gives

WTM-1W cWTM-1ATy-I ((I U)J) AM-1W
\j=0

k-1

WTM-W + c(WTM-W) (I T)(I cT)J
j=0

k-1

WTM-W + (WTM-1W)(I-
j=0

k-1

(1 c)(WTM-1W) -(I cT)J
j=0

k k-1

(WTM-1W) (I cT)J+l (1 )(WTM-1W) (I cT)J
j=0 j=0

k

c (WTM-W)(I cT)J + (1 ()(WTM-IW)(I T)k.
j=0

5. Using an orthogonal projection matrix. In the previous sections we as-
sumed that the matrix Z that generates the null space of A has full column rank. In
this section we focus on the case where the null-space matrix is an orthogonal projec-
tion P I- AT(AAT)-A, where A is an m n matrix of full row rank. (To avoid
confusion we use the notation P rather than Z.) P is an n n matrix of rank n- m.
We are concerned with the solution of the system

(5.1) PGPp d.

Why use an orthogonal projection? First, if A is sparse it is possible to apply
the projection in a way that utilizes the sparsity. Second, applying an orthogonal
projection does not increase the norm of a matrix; that is, IIPGPII < IIGII.

In the typical systems that arise in optimization, the vector d can be written as
d Pg for some vector g. If G is nonsingular, then (5.1) is consistent and a solution
is

p (PGP)+Pg,

where (PGP)+ is the Moore-Penrose generalized inverse of PGP.
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It is possible to solve (5.1) using the linear conjugate-gradient method. If G is
positive definite on the null space of A, then in exact arithmetic the conjugate-gradient
method will terminate in at most n rn iterations with the solution vector [8].

We shall extend the ideas of 3 to obtain a preconditioner for PGP. As before,
we assune that we have a positive-definite approximation M G. The "inverse"
preconditioner will be of the form (PMP)+. An explicit expression for this matrix is
provided in the following lemma.

LEMMA 8.

(PMP)+ M-1 M-1AT(AM-1AT)-IAM-1

p(M-1 M-1AT(AM-1AT)-IAM-1)p.

Proof. It is easy to verify that

(pMp)(M- M-1AT(AM-AT)-IAM-X) P.

The lemma follows immediately. [1

Our preconditioners are based on the ideas of 3. Let R (AAT)-IA be a left-
inverse for AT. We use a power series expansion for (AM-IAT)- with RMRT as the
approximate inverse. Denoting U (AM-AT)(RMRT), we obtain

(PMP)+ PM-P pM-1AT(RMRT) (-(I U)J)AM-P.
\j--0

Now let T (PMP)(pM-1p) PMPM-1p. The following result is analogous to
Lemma 5.

LEMMA 9.

(._k-1 ) k

pM-1p pM-1ATy-1 \=o(I- V)J AM-1p --(pM-1p)j:OE(I T)J.

Proof. It is similar to the proof of Lemma 5. []

The expression on the right is another form for our inverse preconditioner. A
formula analogous to (3.5) could also be derived. Techniques similar to those described
in 4 can be used to guarantee convergence of the appropriate infinite series.

5.1. Application to linear programming. There is possibly another applica-
tion of these results. In recent years several successful interior-point algorithms have
been developed for solving linear programs. Interior point methods typically require
few iterations, but each iteration requires the solution of a system of the form

(5.2) AMATp d

to provide a search direction. The matrix M is diagonal and changes from one iter-
ation to another (while A remains constant). The principal cost lies in (repeatedly)
computing the Cholesky factorization of AMAT.

Here we propose an approach for approximately solving (5.2) that requires only
one Cholesky factorization. We start by using the approximation

k

M-1 M-1AT(AM-1AT)--AM- (PM-P) E(I T)J.
j=o
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Premultiplying by RM (where R (AAT)-IA), postmultiplying by (MRT), and
reordering gives

The expression on the right involves only P, R, the diagonal matrix M, and its inverse.
The main work needed is to factor AAT (just once). The solution of (5.2) requires
3k + 4 applications of (AAT)-, 2k + 4 applications of M or M-, and one application
each of A and AT per conjugate-gradient iteration.

6. Using variable reduction. If ZTZ I, Lemma 2 shows that ZTGZ cannot
be more ill-conditioned than G. However if Z is obtained from variable reduction, as
would be more likely in sparse problems, this need not be true. We would like to have
a better understanding of how the choice of Z affects the conditioning of the problem,
and if the conditioning can be monitored or controlled as the optimization problem is
being solved.

The ideas in this section are motivated by the following lemma.
LEMMA 10. If go is an orthogonal null-space matrix, and Z is a null-space matrix

obtained from some other technique such as variable reduction, then

cond(ZTGZ) <_ cond(ZaZo) cond(Z)2.

Proof. Since Z0 and Z are both null-space matrices, Z ZoT for some nonsin-
gular matrix T. The largest eigenvalue of ZTGZ satisfies

)max(ZTGZ) max
re0

vTZTGZv
vTv

vTTZGZoTvmax
vo vTv

(Tv)T(ZGZo)(Tv) vTTTTv
max
vo (Tv)T(Tv) vTv

(Tv)T(ZGZo)(Tv) vT(ZoT)T(ZoT)v
max
o (Tv)T(Tv) vTv

max max
wO oTI) vO vTv
 m x(Z oGZo) m x(Z Z).

An analogous result is true for the smallest eigenvalue. The lemma follows immedi-
ately.

The lemma shows that it is desirable to keep cond(Z) small. If an orthogonal
factorization is used, then cond(Z) 1. More generally, cond(Z) x(Z)/(Z),
the ratio of the largest and smallest singular values of
used, the smallest singular value can be determined, as the following lemma indicates.

LEMMA 11. Let Z be a null-space matrix obtained from variable reduction applied
to an m n matrix A B N ), so that
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Then

O’min(Z) 1
If the dimension of the null space of N is k then the k smallest singular values of Z
are equal to one. In particular, if n > 2m then O-min (Z) 1.

A simple consequence of the lemma is that

cond(Z)- O-max(Z)
O-min (Z) O’max(Z)--][Z[].

Hence
cond(Z)2 _< max lIzll

max II- B-1Null 2 + Ilull 2

1 + max [I- B-Nul[

1 + I[B-1Nll 2.

Thus, keeping cond(Z) small is closely related to keeping IIB-1Nll small. If n > 2m
they are the same.

There is considerable choice in the selection of B and N. Any subset of m
variables that results in a nonsingular basis matrix B is acceptable. The procedure of
selecting a basis, called a "crash" in the context of linear programming, can be based
on various criteria. For example, columns of A can be selected to try to produce a
matrix B that is sparse or nearly triangular. We would like to control IIB-1NII as
columns are added incrementally to the basis, but the matrix is only defined when B
is invertible. However, we have the bound

[IB-1NII _< liB-111. IINII- O-max(N)
O-min(B)

and this bound is defined even if B is only partially formed.
Suppose that the columns of A are ordered according to some auxiliary criterion,

such as sparsity, and that the columns will be considered for membership in B based
on this ordering. We would like to estimate O-max(N)/o-min(B) each time a column is
added to the (trial) basis and then reject columns that cause the bound to be large.
If N has many columns this would be expensive, so this is not likely to be useful as
a general technique. In some circumstances, for example if all the constraints in the
optimization problem were linear and so the basis would be used many times, it might
be worth the effort.

In many cases we would expect that O-max(N) would not vary greatly as B
changed. This would be true if the columns of A were all scaled to have norm 1,
or if the norms of particular columns were not pathologically large or small. For this
reason it should be sufficient in many circumstances merely to monitor O-rain(B) as B
is formed.

Traditional condition number estimators, such as the Linpack estimator, com-
pletely factor the matrix B before using the factorization to estimate the condition
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number. Since the goal is to examine B as each new column is added, these techniques
are not appropriate.

Incremental condition number estimators have been proposed [1], but they only
apply to triangular matrices. They would be appropriate if a QR factorization of B
were computed, but LU factorizations are more commonly used. To overcome this
difficulty we propose exploiting the following upper bound:

ffmin(B)--(:rmin(LU)

_
ffmin(L)(Tmin(U).

This can be a considerable overestimate, but it is certainly true that if rmin(L) and
(Tmin(U) are reasonably sized then so is (7min(B).

The algorithm used to factor B will generally ensure that L is well conditioned.
(Some software packages monitor U instead of L, in which case the comments below
should be adjusted appropriately.) The diagonal entries in L will be equal to one, and
the subdiagonal entries will be bounded (by one in the dense case, by a somewhat
larger number in the sparse case). Thus, it would not be unreasonable to estimate
simply O’min(U). The incremental condition number estimator [1] can monitor this
value as U is formed one column (or row) at a time.

To summarize, ill conditioning can be controlled, even when variable reduction is
used to form Z. It requires, however, that the conditioning of the component matrices
be monitored as they are formed. The trade-offs between cost and security are clear.

7. Calculus of variations. A classical problem in the calculus of variations is

b

(7.1) minimize x() J(t,x(t),x’(t))dt, x(a) Xa, x(b) Xb,

where x(t) is some smooth real-valued function. The problem can be converted to
a finite-dimensional problem by, for example, discretizing x(t) and approximating it
using a cubic spline. The Hessian of the finite-dimensional problem then has the form
ZTGZ and it is possible to apply the preconditioning ideas of the previous sections,
even though this is an "unconstrained" problem and the matrix Z does not correspond
to an explicit set of constraints. We examine this idea here. (The use of a cubic spline
was suggested in [4], although the specific approach used here is different.)

The finite-dimensional analogs of (7.1) can be difficult to solve [12], with the
Hessian having many small eigenvalues as the solution is approached. However, the
components Z and G of the Hessian are easy to compute and G is easy to invert.
The "null-space matrix" Z corresponds to the formulas for the cubic spline, and is
independent of the formulas in (7.1). The matrix G is block diagonal, with 4 4
diagonal blocks if cubic splines are used. The formulas for the partial derivatives of
J(t,x,x) must be specified, but since J is only a function of three variables, this is
not difficult.

To derive the formulas for G and Z, we first discretize the problem using

a- to < t <... < tn < tn+ --b.

For simplicity we use equally spaced points: ti a + ih, where h (b a)/(n + 1),
although an adaptive mesh could also be used. The variables in the finite-dimensional
problem will be xi =_ x(ti).

The function x(t) will be approximated by a cubic spline s(t) that interpolates
the values { xi } at the points { ti }. We use the representation described in [9]. On
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the ith subinterval [x, x+l],

4

() ,(t) + ,(t) + ,+() ++() -_-
k--1

where
2

(t ti+l)2(t- ti + hi2),(t)
1
(t- ti)(t- ti+l)2(t)
2

(t t)2(t t+l h/2),b(t) -1 (t- t)2(t- t+l),(t)

and d and d+ are estimates of x’(t) and x(ti+l), respectively. It is straightforward
to verify that s(tj) xj and s(tj) di for j i, + 1. The coefficients { di }
are uniquely determined by the requirements that the function s’(t) be continuous,
together with two auxiliary conditions (usually involving the derivatives of s(t) at
the endpoints of the interval [a,b]) [9]. If we define x (xo,...,xn+)T and d
(do,..., dn+)T and use the auxiliary conditions

Xn--i Xndo= Xl

h
xo and dn+ h

then d can be determined by solving a linear system of the form

Td Sx,

where T and S are tridiagonal matrices. With our choice of auxiliary conditions,

-3 0
-3

3
0 3

and
1 0
h 4h h

h 4h h

h 4h h
0 1

Only the nonzero entries of these matrices need be stored.
We are now in a position to define the matrices Z and G. We begin with Z. The

first step is to write

d T-S x=_Zx.
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(Of course, T-1 would not be formed explicitly since it is a dense matrix; Gaussian
elimination would be used to perform the necessary calculations.)

The next step is to determine (a,k from x and d. Let

OZ (OZ0,1, C0,2, C0,3, OZ0,4, OZl,l,...)T

be the vector of spline coefficients. Then a is just a re-ordering of the variables { x }
and { d } so that

a=Z(x)d
where Z2 is a matrix with 0/1 entries. For example, if n 1 then

C0,1
OZ0,2
OZ0,3
C0,4
CI,I
O1,2
OZl,3

\ 01,4 ]

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0

X0

Xl

X2
do
dl
d2

This re-ordering of the variables is used so that the matrix G will be block diagonal.
The matrix Z2 would not be formed explicitly, but would instead be represented by a
set of rules for obtaining { ai,j } from { xi } and { di }. Then Z Z2Zl.

In this application the values x0 and xn+ are specified, so they are not really
variables. An additional matrix Zo of the form

0 0 /Zo-- I
0 0

could be used to remove them from the problem, giving Z Z2Z1Zo. In the numerical
tests in 8, Z0 was not used.

To determine the matrix G we must first estimate the integral in (7.1). We
apply a quadrature rule separately on each subinterval [ti, ti+l]. If we use a four-point
Gaussian quadrature rule [9] then

4/’+ J(t,x(t),x’(t))dt E wjJ(t + Oj,s(t + o),s,(t, +
Jt j=l

where { wj } are the weights and { Oj } are the abscissas for the quadrature rule:

.0694318442030

/.3300094782075
and w h

.6699905217925

.9305681557970

1739274225685
.3260725774315
.3260725774315
.1739274225685

The weights and abscissas are the same for all subintervals.
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The matrix G is block-diagonal, with one block for each subinterval. Within each
block the (k, l) entry is the second partial derivative of the quadrature formula with
respect to Ci,k and ai,:

The formulas for bk(t) and bk(t) depend only on those for the spline s(t). The partial
derivatives of J with respect to s and s must be derived, but this is the only calculation
that depends on J. Hence, once the partial derivatives of J with respect to s and s
have been specified, the derivatives of the discretized calculus of variations problem
can be computed in a straightforward, general-purpose manner that is independent of
the particular problem being solved. Finally, the Hessian of the discretized calculus
of variations problem with respect to the variables { xi } is given by ZTGZ.

A left-inverse WT is easy to obtain. It can be chosen as a column permutation of
the matrix (I, 0). For example it is possible to choose WI,1 1 and then Wi,4i-5 1
for i > 1, and all other entries Wi,j O.

It is also possible to determine the left-inverse WT (ZTZ)-IZT in a compu-
tationally efficient manner, even though (ZTZ) is a dense matrix. Since Z Z2Z1,
ZTZ zT1ZT2ZeZ1. It is straightforward to show that

where D is an (n+2) x (n+2) diagonal matrix with diagonal entries D1,1 D,+2,n+2
landDi,i=2for2<i<n+l. Then

ZTZ zTI ZT2Z2Z1 D + ST-TDT-1S

in terms of the tridiagonal matrices T and S defined earlier. The last formula is the
Schur complement of-TD-1TT in the block 2 x 2 matrix

-TD-1TT S )H- ST D

If we define ZT (0 I), then

(ZTZ) -1 (D + ST-TDT-1S)-1 2TH-12.

The matrix H is a permutation of a 7-diagonal matrix, which can be factored inex-
pensively. With this approach, the left-inverse WT (ZTZ)-1ZT can be formed.

8. Computational experiments. We tested the inverse preconditioners (3.6)
for various values of k on three examples. The calculations were done using MATLAB
on a Sun SPARCstation computer, with machine precision 2.2 x 10-16.

In the first example, G was a diagonal matrix with Gi,i 27i-, where was
chosen so that Gn,n 107. The m x n constraint matrix A was of the form UNVT,
where E was a diagonal m x n matrix with diagonal entries Ei,i i, and U and V were
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random square orthogonal matrices. The random number generator was initialized us-
ing the MATLAB command raada(’ seed’, 0) before each run, and random numbers
were generated using the randn function. (This complicated method of generating A
allowed us to control its singular values.)

The second example is based on the calculus of variations problem of 7. The
integral was evaluated over the interval [a, b] [0, 1]. The variables were given the
values xi 1 t. The kernel was chosen as the convex function

J(t, x, x’) xa + (x’) a,

for which G is positive definite.
For the first problem, two choices of Z were used: an orthogonal Z with W

Z(ZTZ) -1 Z, and a Z based on variable reduction (the first m variables forming
the basis) together with the "special purpose" WT (0, I). For the second problem
Z is given, but we tested two choices of W: W Z(ZTZ)- and the "simple" W
mentioned in 7 (i.e., WT is a permutation of the matrix (I, 0)).

The third problem uses matrices of the form

(__ (GII (2I) and Z--- ( I)0
where all the blocks are the same size. The reduced matrix is ZTGZ (1. The matrix

G1 was chosen as in the first problem (note that it is a matrix of order n/2). The
diagonal matrix G2 was chosen so that the eigenvalues of the preconditioned matrix
were the fifth roots of the eigenvalues of (1. For this problem, both choices of Z are
the same.

We were interested in the behavior of the preconditioners under "ideal" circum-
stances. We therefore used M G in all problems. To ensure convergence of the
series defining the inverse preconditioners, we chose the scaling factor so that a- was
the largest eigenvalue of T (see (3.4)).

The first problem was tested with n 100 and m 20 so that the reduced matrix
was 80 80. The second problem was tested with n 60 so that the reduced matrix
was 62 62 and G was 244 244. The third problem was tested with n 200 and
m 100 so that the reduced matrix was 100 100. In all cases the effect of the precon-
ditioner was assessed in two ways: (i) by the condition number of the preconditioned
matrix, and (ii) by the number of conjugate-gradient iterations required to solve a
linear system with right-hand side (1,..., 1)T. The conjugate-gradient iterations were
terminated when the norm of the residual was less than 10-s. The results are listed
in Tables 1 and 2.

The tables indicate that the preconditioning strategies can greatly reduce the
number of iterations required to solve a linear system using the conjugate-gradient
method. The effect on the condition number is less pronounced. The choice of the
"generic" left-inverse WT (ZTZ)-ZT worked well in all these cases (as in many
others that we tried). The other "special-purpose" choices ofW (i.e., those constructed
from permutations of (0, I)) were less predictable. In the case of variable reduction
we found them to be effective (in fact, better than other choices). However, for the
calculus of variations problems we were unable to find a special-purpose choice of W
that worked well.

For Problems 1 and 2 (and for most examples that we tried), the most dramatic
improvement comes with the simplest of the inverse preconditioners, WTM 1W. This
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TABLE 1

Effect of preconditioning using WT (ZTZ)-1ZT.

Preconditioner

None
k--O

k--1

k--2

k-3

k-4

Problem 1

cond iter

1.0 x 106 756

6.8 x 104 34

3.4 x 104 31

2.3 x 104 29

1.7 x 104 27

1.4 104 25

Problem 2

iter

1.3 x 105 164

5.4 x 104 39

2.7 x 104 39

1.8 x 104 38

1.4 x i04 40

1.1 x 104 39

cond

Problem 3

cond iter

2.2 x 103 240

4.6 x 102 149

2.3 x 102 125

1.5 x 102 111

1.2 x 102 99

9.3 x I0 88

TABLE 2

Effect of preconditioning using special-purpose W.

Preconditioner

None
k--O

k--1

k--2

k--3

k--4

Problem 1

cond iter

1.5 105 529
4.8 10 13

2.4 101 13

1.6 101 13

1.2 101 13

9.9 100 13

Problem 2

cond iter

1.3 x 105
5.4 107
2.7 x 107
1.8 x 107
1.3 x 107
1.1 x 107

164

395

396

379

372

374

10

10

10

10

10

FIG. 1. Eigenvalues of the preconditioned matrix for Problem 1.

is reassuring, since it has lower costs than the others. It also does not require that a
be selected to ensure convergence of the series used in the derivation. Adding more
terms in the series leads to further improvements, but whether these improvements are
cost-effective would depend on the specifics of the particular application. For Problem
3, the later terms lead to considerable reductions in the number of iterations required,
indicating the potential of these techniques.
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10

10

10

10

10-;

10

10

FIG. 2. Eigenvalues of the preconditioned matrix for Problem 2.

10

10

10

101

10

10

10

10

FIG. 3. Eigenvalues of the preconditioned matrix .for Problem 3.

As a final indication of the behavior of these preconditioners, Figs. 1-3 show the
eigenvalues of the preconditioned matrix, corresponding to the results in Table 1. In
each figure, column -1 shows the eigenvalues of the original matrix, and columns 0-4
show the eigenvalues of the preconditioned matrix for k 0,..., 4. Note that the range
of the eigenvalues has been compressed (hence the reduced condition number) and in
some cases there is increased clustering of eigenvalues, a feature that the conjugate-
gradient method can exploit.

9. Conclusions. We have described a set of preconditioners for positive-definite
matrices of the form ZTGZ, using information about the individual matrices Z and G
to construct approximations to (ZTGZ)-1. Matrices of this type arise in constrained
optimization problems, in particular in interior-point methods for linear programming.
The techniques can also be applied to a class of problems in the calculus of variations.
Although some of the preconditioning formulas may be too expensive for routine use,



68 STEPHEN G. NASH AND ARIELA SOFER

numerical tests suggest that the simplest of the formulas (3.2) can be an effective
preconditioner for general use. The more elaborate formulas would be appropriate in
cases where a product Gv is computationally expensive. Because (3.2) and the other
formulas only require information about Z and G separately (and do not require that
an approximation to ZTGZ be provided), the preconditioners can be used within a
wide variety of optimization algorithms. This is significant, since the structure of G
often comes from the optimization model, whereas the form of Z is determined by the
optimization software.

Acknowledgments. We wish to thank an anonymous referee for the careful
reading of our paper and for the insightful comments that led to many improvements.
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RESIDUAL BOUNDS ON APPROXIMATE SOLUTIONS FOR THE
UNITARY EIGENPROBLEM*

JI-GUANG SUN

Abstract. Let A be an n n unitary matrix, and let the columns of an n (1 < n) matrix 1
form an orthonormal basis for an approximate eigenspace 1 of A. Then there are two problems:
How near is 1 to an eigenspace of A? How can we make use of the matrix )HA)I to get
approximate eigenvalues of A? This paper gives solutions to these problems. In particular, this

paper reveals such a fact: One can use the eigenvalues of the unitary polar factor of )HAI (or
the eigenvalues of the matrix )HA)I) as approximate eigenvalues of A, and the precision of the

eigenvalues of the unitary polar factor of )HA)I (or the eigenvalues of )HA.I) as approximate

eigenvalues of A is higher than that of ,1 as an approximate eigenspace of A.

Key words., unitary matrix, eigenvalues, eigenvectors, eigenspaces, perturbation bounds, resid-
ual bounds, Rayleigh quotient matrix, backward perturbation analysis

AMS subject classifications. 15A18, 15A42, 65F15

1. Introduction. In recent years, computational methods and perturbation the-
ory for the unitary eigenproblem have been developed (e.g., see [1], [3], [4], [8], [9]).
The purpose of this paper is to derive several a posteriori error bounds for the eigen-
problem.

Let A be an n n unitary matrix. Assume that the columns of an n (1 < n)
matrix -1 form an orthonormal basis for an approximate eigenspace ’1 of A. For
instance, X1 may come from a numerical algorithm for approximating eigenspaces.
Then there are two problems: How near is A’I to an eigenspace of A? How can we
make use of the matrix HAI to get approximate eigenvalues of A? This
paper gives solutions to these problems.

In 2 we cite and prove some lemmas. In 3-4 we derive a posteriori error bounds
from approximate eigenspaces. All the a posteriori error bounds are residual bounds.
In 5 we give a numerical example to illustrate our main results.

It is well known that if A is an n n Hermitian matrix, and if the columns of
an n matrix form an orthonormal basis for an approximate eigenspace of
A, then one can use the eigenvalues of the Rayleigh quotient matrix HA. as
approximate eigenvalues of A, and the precision of the eigenvalues of )HA as
approximate eigenvalues of A is higher than that of 1 as an approximate eigenspace
of A [17, pp. 254-257], [18]. This paper shows that the unitary eigenproblem has the
same property. Moreover, this paper reveals such a fact: For a unitary matrix A, one
can also use the eigenvalues of the unitary polar factor P of _IHA as approx-
imate eigenvalues of A, and the precision of the eigenvalues of P as approximate
eigenvalues of A is higher than that of A’ as an approximate eigenspace of A.

Throughout this paper we use the following notation and definitions. The symbol
cmn denotes the set of complex m n matrices, and C cn. AT stands for
the transpose of a matrix A, As for the conjugate transpose of A, and A for the
Moore-Penrose inverse of A. I is the identity matrix, I() is the identity matrix of
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Gerstner January 23, 1995. This work was supported by the Swedish Natural Science Research
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order n, and 0 is the null matrix. T(A) denotes the column space of A. A(A) denotes
the set of all eigenvMues of A. aj(A), j 1,..., n, denote the singular values of
A e Cnxn arranged in decreasing order al(A) >_ a2(A) >_ >_ an(A). min(A) is
the smallest singular value of A. H >_ 0 denotes that the matrix H is Hermitian
and positive semidefinite. For a Hermitian positive semidefinite matrix H, the matrix
H1/2 denotes the unique Hermitian positive semidefinite square root of H. is the
empty set. II 112 denotes the spectral norm, and ]IF the Frobenius norm.

Let A E Cxn be unitary, and let X1 be a subspace of Cn. The subspace ’ is an
eigenspace of A if AX1 G X1.

Let the columns ofX E Cnxt form an orthonormal basis for a subspace A’. Then
it is easy to prove that X is an eigenspace of a unitary matrix A if and only if there
is a unitary Z1 Ctxt such that AXI XZ.

Let ,’ 7(X) and 1 ]’(-1), in which X1,)1 e Cnxt with xHx
HI I. Define

(1.1) O(Xl,l) arccos(XlH( lHXl 1/2 O.

Then it is known that for every unitarily invariant norm II _[I, sin O(X,))I is a
generalized chordal distance between the subspaces X and A’I (e.g., see [17, p. 94]).
Moreover, we have

(1.2)

sin O(X1,-1)1[ tan O(Xl, X1) 1 + tan20(Xl,-1)

tan O(X, )ll < tan e(x .)ll<- [1 + amid2(tanO(Xl,))]/2-
Let B Czxz and C gmxm. Sepp(B, C), the separation of B and C, is defined

by [15]

(1.3) sepp(B, C) inf IIPB CPII,
p cmxl
]lPIIp 1

where p 2, F.

2. Lemmas. The following lemmas will be used in the next section.

LEMMA 2.1. Let B, C C"xt be given. Define

(2.1) A {A Cnn AHA I, AB C}.

Then .4 0 if and only if B, C satisfy

(2.2) BHB CHC,

and in the case of A O, any A .4 can be expressed by

(2.3) A CB* + FGH,

where F, a e cnx(-r) with r rank(B) rank(C) satisfy

(2.4) FHF GHG I and GHB FHC O.
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Proof. It is evident that if A then B, C satisfy (2.2).
Now we assume that B, C satisfy (2.2). Let

(2.5) B U ( ElO O I vH uII

be the singular value decomposition of B, where E1 diag(aj) with al >_ >_
ar > 0, U (U1, U2) E Cnn and V (V1,V2) E Ctt are unitary with U1
Cnr, V1 Ct. Substituting (2.5) into (2.2) gives CV2 0 and CV1 QIE1, in
which Q1 e Cn with QHQ1 I. Thus, we have

(2.6) C =Q ( E10IvH0 0

where Q (Q1, Q2) e Cnxn is unitary. The relations (2.5) and (2.6) imply that the
unitary matrix A QUH 4. Therefore, A = .

Let A be an arbitrary matrix in ,4, and let

(2.7) E A- CBt, P AHQ,

where Q is the unitary matrix in (2.6). Then from AB C and (2.5)-(2.7)
(*) 0pHu
0 W2

with unitary W2 C(n-r)x(n-r)

Combining it with (2.7) we get

E QpHuuH --Q ( I()0 o u
0 /

Let F Q2W2 and G- U2. Then A is expressed by (2.3), where F, G satisfy (2.4).
Conversely, if a matrix A can be expressed by (2.3) and (2.4), then we have

AB CB B CC C C,

and

AHA- BHcHcB + GFHFGH BHBHBB + GGH
BB + GGH U1 U1H + U2U2H I.

Therefore, A A. Note that the equality GGH U2U2H is due to the fact that
from (2.5) and GHB 0 the matrix G can be expressed by G U2Z with a unitary
Z C(n-t) (n-t). The proof is completed.

LEMMA 2.2. Given unitary matrices A,X (Xl,X2) Cnn with Xl CTM.
Then

min
Z1 e Cx

ZHZ1 I

where P1 is the unitary polar factor of X1HAX1
Proof. See [7, p. 582] or [12, pp. 431-432] (see also [6] and [10] for the polar

decomposition and polar factors).
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LEMMA 2.3 [2]. Let B, C E C,x be unitary matrices, and

r diag(-i), 0 <_ "1 <_ <_ 3’n.

Then for every unitarily invariant norm

(2.9) IIBF FCII _> IlIB cII.
Lemma 2.3 has been proved in [2] by two steps: The first step is to apply von

Neumann’s Maximum Principle [21, Theorem 1] (see also [17, Chap. II, Lemma 3.4])
and Fan’s Dominance Theorem [5, Theorem 4] (see also [17, Chap. II, Theorem 3.17
and Corollary 3.18]) to prove that the inequality (2.9) is true for Hermitian matrices
B and C. The second step is to construct Hermitian matrices/), and a diagonal
matrix f" by

,) 0)CH 0 0 FBH 0

and to derive (2.9) from

LEMMA 2.4. Let B E crxn (m >_ n) have the polar decomposition B PH, where
p cmx, satisfies pHp I, and H x, is Hermitian positive semidefinite. Then

lib Nil < 1 + (:rmin(B)

for every unitarily invariant norm

Proof. From

p(BHB I) P(H2 I) P(H I)(g + I) (B P)(H / I),

we see that for every unitarily invariant norm

BHB 1[I liP(BHB I)ll > II(g +/)-lIllllB PII
[1 + amin(B)]llB PII. r

3. Residual bounds (I). In this section we first use the method of backward
perturbation analysis (see [19]; see also [13], [14], [17], [22]) to derive an a posteriori
error bound for an approximate eigenspace of a unitary matrix. The key step is to
derive an explicit expression for the optimal backward perturbation from the approx-
imate eigenspace (see Theorem 3.1). Conventional perturbation theory can then be
used to get an a posteriori error bound for the approximate eigenspace (see Theorem
3.2).

THEOREM 3.1. Let A,J (l,J2) Cnxn be unitary with fQ e Cxt, and
,1 7()1) approximate an eigenspace of A. Define

14; {W Cnxn (A + W)H(A + W) I, (A + W),I c_ ,1},

(3.2) A 2A2, k , 2,
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and let

(3.3) Ak PkH

be the polar decompositions of Ak, where Pk are unitary, and Hk are Hermitian pos-
itive definite, k 1, 2. Moreover, let

(3.4) Rk XP AX
be residuals of A with respect to k and Pk, k 1, 2. Then there is a matrix W() E
I/V expressed by

(3.5) W() Jdiag(P1, P2)f(H A

such that IIW()llF minwew IIWIIF, and

(3.6) IIw<ll V/IIRxlI / IIR=II.
Proof. From (3.1) we know hat a matrix W E Y if and only if W is a solution

o he equation

(3.7) WJI -1Z1 Ax
for an arbitrarily fixed unitary matrix Z1 Clt. By Lemma 2.1, I/V ), and any
solution W to (3.7) can be expressed by

(3.8) W .1Z1.1H -- Q2.2/-/- A,

where Q2 E Cx(n-t) satisfies

(3.9) UQeQg.=I, QH)=0.

The relation (3.9) implies that the matrix Q2 can be expressed by

Q2 )Z with Z2 C(-t) (-t), z2Hz2 I.

Thus, the solution W expressed by (3.8) can be rewritten as

W JIZ1JH + J.Z.JH A
(3.10)

(.lZl AR1, )2Z2 Af(2)fH.

Consequently, we have

(a.11) Ilwll v/il: lZl A2111 + A:  II F"
By Lemma 2.2,

min [I.kZk Af(kllF --[If(kPk Af(kllF --[IRkIIF, k 1, 2.
ZHZ=I

Combining it with (3.10) and (3.11) we get (3.5) and (3.6).
Applying Theorem 3.1 and Stewart’s result [15, Theorem 4.11] on perturbation

bounds for invariant subspaces, we can derive an a posteriori error bound for an
approximate eigenspace of a unitary matrix.
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THEOREM 3.2. Let A,f( (fQ,f(2),W(),ik, Pk(k 1.2) be as in Theorem
3.1, ,1 7() be an approximate eigenspace of A, and let

be the residual of A with respect to f(l and 1. If for p 2, F

(3.13) 5p sepp(P1 P2) (111 Pl[[p + 11-2-2 P2[]p) > 0,
2[[/1[Ip

< 1
5p

then there is an eigenspace X1 T4(Xt) of A, where Z E Cnxl with x1Hx1 I,
such that

tan O(Xl, Xl)[[p <

where O(Xl,Xl) and sepp are defined by (1.1) and (1.3), respectively.
Proof. From (3.5) we get

(3.15) f(H(A + W())f( ( PIO p20 I
and

AI-Pf( H W f(

By [15, Theorem 4.11], if for p- 2, F

(3.16) 5p sepp(P, P2) (IIA1 PIlIp --IIA2 P21Ip) > o, 1

5 2’

then there is an eigenspace A’t of A satisfying

(3.17) tan O(X1, l)ll <

Observe that for p 2, F

(3.18)

Hence, (3.16) and (3.17) can be rewritten as (3.13) and (3.14), respectively. [3

The following two results (Theorem 3.3 and Corollary 3.5) will reveal such a fact"
If 74(X1) is close to an eigenspace of A, then the eigenvalues #,..., #t of the unitary
polar factor P of )IHA)I are approximate eigenvalues of A, and the precision of
the eig_envalues #1,..., #t of P1 as approximate eigenvalues of A is higher than that
of 7(X) as an approximate eigenspace of A.

THEOREM 3.3. Let A,) (-1, .2), 21, A1,/1 and Pk, Hk (k 1, 2) be as in
Theorems 3.1-3.2. Suppose that the condition (3.13) is satisfied, and let A’I T(X1)
be the eigenspace of A satisfying (3.14). Moreover, let

(3.19) AI XIHAX1, A(A) {j}}--1, ,(Pl) {j}j-l’l
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If sin O(X1, X1)112 < 1, then there are permutations 7rf and r2 of {1,..., l} such
that

(3.20) E IA(J) #J 12 -< v/1 312 or1 -- ’1 + a
j--1

and

1 ( 1111[2) ][.1[]2(3.21) IAr2(J) #J[ -< V/1 al
2

(71 -}-
1 -- O j 1,...,I,

where

(3.22) O’1 sin O(Xl, 21)112, a O’min(l).

Proof. We first use the technique described in [18] to make some simplification
on the forms of the matrices A, X1,X and X.

By the CS decomposition [16, Theorem A.1], there are unitary matrices Q E Cnn,
U1, V1 E.Clxl, and V2 C(n-t)(n-t) such that

X1 QXloU1, 21 Q21oV1, -2 Qfi:oV,

where

(3.23) XI 0 Xl E 220

F1
(3.24) F F diag(,j),

diag(F1, i(2t-n))

if 21 _< n,

if 21 _> n,

(3.25) Z E diag(aj),

(El, 0) i’f 21 >_ n,

(3.26)

and

(3.27)

Let

i(,-2)) if 2l < n,diag(F1,
P=

F1 if 21 _> n,

Ao QHAQ, Alo UIA1U1H, 10 QH:IVf

fifo VkflkVI, Pko VkPkVI, H}o VkHkVH, k 1,2.
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Then

Aio XloHAoXlo, /1o loi-lo Ao-lo,

and

]it:o f(kHoAof(kO PcoHko, k 1, 2.

Furthermore, from AX1 X1A1 we get AoXlo XloAlo, and thus

0 Ao

where A2o is an (n- l) (n- l) unitary matrix. Observe that

A(Ao) A(A), A(Alo)= A(A1), A(fi.lo)=

sepp(Plo, P2o) sepp(P1, P2), {{-ko Pko{lp I{-k Pk.llp, k 1, 2,

and

Hence, without loss of generality we may assume that the matrices A, X1, X1, and X2
have the following reduced forms:

A A1 0 I(0 F 2.
0 A2 X1 0 X1 E F

where A1, A2 are unitary, F, I3, and f" are expressed by (3.23)-(3.27).

By (3.12), we have

(3.es) 131-A21
and

(o)(3.29) 2H/?/1 K K -2HAI.

Furthermore, from (3.28) and (3.29),

(3.30)
rl -Air (o)(I, 0)/l (I, 0)2 K

(I, O)2K -ETK.

Thus, the relations (3.29) and (3.30) give

(3.31) lirA1- A rll, _< II ll llKllp 11 ll21}/ lllp, p= 2, F.
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On the other hand, for p 2, F

lirA1 AIFII > IIrP1 AIFII -lit(A1 P1)II

> fflllP AIII -IIA Pill, (by Lemma 2.3 and Ilrll. < 1)

> ;IIIP AIII, -IlftHltl Ill/[1 + ffmin(/l)] (by Lemma 2.4).

Combining it with (3.31), (3.32), and

Ilsll ffl sin O(X1,1)ll2,
we get

1 V/1- al
2 > 0,

Moreover, by the definition (3.2) of -1, we have

IIAA II1 IIffHAHyQfqHAf(1 Zll

IlfCxHAH(z T22H)A):I II1,,

II/IlIIIKIlI (by (3.1S)).

Substituting it into (3.32) gives

(3.33) liP1 AIlI < V/1 ,_ o" O’1 -j-
1 + a

Observe that by the Hoffman-Wielandt Theorem [11] and the Bhatia-Davis The-
orem [1], there are permutations rl and r2 of {1,..., l} such that

(3.34) Y I.u) #1 -< I11 AIII,

and

(3.35)

Hence, from (3.33)-(3.35) we derive (3.20)-(3.211. []

REMARK 3.4. Let A, XI, )i, ’I A’I, and RI be as in Theorem 3.3. Then by
(.es)

(3.36) + IISl ASlI,II/111 _< IIril Alrllp
where

(3.37)
IIFil-AFIIr, < IIEIl.llKlllr, (by (3.31))

sin O(Xl,-l)lllllllp,

1 (IIIHil--IIIp)(3.32) IIPx Alllp _<
V/1 a" Olll/lllp + 1 + a
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and

sin O(Xl,-l)llp.

Substituting (3.37) and (3.38) into (3.36) shows that if sin O(Xl,-l)]12 < 1, then

(3.39) II ll 2
sin O(Xl, 1)11, P 2, F.

2

The inequality (3.39) presents a quantitative description of such a fact: The closer
to X1 n(x1) the subspace 1 7()1) is, the smaller the norms I]/lllp for
p 2, F are. Moreover, combining the inequality (3.39) with the estimates (3.20)-
(3.21) gives a theoretical result: Under the condition (3.13_) the precision of the eigen-
values #1,..., #t of the unitary polar factor P1 of f(H~AX1 as approximations of the
eigenvalues A1,... ,At of A is higher than that of (X1) as an approximation of the
eigenspace (X1) of A.

From (3.20)-(3.21) and (3.39) we can prove that if IlsinO(X1,X1)]12 < 0.2952,
that is, if 7()1) is pretty close to 7(X1), then

j=l

j--- 1,...,/.

Furthermore, from Theorems 3.2-3.3 (see the estimates (3.14), (3.20), and (3.21)) and
the relation (1.2), we get the following corollary.

COROLLARY 3.5. Let A, (f(.1,(2),Xl,nl,l,[:l,Pk,Rk (k 1,2) and
(j 1,...,l) be as in Theorem 3.3. Then under the condition (3.13) there are per-
mutations 7rf and 7r2 of {1,..., l} such that

and

5 1+ j=l,...,1,(3.41) I.(1 #1 <- 2x/i 022 2(1 + a) 5

where p are defined by (3.13), c by (3.22), and pp by

PP 5p
p 2, F.

Comparing the a posteriori error estimates (3.40)-(3.41) with (3.14) we see again
that under the condition (3 13 precisionthe of the eigenvalues #,...,#t of the uni-
tary polar factor P1 of XAX as approximations of the eigenvalues A,..., At of A
is higher than that of 7(X1) as an approximation of the eigenspace 7(X) of A.
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4. Residual bounds (II). Assume that A E Cx is unitary and the columns
of i E Cnxl (1 < n) form an orthonormal basis for an approximate eigenspace of A.
Let -i )S_Ai. We have proved in 3 that the eigenvalues of the unitary polar
factor Pi of Ai are approximate eigenvalues of A. However, it may well be asked"
How does one relate the eigenvalues of i to those of A? In this section we study this
problem.

We first cite a perturbation theorem of the eigenvalues of a normal matrix [20,
Theorem 1.1].

THEOREM 4.1 [20]. Let A E Cn, be normal with A(A) {Aj}, and let ]t
be nonnormal with A(A) {Aj}. Then there is a permutation r of {1,...,n} such
that

j--1

By Theorem 4.1 we have proved_ the llo_wing corollary.
COROLLARY 4.2 [20]. Let A, X (Xi, X2), Ai and R1 be as in Theorems 3.1-

3.2. Ira(A) (Aj}in__i, and A(i) (}=i, then there are Ai,,...,Av E A(A) such
that

Combining the estimate (4.2) with the inequality (3=39) shows that if 7(X1) is
an approximate eigenspace of A, then the eigenvalues A,...,t of HA are
approximate eigenvalues of A. The following result giffes a new estimate.

THEOREM 4.3. Let A,) (21,2),X, O(X,Xi),A,,fI,A(A), and A(A)
be as in Theorem 3.3, and let A(-i) {Aj}=l. Then if sin O(Xl,.l)]12 < 1, there
is a permutation r of {1,..., l} such that

where (T sin O(X, 2i)I12,
Proof. By the proof of Theorem 3.3 (see (3.31)), we have

(4.4) lira1 Arll < I11111111 allll.
On the other hand, (3.24) and (3.27) give

lirA1 Arl[ >_ IIr(A A)IIF --I[FA Ar[l

(4.5) ->

_> / I[ A IIF v/(1 71).

By the hypothesis, i > 0. Consequently, from the inequalities (4.4) and (4.5),
1

(4.6) II il AIllF _< 11 [ll[/II[F + V(l -")’1)].
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Observe that by Theorem 4.1, there is a permutation 7r of {1,..., l} such that

E Ir(J) Jl2 - V/]lfftl AII[F.
j--1

This together with (4.6) and

1 1 al
2 1 1 1 1 al

2
al2/(1 + al2)

shows the estimate (4.3). []

From Theorem 3.2, Theorem 4.3, and the relation (1.2), we get the following
corollary.

COROLLARY 4.4. Let A,) (.l,.2),X1,Al,21,/l and Aj,j(j 1,...,/)
be as in Theorem 4.3. Then under the condition (3.13) there is a permutation r of
{1,...,/} such that

(4.7) E lAb(J) il2 < +
j=l V/1- p2g 1 + v/i p2g 5F

where 5F is defined by (3.13), and PF 21I/IlIF/(F
Comparing (4.5) width (3.14) we see that under the condition (3.13) the precision of

the eigenvalues A1,..., At of the Rayleigh quotient matrix AX1 as approximations
of the eigenvalues A1,... ,At of’A is higher than that of 7(X1) as an approximation
of the eigenspace T(X1) of A.

5. A numerical example. We first give a brief summary of the main results of
this paper. Here we only use the Frobenius norm.

Let two unitary matrices A, (1,2) E Cnn be given, where )1 E Ct,
and ,1 n(l) approximates an eigenspace of A. Define k f(kHAf(k, and let Pk
be the unitary polar factors of k, k 1, 2. Moreover, define

Then if

(5.1) 5F =-- sePF(P1 P2) (11/1 PIIIF --]l/t]2 P21]F) > 0, DF
211/llIF

( 1,
(F

we have the following conclusions.
(1) There is an eigenspace A’I n(X1) of A, where X1 Cnt with x1Hxi I,

such -that

tan O(X1,21)IIF < PF.

(2) Let A1 XHAX1, A(A1) {Aj}_I, /(Pl) {tj}__l, /(A1) {j}--1,
and define

d(,k(A1),A(P1)) minr V/E=I I.()- tti[,
Ed()(A) (/1)) min V

/
j=l [/r(j)-
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where 7r ranges over all permutations of {1, 2,..., 1}. Then

(F /1 +(5.3) d(,(A1),(P1)) <_
2V/1 p

and

+

V/1
1(F_-(5.4) d(A(A1),A(A1)) <

p2F
-]-- p2F -- /F,
1+ v/l_p

where 5F, PF are defined by (5.1), and a O’min(l).
Observe that (F 2, and PF 1 implies a 1. Hence, if PF 1, then by

(5.3)-(5.4) we have

We now illustrate the main results with a simple example.
Emple .1. Let

A diag(1, i, -1, -(1 + i)/, -i),

3 +i -2 5 2i -1 6
5 6+i -3 7
1 3- 3i -6 2 + 3i 8
7 4i -i 5 9 +
-z 2 -5 7 + 2i 3

G=I(5)+oF0, c>0,

and let (21,-2) be the unitary QR factor of G, where -1 C52. Define
fik, P,l,Sg, pF as above. Note that X i(5) (X1,X2), where X1 C52. Some
numerical results obtained by (5.1)-(5.4) and by using MATLAB are listed in Table
1, where #F and AF are defined by (5.3) and (5.4).

TABLE

e 3.40e-02 1.00e-02 1.00e-04 1.00e-06
(F 9.8120e-01 1.3330e+00 1.4136e+00 1.4142e+00
PF 9.9894e-01 2.4113e-01 2.3663e-03 2.3661e-05

tan O(X1,-1 )]IF 2.8688e-01 9.0839e-02 9.4302e’04 9.4340e-06
ttF 1.3351e+01 5.3298e-02 5.3560e-06 5.3583e-10

d(A(A1 ), A(P1)) 4.2986e-02 3.6174e-03 3.5507e-07 3.5499e-11
F 3.9915e+01 8.2930e-02 7.9166e-06 7.9174e-10

"."d(A(A’’), (’1)) 9.0007e-02 8.9523e-03 9.4443e-07 9.4494e-ll

The numerical results listed in Table 1 show the strength of the upper bounds
PF, F and ,F.

Acknowledgment. I would like to thank the referees for their helpful comments
and valuable suggestions.
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A QL PROCEDURE FOR COMPUTING THE EIGENVALUES OF
COMPLEX SYMMETRIC TRIDIAGONAL MATRICES*

JANE K. CULLUMt AND RALPH A. WILLOUGHBY$

Abstract. We present a storage efficient procedure for computing all of the eigenvalues of
a complex symmetric tridiagonal matrix. This procedure mimics the implicit QL procedure for
computing all of the eigenvalues of a real symmetric tridiagonal matrix, modified by heuristics for
monitoring and maintaining numerical stability. Numerical experiments demonstrate the capabilities
c this procedure.

Key words, eigenvalues, complex symmetric, tridiagonal matrices, QL procedure
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1. Introduction. A matrix is symmetric if and only if it is equal to its transpose.
In this paper we are interested in matrices that are both complex and symmetric.
Complex symmetric matrices arise in many different applications. See, for example,
[1], [2], [17]-[19], [21]. Variants of nonsymmetric Lanczos recursions are being used to
solve complex symmetric systems of equations and to compute eigenvalues of complex
symmetric matrix eigenvalue problems [9], [13].

The current work was motivated by the authors’ development of Lanczos proce-
dures for computing eigenvalues of both complex symmetric and general nonsymmetric
matrices [5], [6], [8], [9]. Those procedures transform the original matrix eigenvalue
problem into a family of complex symmetric tridiagonal matrix eigenvalue problems.
Approximations to eigenvalues of the original problem are obtained by computing
eigenvalues of one or more of the complex symmetric tridiagonal problems.

The tridiagonal procedure that we present is also applicable to real nonsymmetric
tridiagonal matrices such as those generated by various real versions of the nonsym-
metric Lanczos eigenvalue procedures. See, for example, [26], [27]. The amount of
spectral information that can be obtained by using a nonsymmetric Lanczos recursion
depends both upon the spectral properties of the given problem and upon the size of
the complex symmetric or real nonsymmetric Lanczos matrices that can be resolved.

Other procedures for computing eigenvalues of complex symmetric tridiagonal
matrices require O(n2) storage and O(n3) arithmetic operations where n is the size
of the tridiagonal matrix. Eberlein [12] proposes a norm reducing Jacobi procedure
that is applicable to a general complex symmetric matrix, but the procedure does not
preserve the nonzero structure of the matrix.

The procedure we present is a complex symmetric analog of the implicit, orthog-
onal QL procedure for real symmetric tridiagonal matrices. The complex symmetric
tridiagonal structure is preserved as the computations proceed. It requires only O(n)
storage and O(n2) arithmetic operations. It is not, however, a straightforward unitary
implementation of the real symmetric tridiagonal algorithm. Unitary QL factoriza-
tions do not preserve the complex symmetric tridiagonal structure. This structure
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is preserved by introducing complex orthogonal QL factorizations where Q is com-
plex, QTQ I but QHQ I. See Definitions 2.3 and 2.4. The resulting complex
symmetric tridiagonal algorithm consists of a sequence of complex orthogonal QL
factorizations.

It is not difficult however to construct matrices that do not have complex orthog-
onal QL factorizations. See Example 3.1 in 3. Therefore, it is necessary to introduce
heuristics to monitor the numerical stability of the complex orthogonal transforma-
tions generated at intermediate steps in the procedure and additional heuristics to
modify the procedure if potential problems are indicated. As we will see in 5, these
problems occur because there are nonzero complex numbers, for example, a 1 and
b x/zL-f, such that a2 q-b2 O. For a history of the development and the use of
unitary QR and QL procedures see [22], [29].

In 2 we summarize the notation and definitions required. In 3 we list relevant
properties of complex symmetric tridiagonal matrices and prove several lemmas that
are needed in other sections of this paper. In 4 we outline a basic QL procedure for
complex symmetric tridiagonal matrices, summarize relevant results from the litera-
ture, and obtain a convergence theorem under the assumption that the eigenvalues
have distinct magnitudes. In 5 we consider an implicit version of the procedure
outlined in 4. We prove that any iteration of the implicit procedure can be com-
pleted if and only if the current matrix iterate has the required complex orthogonal
decomposition. We also introduce heuristics to stabilize these computations. In 6 we
summarize results of numerical experiments on several families of test matrices which
indicate that this procedure performs well in practice. Tridiagonal Lanczos matrices
generated by both a complex and a real version of the nonsymmetric Lanczos recur-
sions are considered, as well as matrices generated randomly, using several different
probability distributions.

2. Notation and definitions. The following notation and definitions are used
throughout the paper.

2.1. Notation.
A (aj) 1 _< i, j _< n, denotes a n n matrix
f (j) AT (aj) AH (j) denote respectively the complex

conjugate, the transpose, and the complex conjugate transpose of
A

H (hj) hj 0 for i > j + 1 denotes n upper Hessenberg mtrix
T (tj) tj 0 for j 1, j, j + 1 denotes tridiagonal matrix
L (lj) lj 0 for < j and R (r) rj 0 for > j denote

respectively, lower and upper triangular matrices
D diag (dl,..., dn}, denotes a n x n diagonal matrix
J denotes the n x n matrix with J(i,j) 1 for i + j n + 1 and

J(i, j) 0 otherwise
TI,j and Tn,n-j+ denote respectively the j x j leading principal

minors of T and of JTJ
Lj, Rj, Aj denote respectively the leading principal minors of L, R

and A
Ak(i, j) denotes (i, j) entry of the subscripted matrix Ak
A(A), 1 _< j _< n, denote the eigenvalues of A where [All _< _<

w(A) denotes the set of all eigenvalues of A
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aj(A) 1 <_ j <_ n, denote the singular values of A where ffl _> _>
(7n

diag {al,. O’n }

2(A) (71 (A)/a,(A) denotes the condition number of A
Wk sp{wl,..., Wk} denotes the space spanned by the vectors wj

denotes n-dimensional complex space
d(S,b/) denotes the distance between two k-dimensional subspaces

S and
+/- denotes the orthogonal complement in g of the subspace 9
(] denotes a n matrix with complex entries

denotes the th coordinate vector
denotes the identity matrix

2.2. Definitions.
DEFINITION 2.1.

tj+l,j O.
DEFINITION 2.2.

only if

A symmetric tridiagonal T is irreducible if and only if each

A matrix Pk e cn, is a complex symmetric rotation if and

(1) pk -c sk

8k Ck

In-k-1
where ck and sk are complex scalars such that ck

2 + s2 1.
DEFINITION 2.3. A matrix Q cnxn i8 complex orthogonal if and only ifQTQ

I.
DEFINITION 2.4. A matrix A has a complex orthogonal QL decomposition if and

only if there exists a complex orthogonal matrix Q and a lower triangular matrix L
such that A QL.

DEFINITION 2.5. Ai is essentially equal to A2 if and only if there exists a diagonal
matrix D with D2 I such that Ai DA2 or A1 A2D.

DEFINITION 2.6. A factorization A QL is essentially unique if and only if
A QiL1 Q2L2 implies that there exists a diagonal matrix D with D2 I such
that

(2) Q2 QiD and L2 DL1.
DEFINITION 2.7. A sequence of matrices, Bk, k 1, 2,... converges essentially

to a matrix B if and only if for some M and all k, IIBklI
_
M, and all limit points of

this sequence are of the form BD or DB where D is a diagonal matrix with D2 I.
DEFINITION 2.8 (see [28]). An eigeuvalue algorithm is numerically stable if and

only if for each computed eigenpair (#, z) associated with a matrix A there exists a
matrix E with small norm compared to that of A for which # and z are an exact
eigenpair of the matrix A + E. For each it the corresponding IIEII/IIAII is a backward
error estimate for it.

In 6 we estimate the accuracy of each computed eigenvalue approximation by
computing backward error estimates. If the size of a matrix or vector is clear from
the context, subscripts specifying sizes may be dropped. Unless explicitly stated
otherwise, QL decomposition will mean complex orthogonal QL decomposition.
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3. Relevant properties and lemmas. We use T to denote the complex sym-
metric tridiagonal matrix whose eigenvalues are to be computed where

(3)

In this paper we assume that T is diagonalizable. This simplifies the discussions
and the numerical studies. Defective eigenvalues introduce an additional level of
uncertainty and complexity which we do not address. There is, however, no a priori
reason why the proposed procedure, which we denote by CMTQL1, cannot be used
on defective matrices.

We will also assume that T is irreducible [15]. However, this is not a restriction
on the use of the procedure since at each iteration the procedure works with the irre-
ducible submatrices of the current iterate. Theoretically, irreducible, diagonalizable
tridiagonal matrices cannot have multiple eigenvalues.

LEMMA 3.1. If T is an irreducible tridiagonal matrix with multiple eigenvalues,
then one or more of the eigenvalues of T is defective and T is not diagonalizable.

Lemma 3.1 is an immediate consequence of the fact that for any scalar #, the
determinant of the minor of T-I corresponding to the (1, n) element is equal to the
nonzero product of the subdiagonal elements of T. In practice, however, it is easy to
generate irreducible, diagonalizable complex (or real) symmetric tridiagonal matrices
with numerically multiple eigenvalues.

If T is diagonalizable there exist a diagonal matrix of eigenvalues A and a complex
orthogonal basis of right eigenvectors X such that

(4) T-- XAXT.
If T has distinct eigenvalues and an ordering of the eigenvalues Aj is specified, then
X is uniquely specified. Since T is symmetric, any right eigenvector of T is also a
left eigenvector of T [8]. Therefore using the definitions of condition number given,
for example, in [29], we obtain the following lemma expressing the condition of each
eigenvalue in terms of the right and the left eigenvectors of T.

LEMMA 3.2. If T has distinct eigenvalues and A and X satisfy (4), then for each
Aj and corresponding right eigenvector xj,

(5) cond(Aj) Ilxjll2/Ixxj[,
where cond(Aj) denotes the condition number of Aj.

Lemma 3.3 states that any irreducible, real or complex, nonsymmetric tridiagonal
matrix is diagonally similar to an irreducible complex symmetric tridiagonal matrix
[9]. Therefore, the eigenvalues of any irreducible nonsymmetric tridiagonal matrix can
be computed by applying CMTQL1 to a corresponding complex symmetric matrix.

LEMMA 3.3 (see [9]). Let Ta be any irreducible tridiagonal matrix. Let aj
Ta(j,j), j+l Ta(j,j + 1) and j+l Ta(j + 1,j). Then the eigenvalues of Ta
depend only upon the aj and the products +1/+1. Furthermore, Ta and the complex
symmetric matrix Tcs defined by Tcs (j, j) aj and To8 (j + 1, j) V/j+l/+ have
the same eigenvalues.
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Lemma 3.4 indicates the relationship between a complex symmetric rotation and
a complex but not unitary Givens rotation [15].

LEMMA 3.4. Any complex symmetric rotation Pk satisfies P[ Pk p[l. Gk
JPkDJ, where D is diagonal with dll -1 and d22 1 is a complex Givens plane
rotation with G(k+l,k+l) Gk(k,k) ck, and Gk(k+l,k) -G(k,k+l) s.

The following lemmas require the matrix to be nonsingular. However, the eigen-
value procedure is not limited to nonsingular matrices. Shifting is an integral part of
the procedure and leads the computations through various parts of w(T), including
through any zero eigenvalue.

LEMMA 3.5 (see [15]). Let B be symmetric (real or complex) and nonsingular.
Then a nonsingular L exists such that B LLT if and only if all of the leading
principal submatrices of B are nonsingular. Similarly, a nonsingular L exists such
that B LTL if and only if all of the principal submatrices of JBJ are nonsingular.

The statement of sufficiency in Lemma 3.5 is proved in [15] for real symmetric
matrices but that proof uses only the symmetry. Necessity is readily established by
observing that each Lj is nonsingular and each Bj LjL. The second part of
the proof is obtained by applying a similar argument to the matrix JBJ and using
the fact that for any L, the matrix JLJ is upper triangular. Lemma 3.6 exhibits
the connection between complex LTL decompositions and complex orthogonal QL
decompositions.

LEMMA 3.6. Let A be a nonsingular symmetric matrix. Then a nonsingular
matrix L exists such that ATA LTL if and only if a complex orthogonal Q exists
such that A QL. Moreover, these factorizations are essentially unique.

Proof. Let A QL. Since QTQ I, ATA LTL. Conversely, if ATA LTL,
define Q AL-1. Clearly, QTQ I and A QL. If A QIL1 Q2L2
or equivalently ATA LTIL1 LT2L2, then Q.TIQ2 nln LTL D,
where D must be diagonal. Therefore, D2 I, and Q2 Q1D, L1 DL2, and
L2 DL1.

CMTQL1 requires a QL decomposition at each iteration. Example 3.1 illustrates
that not every nonsingular, irreducible, complex symmetric tridiagonal matrix has a
QL decomposition. Therefore, there is no a priori guarantee that each stage of the
proposed procedure will be well defined. We address this question in 5 and 6.

Example 3.1. Let

1 b-1 0 J(6) T b-1 -i 1 where b v/1 + i.
0 1 2+i

T is irreducible, complex symmetric, tridiagonal and nonsingular. The determinant
of T equals -3i/(1 + i) 0. By Lemma 3.6, T has a QL factorization if and only if
there exists L such that T2 LTL. But by Lemma 3.5 this factorization exists if and
only if each principal minor of jT2j is nonsingular. However, the second principal
minor of jT2j is the singular matrix

b 2 2 ](7/ 2 4(1 + i)

LEMMA 3.7. For any matrix A

(s)
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We have the following simple relationship between the condition number of a
complex orthogonM matrix and its norm.

LEMMA 3.8. If Q is a complex orthogonal matrix then

The following lemma is needed in 6. It is used to obtain backward error estimates
for each of the CMTQL1 eigenvalues computed for each test matrix.

LEMMA 3.9. Let A be any matrix, # be any scalar and x be any vector. Define

(o) 2 and E T TE, rgxH, /llx, ll. r,x/x,x where r, =_ -Ax + #x,

Then

(11) (A + E*)x, #x,, (A + E,)x, #x,, and

(12)
IIEII= =IIr, ll2/llx, ll=.
liE, lie- IIr, ll=llx, ll./IxT, x,I.

2IIE, II.- IIx, ll211E, II2/IxT, x,I

Proof. Since for any B, IIBII BHBII2,

= .x II.xll= II.xllellx.ll=.(13) Ixx,lellE, II IIr, llell lie. But, 2 2

A similar argument yields the expression for ]lEVI]2. B
Clearly, IIE, I2 IIEII2. We use the following lemmas in the discussion of con-

vergence in 4 where K and Y in these lemm reduce to K A and Y XT in
(4).

LEMMA 3.10 (see [24]). Let H be an ieducible upper Hessenberg matrix. Let
K be any lower Jordan fo for H. Then there exists a nonsingular matrix Y such
that H y-1Ky and Y pewits a triangular decomposition Y LR where L is unit
lower triangular and R is upper triangular.

LEMMA 3.11. Let T be a diagonalizable, complex symmetric, tridiagonal matx
with T XAXT, where xTx I. Then there exist R and L such that XT RL,
where R is unit upper triangular and L is lower triangular.

Proof om Lemma 3.10 there exist an upper triangular matrix R and a
unit lower triangular mtrix L such that XT LR. Therefore, X TLT .
Since X is nonsingular and are nonsingular. Therefore, XT X-1 --1
RL.

In 4 we outline the basic complex symmetric QL procedure and obtain a conver-
gence theorem for this bic procedure under the assumptions that each step in the
procedure is well defined and that the eigenvalues of T have distinct magnitudes.

4. Basic procedure and convergence. Basic CMTQL1.

1. Set T1 T.
2. For k 1, 2,... specify a shift Ck and compute a complex orthogonal factor-

ization of Tk CkI QkLk.
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3. Increment k and define Tk+l LkQ + CkI QkTTkQk.
4. Check for convergence. If not converged go to step 2.

In practice convergence occurs in stages, typically a few eigenvalues converge
every few iterations. Each time one or more eigenvalues converge, the current iterate

Tk is deflated to smaller irreducible problems to which the procedure is then applied.
Since each QkT Q the eigenvalues of each T equal the eigenvalues of T.

Define

(14) k QQ2...Q and LkL_ :..L.
The following lemma is easily verified by induction [32].

LEMMA 4.1. For each k, is complex orthogonal,

(15) Tk+ T, and p(T)

where pk(z) (z )... (z Ck) is the kth degree polynomial dCned by the shis.
Watkins and Elsner [30], [32] develop a general framework for procedures for

computing eigenvalues of a given matrix A that includes factorizations of the form
Ak-I GRk (or GkLk) with the next iterate Ak+ GAkGk. They call these
GR procedures, and focus on the connections between such procedures and simulta-
neous iteration procedures [25]. They emphize the fact that any GR procedure is
a nested subspace iterations procedure. Theoretically, for each j with j n, the
subspace spanned by the first j columns of Gk G... Gk is identical to the subspace

(16) S sp{p(A)el,...,p(A)e}, and

k sp{(pk(A))-He+,..., (pk(A))-He}
is the orthogonal complement of

Watkins and Elsner [30], [32] obtain a convergence theorem for simultaneous
iterations that demonstrates the convergence of the ] to invariant subspaces
of A under certain conditions on the polynomials Pk. Since the distance d(S],)
d(k,), the subspaces must also converge. The arguments require an additional
condition that is always satisfied when A is an irreducible Hessenberg matrix [23].

The nominal objective of any GR procedure is to determine a coordinate system
in which the linear operator is block triangular (in our ce block diagonal). Subspace
convergence is not sufficient to guarantee the convergence of the Ak to block triangular
form. Under the additional sumption that the condition numbers of the Gk are
uniformly bounded over k, Watkins and Elsner [30], [32] demonstrate convergence to
block triangular form, subject to certain sumptions on the polynomials p. The
following theorem is a combination of theorems from [32] they apply to the basic
CMTQL1 procedure with all shifts set to zero (Pk z for all k). For details the reader
is referred to [30], [32].

THEOREM 4.1 (see [32]). Let T be a diagonalizable complex symmetric tridiag-
onal matrix. Suppose j is such that ]Aj] < ]Aj+] and set p Aj]/Aj+]. Let j
and be the invaant subspaces associated with (1,...,} and (+,...,
respectively. Let Tk be the sequence of complex symmetric tdiagonal iterates gener-
ated by CMTQL1 with all shis equal zero. Let S] be the subspaces generated by the
last m n- j columns of Qk. If there exists a constant such that a2() for
all k, then Tk converges to block diagonal fo, in the following sense. Let

(17) Tk T2 T2
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where T2k2 C" " Then

where for some constant independent of k,
2 k

If we can prove that the condition numbers of the Qk are uniformly bounded over
k, then Theorem 4.1 provides a proof of convergence of the basic CMTQL1 procedure
under the assumption that all shifts are zero and that each step of CMTQL1 is well
defined. We can obtain such a result if the eigenvalues of T have distinct magnitudes.
However, that proof is itself a proof of the convergence.

Before proceeding we note that the spaces Tjk in (17) correspond to the Hermitian

conjugate of A. Any real eigenvalues of A will be eigenvalues of AH. If A is real,
then A and AH have the same eigenvalues. However, if A is complex, the complex
eigenvalues of A need not occur in conjugate pairs.

When T is complex and symmetric, we could consider the complex orthogonal
complement of the in (16),

(20) sp{ (T))-I }.ej+l,...,(pk(T)) -1

These subspaces are not orthogonal to the , so convergence of the S does not
guarantee the convergence of the ];. However, the speed of convergence observed in
the numerical tests indicates that these corresponding subspaces are probably playing
a role in the rapid convergence.

THEOREM 4.2. Let T be a nonsingular, irreducible, diagonalizable, complex sym-
vnetric tridiagonal matrix with no eigenvalues equal in magnitude. Let T XAXT
where I11 < < Inl. Apply CMTQL1 with all shifts equal to zero. Then there
exists 0 such that

(21) 2(Qk) <_ 0 and

(22) Qk --* X(essentially) and Tk -- A as k --
The ordering of the Aj uniquely determines X. The proof of Theorem 4.2 uses

the following lemmas. Detailed proofs of these lemmas are in [7].
LEMMA 4.2. Let Ek, k 1, 2,... denote a family of symmetric matrices such that

T]IEklI -+ 0 as k --+ cx. Then for large k, the matrices I+E have LkL decompositions
where Lk - I (essentially) as k-- cx.

Proof. For large k each J(I + Ek)J and its principal submatrices are diagonally
dominant. Therefore by Lemma 3.5 the required factorizations exist. It is easy to
prove that each Lk(j, j)z -- 1, from which it is then easy to prove by induction that
all nondiagonal entries of the Lk must converge to 0 as k

LEMMA 4.3. Let Fk, k 1, 2,... be such that [IFk[I --+ 0 as k -- oc. Then for
any e > 0 and large k, there exist complex orthogonal decompositions, I + Fk QkLk
such that

(23) IIQII - ( + e)/(1
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Qa I (essentially) and La I (essentially) as k c.
COROLLARY 4.1. Under the assumptions of Lemma 4.3 for any > 0 and for

large enough k,

(24) 2(Qk)- IIQkll 2 <_ [(1 + e)/(1- e)]2.

Proof. From Lemmas 4.2 and 3.6, it is straightforward to prove that Qk I
(essentially). If we set Ek (F + F[ + F[Fk), then inequality (23) follows readily
from the fact that (I + Ea)-1 I- Ek(I + Ek)- and IIEkll O. The corollary is
an immediate consequence of Lemmas 4.3 and 3.8. [:1

The following lemma relates the preceding lemmas to the Qk. Using this lemma
we can then prove that 2(Qk) are uniformly bounded over k.

LEMMA 4.4. Under the assumptions of Theorem 4.2 the matrices Qk defined
in (14) are of the form X(I + k)D, where each Dk is diagonal with D I and

Proof. From Lemma 3.11 there exist R and L such that R is unit upper triangular,
L is lower triangular, and

(25) XT RL and therefore Tk Qkff-,k X(AkRA-k)(A;CL).
Clearly, (AkL) is lower triangular and

(26) AkRA-k I + Fk where Fk(i,j) Rj[)/)j]k for j >

and zero otherwise. Since the eigenvalues hve distinct magnitudes IIFkll -- 0 as
k - oc.

Therefore, by Lemm 4.3, for large k there exist complex orthogonal decomposi-
tions Qk and Lk such that (k --* I (essentially), Lk -* I (essentially), and

(27) T; Qkk (X(k)(kAkL).
By Lemma 3.6 there exist diagonal mtrices Dk with Dk2 I such that

(28) Q; XQ;cD; and ; D;L;A;CL.

Proof (Theorem 4.2). From (28) we have

(29) Qk -- X(essentiMly).

Therefore the condition numbers of Qk are uniformly bounded over k. Moreover,

(30) Tk+l -TD;cQk AQkDk A,

where the convergence is ordinary since A is diagonal.
If one or more eigenvMues of T are equal in magnitude then only the Fk(i,j)

in (26) outside of triangular regions corresponding to indices of eigenvalues equal
in magnitude are guaranteed to converge to zero. However, if certain factorizations
exist, the proof can be extended to this case with convergence to a block diagonal
matrix where each block corresponds to some subset of eigenvalues that are equal in
magnitude. The practical importance of an extension of the arguments to this case is
not clear since any nonzero shift can be expected to separate eigenvalues that are not
equal but have equal magnitudes. Shifts that are not equal to eigenvalues also yield
nonsingular matrices.
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5. Practical numerical procedure. Explicit subtraction and addition of shifts
can lead to significant computational errors. We can, however, obtain an implicit
version of CMTQL1 analogous to the implicit version of the real symmetric orthogonal
QL procedure [22]. On each iteration of the implicit procedure the new matrix iterate

Tk+l is obtained from Tk -CkI by the application of n- 1 complex symmetric plane
rotations.

DEFINITION 5.1. Let T be a complex symmetric tridiagonal matrix. Define n
T and the complex symmetric rotation Pn-1 whose last column is a multiple of the
last column ofT. Set Tn- Pn-TPn-1. For k 2,...n- 1 define Tn-k
Pn-kn-k+Pn-k with each Pn-k a complex symmetric^rotation defined to zero out
the (n- k, n- k + 2) and (n- k + 2, n- k) entries in Tn-k+. The successive two-
sided application of the P,_k to the -k+l to obtain is called a (bottom up) sweep
across T.

The following theorem which was proved in [7] states that a bottom up sweep
can be completed if and only if the starting matrix T has a complex orthogonal
factorization QL, and that the matrix resulting from the sweep equals QTTQ. This
equivalence provides a mechanism, namely, the successful completion of a sweep,
to guarantee that the implicit CMTQL1 procedure is performing the required QL
factorizations and recompositions. Watkins and Elsner [31] extend this theorem to the
GR class of procedures, which includes a complex orthogonal QR variant of CMTQL1.

Shifts are not explicitly considered in Theorem 5.1. Shifts are, however, used
in CMTQL1. A shift is incorporated into the sweep implicitly as follows. The

Pn-1 rotation is defined using the last column of Tk I. This rotation is applied
implicitly to T-I using the fact that the update formulas corresponding to each of
the complex symmetric rotations generated within the sweep involve only differences
of the diagonal entries of the matrix being transformed. The actual computations are
done on T so that the resulting matrix is QTTkQ LQ + I. Such a sweep will be
called an implicit sweep.

THEOREM 5.1. Let T be a nonsingular, irreducible, complex symmetric tridiag-
onal matrix. T has a complex orthogonal factorization T QL if and only if a full
bottom up sweep is defined for T. Moreover, upon completion of the sweep T has been

transformed into T+ QTTQ.
Proof. Assume T- QL exists, then L is nonsingular and T2 LTL. A sweep

can be completed if and only if each of the complex rotations P-k is well defined.

P-k is well defined if and only if the denominator of c-k is nonzero. By Lemma
3.5 each submatrix T2n,j is nonsingular. An induction and continuation argument
demonstrates that the denominator of cn-k is a simple multiple of the determinant of
T2n,n_k+l Therefore, each rotation is well defined and the sweep can be completed.

Conversely, if a full sweep is defined, set n T,

(3) Q- Pn-1... P1, and for each k define n- Pn--kn--k+l.
Then

(32) QTQ I and 1 -QTT.

A straightforward induction argument demonstrates that the n- k + 1 to n columns
of -k are lower triangular. Therefore, 1 L is lower triangular, and T QL is a
complex orthogonal decomposition of T. Furthermore, T+ IQ QTTQ. D
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5.1. Numerical stability. The successful completion of a sweep is equivalent
to the successful computation of a QL decomposition of the current matrix iterate

Tk- CkI, coupled with the formation of the next iterate Tk+l QTTQ. If for
some sequence of shifts we can construct a successful sweep for each shift, this is an
implementation of the CMTQL1 procedure. The convergence behavior will however
be correlated to the particular set of shifts which are used.

In practice we must deal with additional considerations. Theorem 5.1 does not
give any indication of the numerical condition of the complex symmetric rotations used
within each sweep or of the overall transformation matrices Qk. By construction, at
least theoretically, each matrix iterate has the same eigenvalues as T. However, the
eigenspaces of the iterates differ from those of T by the matrix Qk. For numerical
stability we need to control the condition of these matrices.

Therefore, we introduce a heuristic that both monitors and controls local numer-
ical stability. We consider the inner plane rotations but drop the subscripts. Within
each sweep in CMTQL1 the computation of each c and s in each P is implemented
by computing

(33) 1./V/1 + w2 and w/v/i + w2,

where w a+bi is a complex number. Each w is defined as the ratio of the two relevant
entries from the current inner iteration matrix iterate ordered so that Ilwll <_ 1.
Therefore, a2 <_ 1 and b2 _< 1. For specific details see [7].

Each c and s are well defined numerically if and only if 1 + w2 is not too close to
0 or equivalently w is not too close to v/:-l. Difficulties can occur if a is small
and b is close to 1. Therefore at each step in each sweep and for some prespecified q
the procedure checks for satisfaction of the following inequality:

(34) (1 + a- b2) _< 10-qb2 or equivalently 1 + a2 _< (1 + 10-q)b2.

If (34) is satisfied, cancellation has occurred in the computation of 1 + w2 and the
current sweep is restarted using a randomly generated complex shift scaled by an
estimate, of the norm of T. Exceptional shifts have been used by other authors. See,
for example, [10].

5.2. Choice of shifts. From (20) we expect the procedure to behave as though
it is simultaneously a method using pc(T) and (pc(T))-, where p is the kth degree
polynomial defined by the shifts Cj, 1 _< j

_
k. Therefore, we expect the rate of

convergence to improve if a shift Ca is close to an eigenvalue of T. For almost all
of the iterations the shift is set equal to the Wilkinson shift, that eigenvalue of the
uppermost nontrivial 2 2 submatrix of the current iterate Tk which is closest to the
(1, 1) element of that submatrix.

The starting shift, however, is chosen to be a randomly generated complex num-
ber. There are two reasons for this choice. First, we force the computations into
complex arithmetic. If for example, T is a symmetrized real, nonsymmetric tridiago-
nal matrix, then its diagonal entries are real and its nonzero off diagonal entries are
either real or purely imaginary. Therefore, at least initially w in (33) could be purely
imaginary which increases the probability of difficulties with the denominator 1 + w2.
Second, to avoid pathological cases such as the following example, where of course B
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is not irreducible, not nonsingular, and is in fact defective.

B

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

5.3. Practical implementation.

CMTQL1, practical implementation.

1. Set T1 T.
2. Check if the current matrix Tk is reducible. If so replace Tk by a smaller

irreducible matrix or matrices and apply the procedure to each irreducible
submatrix.

3. For k 1 generate a random complex shift 1. Otherwise, set Ck equal to
the eigenvalue of the uppermost 2 2 submatrix of T which is closest to the
first diagonal entry of Tk.

4. Initiate a bottom up implicit sweep on Tk -I. If inequality (34) is satisfied
at any stage in the sweep, terminate that sweep, generate a random complex
shift scaled by an estimate of the IITII2 and restart the sweep setting Ck 7.
Repeat as necessary until a complete sweep is achieved.

5. Increment k and define Tk+l as the tridiagonal matrix obtained from the last
successful sweep.

6. Check for convergence. If not converged, set k k + 1 and go to step 2.
Specifically, in step 2 we use the following test.

IT(j + 1,j)l _< x/emach (IT(j,j)I + IT(j + 1,j +

where mach is the computer machine epsilon. In 6 we examine the performance of
CMTQL1 on three different families of test problems.

6. Numerical tests. The practical value of any numerical procedure can only be
determined by applying it to relevant test problems and tracking its behavior on such
problems. The eigenvalues of a diagonalizable, complex symmetric tridiagonal matrix
may be anywhere in the complex plane, and matrices of corresponding eigenvectors
may be arbitrarily ill conditioned. Small perturbations in such a matrix may cause
large perturbations in the computed eigenvalues.

In our experiments we computed both backward error estimates, using Lemma
3.9, and two-sided Rayleigh quotient differences. For some of the smaller problems,
n 225, we also compared the eigenvalues computed by CMTQL1 to those computed
using the subroutine COMQR from [28]. In each case these two sets of eigenvalues
agreed to 10 or more digits. We note however that if the two sets of eigenvalues had
not agreed, we could not have concluded that either procedure was incorrect unless
it was known a priori that the eigenvalues of the test matrices were well conditioned.
In these tests we can only hope to demonstrate that the eigenvalues obtained from
CMTQL1 are eigenvalues of matrices which are small perturbations of the original
matrix whose eigenvalues are to be computed.

For each test matrix T and each corresponding CMTQL1 eigenvalue #, we ap-
plied one step of inverse iteration to compute an approximate eigenvector xt,. This
vector was then used to compute the corresponding backward error estimates IIEII2
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defined in Lemma 3.9. Estimates of the condition numbers, IIxul122/IxTuxul, and the
corresponding unnormalized estimates IIEull2 were also computed. In the figures we
normalized these values, plotting loglo(llE[12/llTII2) versus eigenvalue number with
the eigenvalues ordered by magnitude.

Each xt, was also used to compute the following two-sided Rayleigh quotient
differences.

(36) T T
5

q
_

it_ \
xtt Txtt /xl xtt

Since T is complex symmetric, two-sided Rayleigh quotients reduce to one-sided quo-
tients. Since the magnitudes of the real and of the imaginary parts of it can differ

rq were nor-radically, in the comparisons the real and the imaginary parts of each eu
malized and plotted separately, using, respectively, + and symbols.

A primary interest in this procedure is its use in nonsymmetric Lanczos proce-
dures for computing eigenvalues of large nonsymmetric matrices where (when there
is no look-ahead) a general nonsymmetric problem is reduced to a family of complex
symmetric tridiagonal problems. We therefore considered test matrices generated by
applying the nonsymmetric Lanczos procedures to matrix 425 in file 13 (425boe13),
to matrix 479 in file 14 (479boe14), and to the sherman4 and sherman5 matrices in
the Boeing-Harwell collection [11]. These Lanczos matrices have the property that
as the size is increased, significant numbers of eigenvalues of these matrices are not
only nearly equal in magnitude but also nearly equal (numerically).

We used COMQR in [28] to compute the eigenvalues of three of these matrices.
Both 425boe13 (n 425) and 479boe14 (n 479) have many complex conjugate
pairs of eigenvalues and many real eigenvalues. The eigenvalues of 425boe13 surround
the origin like a cloud. Eigenvalues range in magnitude from a real eigenvalue .12
to complex eigenvalues .148 +/- 5.28i. The gaps between nearest-neighbor eigenvalues
range from .03 to .75 and there is a double real eigenvalue -1.0. The eigenvalues of
479boe14 form a swath parallel to the real axis with large outliers close to both the real
and the imaginary axes. Eigenvalues range in magnitude from a real eigenvalue .00017
to complex eigenvalues .009 +/- 1700. The gaps between eigenvalues range from .00043
at .00017 to 1580 at .009+/-1700.i of size 1700. The eigenvalues of sherman4 (n 1104)
are positive real. 1.0 is an eigenvalue of multiplicity 558. The other eigenvalues range
in size from .0307 to 66.5, and the gaps range in size from .0016 to 2.22. We did not
compute the eigenvalues of sherman5 (n 3312), but Lanczos computations indicate
that the eigenvalues are real or nearly real with many eigenvalues on both sides of the
imaginary axis. The eigenvalue distributions of each of the test matrices constrain
the distributions of the eigenvalues of the corresponding Lanczos test matrices. For
additional comments on this aspect of the test matrices see [4].

The other classes of test matrices were generated randomly, using either an expo-
nential(2), Cauchy(4), logistic(7), Laplace(8), or arcsine(9) probability distribution.
In the discussion and in the tables we use, for example P2, to denote test matri-
ces corresponding to a particular (exponential) distribution, and RNS479 to denote
a Lanczos matrix generated by a real nonsymmetric Lanczos procedure applied to
479boe14.

In contrast to the Lanczos matrices, the eigenvalues of the probability test ma-
trices are typically distinct with distinct magnitudes. The eigenvalue and eigenvalue
gap distributions vary significantly across the various probability distributions. Fig-
ures 1-2, 3-4, and 5-6 depict, respectively, computed eigenvalues and eigenvalue gap
distributions for P2 (n 2500), P4 (n 1000), and P7 (n 2500) test matrices.
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FIG. 1. Eigenvalues computed by CMTQL1 for P2 matrix, n 2500.
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FIG. 2. Gaps between eigenvalues computed by CMTQL1 for P2 matrix, n 2500.
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FIG. 3. Eigenvalues computed by CMTQL1 for P4 matrix, n 1000.
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FIG. 4. Gaps between eigenvalues computed by CMTQL1 for P4 matrix, n 1000.
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FIG. 5. Eigenvalues computed by CMTQL1 for P7 matrix, n 2500.

FIG. 6. Gaps between eigenvalues computed by CMTQL1 for P7 matrix, n 2500.
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llT(k) Estimates, CCMTSLI
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FIG. 7. Estimates of IITII in CMTQL1 versus iteration number k with restarted iterations
marked by o for P8 matrix, n 1000.

These figures are representative for the P2, P4, and P7 test matrices. The eigen-
value distributions of P8 test matrices resemble Fig. 1. However, the eigenvalues are
an order of magnitude smaller (1.1 to 195.) with the real and the imaginary parts rang-
ing from approximately -138. to +50. The corresponding gap distributions resemble
Fig. 2 but the gaps range from .04 to 19. The eigenvalue distributions of P9 test ma-
trices resemble Fig. 3 with the real and the imaginary parts of the eigenvalues ranging
from approximately -1.0 to 2.5, and the magnitudes varying from .017 to 3.1. The
corresponding gap distributions resemble Fig. 2 for P2 matrices but with somewhat
smaller gaps ranging from .002 to .29. Matrices of size n 225,425,479, 1000, 2500,
and 5000 were generated.

Tests were run using different size matrices from each set of matrices, with differ-
ent choices for the exponent in the cancellation checks, and with variations in the seed
used in the random number generations. Observe that by construction each complex
eigenvalue of any Lanczos matrix obtained from a real nonsymmetric Lanczos proce-
dure occurs with a complex conjugate pair. This is not, however, true of the Lanczos
matrices obtained using the complex nonsymnetric procedure.

For each test problem we tracked the convergence history in terms of the number
of iterations required for the convergence of each eigenvalue, the iteration numbers
on which the procedure restarted, the number of partial sweeps required to achieve
each restart, and maximum row sum estimates of IIT II2. Figure 7 is typical of the
behavior of these estimates. As k increases they tend to oscillate in size but eventually
level off or acquire a downward trend as the convergence proceeds. These estimates
were computed using the entire kth iterate and not just its irreducible parts. They
provide an indirect check on the sizes of the transformation matrices. These estimates
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TABLE
CMTQL1 tests on Lanczos matrices, number of sweeps and restarts required, bounds on

loglo (11 E; II/IITII +).

Matrix
Size q Nitns NR IIEII/IITII + IITII +

RNS 479
479 4 840 1 (-17.1,-13.4) 2.3 x 105
1000 4 1778 14 (-17.0,-13.2) 5.1 x 105
1000 * 1820 * (-16.8, -13.0)
2500 5 4394 6 (-17.3,-12.1) 7.6 x 105

RNS 425
425 4 876 0 (-17.4,-13.5) 1.7 x 104
1000 4 1887 16 (-17.3,-11.2) 1.7 x 104
1000 * 1999 * (-17.0, -13.4)
00 4 407 4 (-7.,-.7) :.10
2500 6 4432 0 (--17.3,-12.1)

CNS 479
479 4 875 4 (-15.3,-12.7) 1.8 x 104
1000 4 1829 8 (-15.9,-11.8) 2.3 x 104
1000 6 1797 0 (-15.6, -11.7)
1000 * 1902 * (-15.7, -11.7)
2500 4 4577 65 (-16.1,-11.7) 6.5 x 104
2500 6 4478 0 (-15.8, -11.7)

CNS 425
e 0 0 (-.a,-.0)
1000 4 1884 2 (-15.3, -11.6)
1000 6 1886 0 (-15.3, -11.9)
1000 * 2051 * (-15.3, --10.9)

1.4 x 102

2.7 102

CNS Sher 4
000 6 (-.7,-o.9)
1000 * 1756 * (-15.0, -10.7)

4.7 102

CNS Sher 5
1000 4 1772 5 (-14.7,-10.3)
1000 * 1871 * (-15.1, -11.1)

1.2 104

were computed and plotted for every iteration, including any restarted iterations.
Restarted iterations are labeled with a symbol located at an estimate of IITII. We
also examined the computed eigenvalue distribution and gap distribution for each of
the test matrices and checked for possible connections between the shapes of these
distributions and the observed convergence. We did not identify any correlations.

Sample results from each class of matrices are included. See Tables 1 and 2 and
Figs. 1-17. In Tables 1 and 2, size refers to the size of the test matrix, q 4 or 6
refers to the exponent in (34). q corresponds to a test using the original version
of CMTQL1 described in [9] that did not include restarting, did not use a complex
random initial shift, and only allowed single block reductions. Nitns denotes the total
number of sweeps and partial sweeps required until convergence. NR denotes the
total number of restarted sweeps. IIEII2/IITII+2 denotes the base 10 logarithms of
the minimum and the maximum of the normalized backward error estimates obtained
using Lemma 3.9. IITl]2+ denotes the estimate of the norm of the test matrix. In
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TABLE 2
CMTQL1 tests on probability matrices, number of sweeps and restarts required, bounds on

logxo[llEll/llTll /] and on lOgl0[eRQ].

Matrix

Size q Nitns NR IIEII/[IT[I+. %RQ
P2

1000 4 2292 12 -7.5 -9.5
1000 6 2288 0 -6.2 -7.6
1000 * 2282 * -8.3 -8.0
2500 4 5859 92 -6.5 -8.7
2500 6 5754 1 -7.0 -7.3
2500 * 5747 * -6.5 -6.5
5000 4 11931 398 -5.4 -7.3
5000 6 11579 4 -5.3 -7.2

1.93 103

For P2, min{loglo[llEll/ltTIl+]} <_--13.0, min{loglo[eRQ]} _<--15.1.

P4
1000 4 2411 9 -7.1 -9.8
1000 6 2397 0 -7.1 -9.6
1000 * 2435 * -3.5 -6.3

4.0 x I0

For P4, min{loglo[llEl[/llTIl+]} <_ -19.0, min{logl0[eQ]} _< -15.7.

P7
1000
1000
1000
2500
2500

4 2239 15 -7.5 -8.8 3.6 101
6 2253 0 -9.2 -10.3
* 2265 * -9.2 -9.9
4 5704 63 -8.4 -9.4 5.3 101
6 5615 0 -8.8 -9.8

For P7, min{loglo[llE[I/llTIl+]} -14.8, min{loglo[eQ]} -15.7.

P8
1000 4 2213 18 -7.9 -9.5 2.1 102
1000 6 2198 0 -8.3 -9.5
1000 * 2200 * -8.3 -8.9

For P8, rnin{loglo[llEll/llTIl+]} -13.8, min{loglo[e]} -15.7.

P9
1000 4 2584 15 -8.4 -10.2 4.0 x 10
1000 6 2564 0 -6.2 -8.3
1000 * 2580 * -7.7 -9.3

For P9, min{loglo[llEll/llrll+]} -13.8, min{loglo[eQ]} -15.6.

Table 2, eq denotes the base 10 logarithms of the maximum of the componentwise
normalized Rayleigh quotient error estimates obtained using (36). Also in Table 2
only the maximum of the base 10 logarithms of IIEI[2/IITII+2 are tabulated. Table 1
consists of two sections. RNS refers to test matrices generated using a real nonsym-
metric Lanczos procedure. CNS refers to test matrices generated using a complex
nonsymmetric Lanczos procedure.

In almost all cases the convergence appears to vary smoothly with the number of
iterations, independent of the particular eigenvalue distribution and gap distributions.
Figure 8 corresponding to P7 with n 2500 is an exception where the convergence
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accelerated markedly near the end of the process. In all of the tests fewer than 2.6
sweeps per eigenvalue were required. The larger Lanczos matrices typically required
less than two sweeps per eigenvalue, presumably because of the many numerically
multiple eigenvalues. The probability matrices with no numerically multiple eigenval-
ues required between 2.2 and 2.6 sweeps per eigenvalue. These counts are very similar
to those observed for the corresponding QL procedure for real symmetric tridiagonal
matrices.

We observe that restarting with random complex shifts did not typically increase
the number of iterations required over the number required by the original q
procedure. We also observe that when a large number of restarts were used, typically
these corresponded to many fewer eigenvalues. For example with a RNS 425boe13
test matrix of size 2500 and q 4, restarting occurred 164 times. However, 79 of
those restarts involved only 4 eigenvalues. There were several other eigenvalues which
required 3 to 7 restarts, consuming 18 of the 164 restarts. The remaining restarts
involved at most two attempts for any given eigenvalue.

In these tables any partial sweep is counted as a full iteration. In Table 1 we
observe the uniformly small backward error estimates obtained for both the RNS
and the CNS test problems. We also observe that typically there was no significant
difference between the maximum backward error estimates obtained using any of the
three different values of q.

The results in Table 2 for the probability test matrices are somewhat different.
The maximum backward error estimates are markedly larger and in some cases sig-
nificant differences between the choices of q are indicated. Detailed plots of these
estimates indicate however that for q 4 the maximum estimates correspond to very
few eigenvalues. See, for example, Fig. 9 for P4 with n 1000. With q =., see Fig.
10, many of the backward error estimates increased significantly. On other problems,
however, such as P2 matrices, these estimates were approximately the same size for
both values of q. In Fig. 11 we plot the corresponding Rayleigh quotient differences
for q 4 for P4 with n 1000. These differences indicate that the CMTQL1 eigen-
values are probably accurate to nine or more digits. A similar plot for q indicates
that all except three eigenvalues are accurate to eight or more digits. Of those three,
the differences indicate that two of them" are accurate to 71/2 digits and one to 6+
digits.

Figures 12-13 and 14-15 correspond to a P2 matrix with n 2500. Figure 12
contains the backward error estimates corresponding to q 4. Twenty-one eigenvalues
have error estimates larger than 10-s. All are less than 10-6"5. Figure 13 is the
corresponding plot for q .. Figures 14 and 15 are the corresponding eRQ plots.
We observe the apparent increased accuracy achieved with the q 4 procedure, as
indicated by the amount of scattering in the backward error estimate plots. However,
both procedures performed well.

Figures 16-17 correspond to a P7 matrix with n 1000 with q 4. In Fig. 16
we see that the maximum backward error estimate is associated with one eigenvalue.
Moreover, for this problem only two eigenvalues have estimates larger than 10-9.
The corresponding eRQ differences in Fig. 17 indicate that except for those three
eigenvalues, all of the eigenvalues are computed to within 10-digit accuracy.

The tests indicate that restarting typically reduces the amount of scatter in the
estimates and increases the accuracy over that obtained from the q procedure
with no restarting. However, both procedures typically work well in practice.
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Number. CCMTII1 Coverged Eigenvalues
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lrion Number E/3

FIG. 8. Number of computed eigenvalues versus iteration number k with restarted iterations
marked by for P7 matrix n 2500.
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FIG. 9. Normalized backward error estimates for q 4 versus eigenvalue number, eigenvalues
ordered by decreasing magnitude for P4 matrix, n 1000.
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FIG. 10. Normalized backward error estimates for q versus eigenvalue number, eigenvalues
ordered by decreasing magnitude for P4 matrix, n 1000.
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FIG. 11. Normalized Rayleigh quotient differences for q 4 versus eigenvalue number, eigen-
values ordered by decreasing magnitude for P4 matrix, n 1000.
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FIG. 12. Normalized backward error estimates for q 4 versus eigenvalue number, eigenvalues
ordered by decreasing magnitude for P2 matrix, n 2500.

Norms, -BackwaFd Error Marices

-I 40

0.50 1,99 1,59 2.66 2,50

Eigenvalue Number

FIG. 13. Normalized backward error estimates for q versus eigenvalue number, eigenvalues
ordered by decreasing magnitude for P2 matrix, n 2500.
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FIG. 14. Normalized Rayleigh quotient differences for q 4 versus eigenvalue number, eigen-
values ordered by decreasing magnitude for P2 matrix, n 2500.
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FIG. 15. Normalized Rayleigh quotient differences for q versus eigenvalue number, eigen-
values ordered by decreasing magnitude for P2 matrix, n 2500.
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FIG. 16. Normalized backward error estimates for q 4 versus eigenvalue number, eigenvalues
ordered by decreasing magnitude for P7 matrix, n 1000.

FIG. 17. Normalized Rayleigh quotient differences for q 4 versus eigenvalue number, eigen-
values ordered by decreasing magnitude for P7 matrix, n 1000.



108 JANE K. CULLUM AND RALPH A. WILLOUGHBY

7. Comments. After completion of this work it was pointed out to us that Gor-
don and Messenger [16] used a complex extension of the real symmetric band QL
procedure to complex symmetric band matrices. Details of their implementation in-
dicate that they used explicit shifting and did not incorporate any checks on numerical
stability. We should also note that there is related work in [3] where algorithms for
real nonsymmetric tridiagonal matrices are presented.

Others have asked why not use a complex LTL procedure rather than a complex
orthogonal QL procedure since there is no a priori guarantee that the Q transforma-
tions are well behaved. Lemma 3.6 indicates an equivalence for these decompositions.
The numerical experiments indicate that the number of iterations required per eigen-
value by CMTQL1 to achieve convergence is approximately the same as that required
by the corresponding real symmetric QL procedure. In that case two steps of the
LTL procedure equal one step of the QL procedure, seemingly indicating that one
should not expect significant speedups in,. convergence by considering such procedures
in the complex case. The implicit implementation of the QL procedure through The-
orem 5.1 provides a mechanism for determining when these factorizations exist and
a mechanism for checking local numerical stability. It is also easy to determine the
condition of a complex orthogonal transformation Q since it is determined by IIQII-
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TOTAL LEAST NORM FORMULATION AND SOLUTION FOR
STRUCTURED PROBLEMS*
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Abstract. A new formulation and algorithm is described for computing the solution to an
overdetermined linear system, Ax b, with possible errors in .both A and b. This approach preserves
any affine structure of A or [AIb], such as Toeplitz or sparse structure, and minimizes a measure of
error in the discrete Lp norm, where p 1, 2, or x. It can be considered as a generalization of total
least squares and we call it structured total least norm (STLN).

The STLN problem is formulated, the algorithm for its solution is presented and analyzed, and
computational results that illustrate the algorithm convergence and performance on a variety of
structured problems are summarized. For each test problem, the solutions obtained by least squares,
total least squares, and STLN with p-- 1, 2, and were compared. These results confirm that the
STLN algorithm is an effective method for solving problems where A or b has a special structure or
where errors can occur in only some of the elements of A and b.

Key words, data fitting, Hankel structure, least squares, linear prediction, minimization,
overdetermined linear systems, Toeplitz structure, structured total least norm, total least squares,
1-norm, 2-norm, cx)-norm
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1. Formulation of structured total least norm (STLN) problems. An
important data fitting technique developed over the past 15 years is that of total
least squares (TLS) [7], [8]. The TLS method is a generalization of the least squares
method for an overdetermined system of linear equations, Ax b, where A is m n,
with m > n. In the least squares solution it is assumed that the matrix A is known
without error, but that the vector b is subject to error. The vector x is determined
so that lib- Axll 2 min.

TLS allows the possibility of error in the elements of a given (data) matrix A,
so that the modified matrix is given by A + E, where E is an error matrix to be
determined. The TLS problem can then be stated as that of finding E and x, such
that

(1.1) [[E[r[[F min,

where r b- (A -+- E)x, and I1" [IF represents the Frobenius matrix norm.
A complete description of TLS is given in a recent book [14], where many ap-

plications to signal processing, system identification, and system response prediction
are .described. In many of these applications the matrix A has a special structure,
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such as Toeplitz structure, or is a large, sparse matrix with relatively few nonzero
elements. Furthermore, in some applications, errors occur only in a small number of
the elements of A, so that while A may be dense, the matrix E could be sparse.

The generally used computational method for solving TLS is based on the singular
value decomposition (SVD) of [AIb]. A complete discussion of efficient computational
methods for solving TLS based on SVD is given in Chapter 4 of [14]. For applications
where the matrix A has a special structure, the SVD-based methods may not always
be appropriate, since they do not preserve the special structure. In fact, using the
SVD approach the matrix E will typically be dense, with no special structure, even
when A is Toeplitz or sparse. Thus, even those elements of E that should remain zero
will typically become nonzero. Also in some situations, the use of a norm other than
the Frobenius norm may be preferable. For example, if the data contains outliers, an

L1 norm might be more suitable.

A new approach, to be described, is called STLN, and it addresses these situations.
The STLN formulation allows other norms, in addition to the Frobenius norm, to be
used. In particular, the problem can be formulated so as to minimize the error in
either the L1 norm or the L norm, in addition to the Frobenius norm used in TLS.
Another important advantage of the STLN formulation is that it permits a known
structure of the matrix A and [AIb to be preserved in A + E and [A + E Ib + r],
respectively. Requirements of this kind occur in important applications. For example,
a Toeplitz structure occurs in system identification problems [4], [6] and in frequency
estimation [1], [11]. For other applications, see [1], [4], [14], [17].

The new approach will guarantee that, for example, E will have the same Toeplitz
structure as A, or that only those elements of E which represent possible errors in
A are permitted to be nonzero. In general, it can preserve any given affine structure
in the computed error matrix E. In some earlier papers [3], [13], restrictions of this
type have been imposed by the use of additional constraints on the problem. The
use of the L1 norm for this kind of problem has also been investigated [10], using a
different method than the one presented here. This extension of the TLS solution to
incorporate the algebraic pattern of the errors in A is also studied in [1] and [4] as
"Constrained TLS" and "Structured TLS," respectively, both for the L2 norm only.
In [1], a complex Newton’s method is utilized to solve the problem, whereas in [4],
nonlinear SVD is defined and an algorithm to compute the solution is derived. For
the comparison of these two algorithms, see [15]. The approach in our algorithm is
different from these two and we will present the comparison of these three algorithms
elsewhere.

Our formulation for solving the STLN problem takes full advantage of the special
structure of a given matrix A. In particular, when q(<_ ran) elements of A E ’’ are
subject to error, a vector a E q is used to represent the corresponding elements
of the error matrix E. Note that for a sparse matrix, q ran. Furthermore, if
many elements of E must have the same value, then q is the number of different such
elements. For example, in a Toeplitz matrix, each diagonal consists of elements with
the same value, so q _< m + n- 1.

The vector a and the matrix E are equivalent in the sense that given E, a is
known, and vice versa. The matrix E is specified by those elements of A which may
be subject to error. Each different nonzero element of E corresponds to one of the
ak, k 1,..., q. Also, the residual vector r b- (A + E)x is now a function of a
and x, so r r(a,x). Let D be a (q q) diagonal weighting matrix that accounts
for the repetition of elements of a in the matrix E. Then the STLN problem can be



112 J.B. ROSEN, H. PARK, AND J. GLICK

stated as follows:

where I1" lip is the vector p-norm, for p 1, 2, or
For p 2, and a suitable choice for D, the problem (1.2) is equivalent to the

TLS problem (1.1), with the additional requirement that the structure of A must be
preserved by .4 + E.

2. 8TLN algorithm. An iterative algorithm for solving the STLN problem will
now be described. To do this, we first explain the relationship between E
and c Nqx 1. Specifically, the vector Ez must be represented in terms of c. This is
accomplished by defining a matrix X Nmxq such that

X =Ex.

The elements of X consist of the elements of x E nl, with suitable repetition,
giving X a special structure. The number of nonzero elements in both E and X will
be equal, so that if E is sparse, X will also be sparse. Furthermore, if the nonzero
elements ak, k 1,..., q, of E are properly ordered, then X will have a similar
structure to E: for example, if E is a Toeplitz matrix, then X will also be a Toeplitz
matrix. The construction of X from E is described in 3.

The minimization required by (1.2) is done by using a linear approximation to
r(a, x). Let Ax represent a small change in x, and AE represent a small change in
the variable elements of E. From (2.1), we have

( XE)x,

where As represents the corresponding small change in the elements of c. Then,
neglecting the second-order terms in IIAa[I and

(2.3) r(a + As, x + Ax) b- (A + E)x XAa (A + E)Ax
r(a, x) XAa (A + E)Ax.

The linearization of (1.2) now becomes

(2.4) min +
A,Ax D 0 Ax D

P

To start the iterative algorithm, the initial values of E 0 and the least norm value
of x xln are used, where xl is given by

(2.5) min lib Axllp.
x

Note that the initial x for p 2 is the solution to the corresponding least squares
problem.

The STLN algorithm is summarized in Algorithm STLN. The computational
method by which Step 2(a) is carried out depends on the value of p. For p 2, the
corresponding least squares problem is solved efficiently by a QR factorization of the
matrix

(2.6) M D 0
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ALGORITHM STLN
Input A Structured Total Least Norm problem (1.2), with specified matrices A, D,
vector b, and tolerance
Output Affine structured error matrix E, vector x, and STLN error.
Begin

1. Set E 0, 0/-- 0, compute x from (2.5) and X from x, and set r b- Ax.
2. repeat

(a) minimize +zxx, D 0 Ax
P

(b) Setx:=x+
(c) Construct E from 0/, and X from x. Compute r b- (A + E)x.

until (IIAxII,
End

when A + E has full column rank, since M has full column rank in this case. In some
applications, the right-hand side vector is structured as well. For example, in linear
prediction, either [AIb or [blA follows the Toeplitz or Hankel structure. In 6, we
also show how the STLN algorithm can be modified to handle this situation. For
p 1, or p x, Step 2(a) is solved as a linear program which takes advantage of
the special structure of M (see 5). Since the matrix X has a special structure like
A / E, the matrix M is also highly structured. To make Algorithm STLN efficient, it
will be important to take advantage of the structure of M each time Step 2a is solved.
For example, it is shown in [12] how a fast triangularization of M can be carried out
when A is Toeplitz.

A theoretical justification for the STLN algorithm for p 2 is presented in 4, and
its computational performance is illustrated in 7. In the next section the construction
of the matrix X, given the structure of E, is described.

3. Construction of matrix X. The matrix E is specified by those elements of
A which may be subject to error. Each different nonzero element of E corresponds
to one of the O/k, k 1,..., q, where the vector 0/- 0/1 0/q )T represents q(<_ ran)
elements of A which are subject to error. The order in which the 0/k are numbered
will affect the structure of the matrix X, but for any specified ordering, the structure
of X is uniquely determined.

The construction of X (starting with a zero matrix) is carried out according to
the following rule.

If 0/ is the (i,j)th element of E, then xj is the (i,k)th element of X, where
1,...,m, j 1,...,n, and k 1,...,q.

For example, when

E 0/3 0/2 0/1 x3 x2 Xl 0
with 0/=

0/4 0/3 0/2
we have X

0 X3 X2 X 0/3
0 0/4 0/3 0 0 X3 X2 0/4

where only four diagonals of the Toeplitz matrix E are subject to error. For the sparse
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matrix

0 0/1 0/2 X2 X3 0 0 0 0/1

0 0/3 0 0 0 X2 0 0 0/2

E 0/4 0 0/3 we have X 0 0 X3 X 0 with 0/-- 0/3

0 0 0/5 0 0 0 0 X3 0/4

0/4 0/2 0 0 X2 0 Xl 0 a5

where only nonzero elements of E are subject to error and the elements denoted with
the same 0/i are to be perturbed to have the same values.

It is also useful to define (q x n) matrices Pi, i 1,..., rn, as follows.

If 0/k is the (i,j)th element of E, then the (k,j)th element of P is one. All
elements of Pi not equal to one are zero.

Note that at most one element of any column of Pi is a one, and many columns of Pi
may consist of all zeros. See 7 for some numerical examples.

With these definitions of the matrices X and Pi, it is easy to show that:

(3.1) E and X

xTpT
xTpT

T T

The relation (2.1) follows directly from (3.1).
4. STLN optimality conditions and Newton’s method. We now consider

the two-norm case (p 2) in more detail, since it has special properties that make a
more complete theoretical analysis possible. For p 2, the STLN problem (1.2) can
be stated in terms of minimizing the differentiable function

(4.i)
1 1 2v(a,x) ]lr(0/,x)ll22 +
1T 1 T=-r r +-a D2a,

where r b- (A + E)x.
The first-order optimality conditions for a local optimum of (0/, x) are the van-

ishing of the gradients Va and Vx. Using the relations presented in the previous
section these conditions become

(4.2) VaD --xTr + D20/-- O,
Vxga -(A + E)Tr O.

Now consider the .least-squares solution of the (rn + q) equations in Step 2(a) of
Algorithm STLN. The corresponding normal equations are

(4.3) MTM Ax -Da Vxg9

where the last equality follows directly from (4.2).
When the matrix M has full rank, the matrix MTM is positive definite, and (4.3)

always has a unique solution for (A0/T, ZxT). This vector will be zero if, and only
if, the right-hand side of (4.3) vanishes. This means that convergence of Algorithm
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STLN (i.e., (AaT, AxT) 0) is equivalent to satisfying the optimality conditions

We now show that Step 2(a) of Algorithm STLN is essentially Newton’s method
applied to the gradient of a(a,x). To simplify notation, let yT (aT, xT), a(y)
a(a, x), and

x) )"
Let H(y) be the Hessian of 99(y). We wish to find y*, such that V(y*) 0.

An iteration of Newton’s method to do this is given by

H(y)Ay -Va(y),(4.4) y:=y+Ay.

For H(y) positive definite, and an initial y sufficiently close to y,, this Newton’s
method will converge to y* at a second-order rate. See, for example, Theorem 3.1.1
in [5].

To show the relationship between Step 2(a) of Algorithm STLN and (4.4) we
note that the right-hand sides of (4.3) and (4.4) are identical. Furthermore, it can be
shown, using the relations in 3, that

0 P(r))(4.5) H(y) MTM- pT(r 0

where

m

P(r) E r,Pi
i--1

is a matrix with norm 0(llr]]).
Thus Step 2(a) is, in effect, a Gauss-Newton method that uses MTM as a positive

definite approximation to H(y) (see, for example, 6.1 in [5]). Computational experi-
ence with the STLN algorithm (7) demonstrates that this is an effective strategy for
this type of problem.

The differentiable function (a,x) we wish to minimize for p 2 is not a con-
vex function of (a,x). Therefore, there is no guarantee that a point satisfying the
first-order optimality conditions (4.2) is a global minimum. In fact, it could be any
stationary point of a(a,x). In general, the Gauss-Newton method will converge to
the closest local minimum when the residual r(a,x) is sufficiently small [5]-. When
there is no structure imposed on E, the STLN formulation (1.2) is equivalent to the
TLS problem (1.1). In our preliminary test results, we have observed that the solution
produced by the STLN was always the same as that from the TLS, when no structure
is imposed on E. However, there is no theoretical guarantee that Algorithm STLN
will produce the global minimum solution that the TLS via the SVD produces. We
do not propose Algorithm STLN for solving unstructured problems since the compu-
tational complexity will be high due to the large number of elements in a, which will
be ran.

In many applications, the minimum residual is zero or very small when we have
the exact data, and the global minimum value of a will be of the order of the noise in
the matrix A. Therefore, the initial value a 0 is close to the global minimum value
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and convergence to the global minimum can often be expected. Our computational
results confirm this expectation (see 7).

The function being minimized by the STLN (given by (1.2)) for p 1, oc, is not
differentiable, so the Gauss-Newton theory does not apply. Theoretical results on the
convergence of the STLN algorithm for p 1, oc, are not known at this point, but
are the subject of our continuing research.

5. STLN for p =1 and p o. For p 1 or oc, Step 2(a) is solved as a linear
program (LP). To illustrate this, the linear program for p- ec is now summarized.
The formulation for p 1 is similar.

A scalar a representing the maximum norm is introduced, and the corresponding
linear program is then given by

minimize a
Ac,Ax,a

(5.1)
subject to -aem <_ XAa + (A + E)Ax r <_ ae,,

--aeq

_
DAa + Da <_ aeq,

where ek E Nkl is the vector with every element equal to one. Note that a feasible
solution to this problem is easily given (Aa 0, Ax 0, a sufficiently large), and
since a _> 0, an optimal solution always exists. In this form the problem has more
inequality constraints, 2(m + q), than variables, n + q + 1, so it is more efficient to
consider (5.1) as the dual problem, and solve the equivalent primal.

The equivalent primal is

minimize rTy() + aTDy(2) rTy(3) aTDy(4)
y()>_O

0
y(1) 0

[ MT --MT ] y(2)(5.2)
subject to eTm+q eT y(3)

y(a) 1
The optimal solution and basis to (5.2) immediately gives the optimal dual vector
(As, Ax, a). Any available LP package (Simplex or Interior) can be used to solve
(5.2); however, it should be possible to use the special structure of M to solve (5.2)
more efficiently. Another aspect of (5.2) that can be used to advantage is that only
relatively small changes occur in the cost vector coefficients and the matrix M at each
iteration of the STLN algorithm. Therefore the previous basis will often be optimal,
or almost optimal, after the initial LP solution. An additional benefit obtained from
the primal-dual relationship is information about the sensitivity of the STLN solution
to changes in the data. Properly interpreted, the primal variables (elements of the
vectors y(i)) are measures of the change in the value of the minimum norm as a result
of changes in the problem data.

It should also be noted that by the addition of one row and two columns to (5.2)
a specified bound 5 can be imposed, so that

(5.3) JJDJI _< 5.

With this addition, the original STLN problem (1.2), with p x, is modified so that
a is limited to values satisfying (5.3). This restriction may be important in some
applications; for example, if it is known that the errors in A cannot exceed some
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specified bounds. For the limiting case of 5 0, the solution to (1.2) and (5.3) will
give the least norm solution (2.5) for p oc, while for sufficiently large 5 it will give
the STLNoc solution to (1.2). For small values of 5, the solutions to (1.2) and (5.3)
may differ significantly from the STLNc solution. Similar bounds can readily be
imposed in the L1 norm case.

6. STLN for structured vector b. In many applications, the structure is im-
posed not only on the data matrix A but also on the right-hand side vector b or even
on [AIb]. For example, in the least squares linear prediction problem, we need to
solve

(6.1) min IIAx bl12
X

where A E ,mn is a Toeplitz matrix with m _> n and the right-hand side vector b
follows the pattern of A, so that either [AIb is Toeplitz in backward prediction or [blA
is Toeplitz in forward prediction. For details on the least squares linear prediction
problem, see [9]. In this section, we show how to modify Algorithm STLN so that it can
treat possible errors in some (or all) elements of b in the same manner as errors in A are
treated. We will discuss the Toeplitz structure in detail since it appears in numerous
applications in signal processing, image processing, and system identification [1], [4],
[9], [15]. The results presented in this section on Toeplitz structure apply to Hankel
structure in a straightforward manner, since Hankel structure can be transformed to
Toeplitz structure via permutations.

We introduce a vector representing possible errors in selected elements of b.
This is similar to a representing errors in A. Suppose different errors can occur in
q2

_
m) elements of b, specifically, in the elements b, j 1,...,q2. The error

vector/ E }q2l represents the error in b, j 1,...,q2. The relation between
and b is given by a matrix P0 ’, so that error in b is the same as P0/. The
matrix P0 consists of only zeros and ones: the element Pj of P0 is one if y is the
error in b; otherwise, it is zero. Note that every column of P0 contains exactly one
nonzero element.

Initially, E, c and are all zero, and the new residual r b-Ax. In general,

P(a, , x) (b + Po) (A + E)x b- (Ax + Xa) + Po r + Po.
In ideal situations, we can impose the requirement that P 0 since P0/ can play the
role of the residual vector r Po b- (A + E)x. However, this may not always
be possible, due to the special structure that is imposed on E and P0/3.

When the structures imposed on E and P03 are such that P can be zero, the
STLN solution that preserves the structure in b can be stated as

(6.2) min DlC
e=0,a,,x D2/ p

for some diagonal matrices D1 and D2. This constrained minimization problem can be
restated in different ways. We use the weighting method for the equality constrained
least squares problems that transforms (6.2) into an unconstrained problem

(6.3) min DlOa,, D2/ p
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ALGORITHM STLNB
Input A Structured Total Least Norm problem (1.2), with specified matrices A, D,
P0, vector b, and tolerance e.
Output Error matrix E and error vector with the given affine structure in

[E P0] vector x, and STLN error.
Begin

1. Choose a large number w.
Set E 0, c 0, 0, compute x from (2.5) and X from x, and set
’=b-Ax.

2. repeat

(a) minimize D1 0 0 A + Dla
Ax,Aa,A 0 D2 0 Ax D2/ p

(b) Set x := x + Ax, a := a + Aa,/3 :=/ + A/.
(c) Construct E from a, and X from x. Compute (b + Po)- (A / E)x.

unti (ll xll, I1  11, II Zll <
End

where w is a large number [2], [16]. It can be shown that for p 2 when w approaches
infinity, the solution for (6.3) converges to the solution for (6.2) when the constraint

0 can be satisfied [2], [8], [16]. Thus, by using a large weight w, we can obtain a
good approximation for the solution for (6.2) by solving the unconstrained problem
(6.3). For possible numerical problems associated with large w, see [2], [16].

The algorithm is summarized in Algorithm STLNB. When there is no structure
imposed on b, we can simply choose 3 E N’I to represent the perturbation on all
the elements of b, and P0 I accordingly. Therefore, Algorithm STLNB can handle
the problems that can be solved by Algorithm STLN, although Algorithm STLN will
be more efficient when there is no structure on b.

For the linear prediction, where [A[b] or [b]A] is Toeplitz and all the diagonals
are subject to error, it is always possible to find a Toeplitz perturbation [E P0/ such
that

b + P03 E Range(A + E).

Therefore, will become zero when the solution is obtained. Also, we can reformulate
(6.2) into (6.3).

We will discuss the backward prediction only since the same results hold with
forward prediction as well. When we need to impose Toeplitz structure on [AIb], Step
2(a) of Algorithm STLNB can be further simplified since perturbation in b can be
represented using the perturbation in A, except for its first component. Specifically,
if E is a Toeplitz matrix with its first column Jan’-"On+m--1]T and its first row
[On" 02 01] i.e.,

E Toeplitz([an... an+m_]T, [a...a2 a]) with a [a a2...a.., an+m-]T,
Po I with /3 [/1 2"’" 3m]T,

then since 3i oi_1, 2,..., m, we have

(6.4)
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where

Olx(_l)i0 I(ra_l) x (_i)
01xn

0(m--1)xn
E mx(m+n-i)and (1 0

From (6.4) and

XAa PoA + (A + E)Ax (X Po)Aa + (A + E)Ax A/i

Step 2(a) of Algorithm STLNB is simplified to

minimize
Aa,Ai,Ax

+ Da

where D2 diag(2, 3, n + 1, n + 1, ,3, 2, 1) E (m+n--1)(m+n--1), when all m+
n- 1 diagonals of A are different and subject to error. Then in Step 2(b), 3 is modified
so that 3 a_l for i 2,..., m and/l :=/31 + A/31.

7. Computational results. The STLN algorithm has been implemented in
MATLAB in order to investigate its computational performance. Each program for
a different norm is denoted with the suffix p as STLNp with p 1, 2, oo. The com-
putational testing has included over 200 relatively small problems with m _< 25 and
n < 21. In all cases, A has full rank. These computational tests represent a prelim-
inary study of the effect of structure, initial choice of x, and the magnitude of the
minimum norm on the algorithm’s behavior.

7.1. Convergence of STLN algorithm. The numerical results obtained were
consistent in showing that for each problem the STLN algorithm converged rapidly
to a minimum solution for the problem. Since the function being minimized (as given
by (1.2)) is not convex, there is no guarantee of convergence to a global minimum
(for p-- 2, convergence to a local minimum is discussed in 4). Typically, the STLN
algorithm starts with x as given by (2.5). Other initial values of x were also used
in some cases in order to test the convergence. In every such case, the algorithm
converged to a minimum value that was independent of the initial x. As a further
confirmation, the Hessian matrix H(y), as given by (4.5), was computed when the
algorithm terminated, and was always found to be positive definite.

The convergence rate appears to be independent of problem size (over the range
studied), but does depend on the size of the minimum norm. Specifically, a smaller
minimum norm results in faster convergence. To illustrate the convergence, the results
for two different problems will be summarized. These will be denoted as Problem I
and Problem II which are defined as follows.

Problem I.
rn=6, n=4, q=4.
Matrix A Toeplitz(col, row)

col=[ -3 7 10 -1 0
Matrix E Toeplitz(col, row)

col=[ O O2 O3 O4 0
Two values of b were used:

b(1)=[ -12 25 62 -59
b(2)=[ -12 25 62 -59

0 ]T, row--[ --3 0 0 0 ],

0 ]T, row:[ al 0 0 0 ],

16 100 ]T
9 122 IT.
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rnorm
Enorrn
Tnorm

X2

X3

X4

TABLE 7.1
Minimum norms and x for Problem I.

b(1)
LS TLS STLN2

8.2310"1 6.14 10-7.0810-2

7.1110-2
0

8.2310-1

4.0292
0.9056
-5.0122
9.5310

4.0292
0.9058
-5.0126
9.5314

2.20x 10-z

1.0910-1

1.1110-1

3.9638
1.0090
-5.1025
9.5596

STLNc
0

7.2410-2

7.24 10-2

3.9652
1.0058
-5.1289
9.5937

rnorm 10 45’
Enorm
Tnorm 10.445

Xl 3.4739
x2 1.7889
x3 -6.3357
x4 11.157

TLS
5.72x10-z

7.72x10-I

7.74xI0-I

3.4650
1.8252
-6.3864
11.221

b(2)

STLN2
5.359 i0-

1.432
1.529
4.3948
0.2927
-5.0594
10.924

STLN(x)
0

1.136
1.136
4.2865
0.0489
-4.994
11.017

Problem II.
m 9, n 6, q 4.
Matrix A Toeplitz(col, row):

col= [3 -1 -6 2 5
row= [3 -6 2 0 8

Matrix E Toeplitz(col, row):
col= [0/3 04 0 0 0
row--[ OZ3 OZ2 C1 0

b--[ 62 62 5 22 -65

0 0

-60 -10

0 0]T,

86 101 T

Note that in Problem I the matrix E has the same nonzero diagonal patterns as
A, whereas in Problem II, E has only four nonzero diagonals. This means that in
Problem II, only those four diagonals of the Toeplitz matrix A + E can change. Also
as shown in Table 7.1, the vector b() is more closely approximated by the columns of
A than is the case for b(2).

To illustrate the structure of the matrices Pi, i 1,..., m, the matrices P1 and
P2 for Problem II are now given:

0 0 1 0 0 0 0 0 0 1 0 0

P1-
0 1 0 0 0 0

and P2-
0 0 1 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

The following solutions were obtained for these problems:
Least squares (LS),
Total least squares (TLS),
Structured total least norm (STLN), for p 2 and p 1,

The LS and TLS solutions were obtained with MATLAB using the QR decomposition
and the SVD, respectively. The STLN solutions were obtained using Algorithm STLN
given in 2.
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For p 2, Step 2(a) of the algorithm computes an LS solution. For p o,
Step 2(a) is essentially the solution of the LP (5.2) in 5. The computed results for
Problem I, using these different approaches, are summarized in Figs. 7.1 and 7.2 and
Table 7.1.

(a) TNerror (b) MaxSS
10 10

x: Problem Ib 1, p=2
o: Problem Ibl, p=inf

10

l0

10
-2

10
-4

10
6

10
-8

10

x: Problem Ib

*: Problem Ib2

+

:3 3 4 5

10

10
-2

10
-4

10
-6

10
-8

10
"10

10
-10

0 8
Iteration Number

*: Problem Ib2, p=2

+Problem
II, p=2

.
4 6

Iteration Number

FIG. 7.1. (a) Convergence of total norm to STLN with p 2. (b) Convergence of step size.

Figure 7.1(a) shows the convergence of the STLN algorithm to the minimum value
of the total norm (TN), as given by (1.2). This minimum value computed from the
STLN algorithm is the STLN. Figure 7.1(a) shows the value of the TNerr at each
iteration of the STLN algorithm, where

TNerr TN- STLN.

The convergence (using p 2) is shown for four different cases: Problem Ibl (Problem
I, with b b(1)), Problem Ib2 (Problem I, with b b(2)), and Problem II with two
different initial values of x. The initial value a 0 was used for all cases. These
results show convergence in three iterations to TNerr _< 5 10-7, for both Problems
Ibl and II, even when the initial TNerr is very large (,100). The large initial value
of TNerr is obtained by using an initial value of x very different from its converged
value. The smaller initial TNerr shown for Problem Ii was obtained by using x xt8
as the initial value, where xts is the LS solution.

Convergence for Problem Ib2 is seen to be significantly slower, with four iterations
needed to obtain TNerr 10-4, from an initial TNerr 103. Essentially the same
convergence rate was obtained for Problem Ib2, starting with an initial TNerr - 10,
obtained with x xt. To avoid complicating the figure, this last case is not included
in Fig. 7.1(a).
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In order to understand these convergence results, it is important to note that
both the STLN and the minimum residual norm are at least ten times greater for
Problem Ib2 than they are for Problem Ibl. These values are given in Table 7.1, to
be discussed shortly.

A closely related aspect of the convergence of the STLN algorithm is given in Fig.
7.1(b), which shows the rate of decrease of the step size with iteration number. For
the purposes of this graph the maximum step size (MaxSS) is defined as

MaxSS mx(llzll, IIzxll},
and is shown as a function of the iteration number. This is a more sensitive measure
of convergence, since small changes in c and x may continue even when TNerr is very
small. This is most likely to occur when the minimum of TN is very flat.

The results for a total of six cases are presented in Fig. 7.1(b). These results
include the four cases shown in Fig. 7.1(a) and, in addition, Problem Ibl, with the
initial value of x xts, and Problem Ibl, using the L norm with an initial value
of x given by (2.5) with p oe. The results shown in Fig. 7.1 are typical of all the
problems solved by the STLN algorithm. For all the problems we tested, the STLN
algorithm converges to the global minimum from the chosen initial value of x, and the
convergence rate is independent of the norm used (note that the data for Problems
Ibl (p 2 and p oe) and II all lie on the lowest curve of Fig. 7.1(b)). The conver-
gence rate is second order for small residual problems, and apparently superlinear for
larger residual problems (compare Problems Ibl and Ib2). The minimum norm for all
problems tested (except Ibm) was similar to that in Ibl and II, and all these problems
converged in, at most, six iterations.

These computational results are consistent with the analysis given in 4. The
dependence of the convergence rate on the residual minimum norm is clearly shown
by reference to Table 7.1, to be discussed below. A more complete understanding of
this dependence requires further investigation, both theoretical and computational.

7.2. Comparison of STLN with LS and TLS. A direct comparison of the
STLN (p 2) solution with the TLS solution, for Problem II, is shown in Fig.
7.2. For this problem the matrix E is Toeplitz, with only four nonzero diagonals.
The computed matrix E is shown for the TLS solution and the STLN solution. As
expected for the TLS solution, all elements of E are nonzero, and it does not have
a Toeplitz structure. That is, the TLS solution allows all elements of the matrix A
to change. This is in contrast to the STLN solution where only the four designated
diagonals are allowed to change, so that A/E preserves the original Toeplitz structure
of A.

Finally, the computed norms for Problems Ibl, Ibm, and the corresponding z
vectors are given in Table 7.1. This table compares the minimum norm solutions
obtained by LS, where E 0; by TLS, where all elements of E can change; and by
the STLN algorithm (for both p 2 and p ee), where only the specified elements
of E can change. For each case, the following three norms are tabulated:

(7.3)
Tnrm-

and

It should be noted that for each problem the Tnorm satisfies the inequality

(7.4) TLS _< STLN2 _< L8.
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ETLS

ESTLN2

--4.5 x 10-3 --7.7 x 10-3 4.0 x 10-6

--1.4 x 10-3 --2.4 X 10-3 1.2 X 10-6

3.7 X 10-3 6.4 X 10-3 --3.3 X 10-6

--1.5 x 10-4 --2.6 X 10-4 1.4 X 10-7

--2.2 x 10-3 --3.8 x 10-3 2.0 x 10-6

--5.5 X 10-3 --9.5 X 10-3 4.9 X i0-6

--6.8 X I0-3 --1.2 X 10-2 6.0 X 10-6

8.0 X 10-4 1.4 10-3

--2.6 x 10-3 --4.5 X 10-3

7.9 x 10-3 9.1 x 10-3 9.1 x 10-3 \
2.4 x 10-3 2.8 x 10-3 2.8 10-3

--6.5 X 10-3 --7.5 X 10-3 --7.5X 10-3

2.7 X 10-4 3.1 X 10-4 3.1 X 10-4

3.9 x 10-3 4.5 X 10-3 4.5 X 10-3

9.6 X 10-3 1.2 X 10-2 1.1 X 10-2

1.2 X 10-2 1.4 X 10-2 1.4 X 10-2

--7.1 x I0-7 --1.4 i0-3 --1.6 10-3 --1.6 10-3

2.3 x I0-6 4.5 10-3 5.2 10-3 5.2 10-3 )
--2.6 x I0-2 -1.6 I0-3 2.0 10-2 0 0 0
6.5 x 10-2 -2.6 x 10-2 -1.6 10-3 2.0 10-2 0 0

0 6.5 x 10-2 -2.6 x 10-2 --1.6 x 10-3 2.0 x 10-2 0
0 0 6.5 x 10-2 -2.6 x 10-2 -1.6 x 10-3 2.0 x 10-2

0 0 0 6.5 x I0-2 -2.6 x I0-2 --1.6 10-3

0 0 0 0 6.5 X 10-2 --2.6 X 10-2

0 0 0 0 0 6.5 x 10-2

0 0 0 0 0 0
0 0 0 0 0 0

FIG. 7.2. E matrices obtained by TLS and STLN2 for Problem II.

This is the expected result, since TLS is unconstrained (all elements of E can change),
STLN is partially constrained (only specified elements of E can change), and LS is
completely constrained (E 0). Also, the minimum residual for Problem Ib2 is at
least ten times greater than it is for Problems Ibz and II, which seems to be the
significant property affecting the convergence rate.

In addition to the computational convergence of the STLN algorithm, the prop-
erties of the solution obtained were investigated. In particular, the vector x and error
matrix E obtained were compared for LS, TLS, and STLNp, for p 1, 2, oo. There
are a number of ways in which this comparison can be made. The comparison used
is based on the assumption that there exists a "correct" structured matrix Ae and
vector be, such that

(7.5) Aexe be

for some "correct" vector xe. In other words, error-flee values exist such that the
overdetermined system has a solution xe, with zero residual. The actual data contains
noise so that a perturbed (but structure preserving) matrix Ap md vector bp are
known. The objective is to get the "best" solution xp to the perturbed system Apx
bp and, to the extent possible, reconstruct the matrix Ae and vector be from the noisy
data. Specifically, the error matrix E and residual vector r are computed so that

(7.6) (A + E)x b r.

This is done by minimizing the appropriate norm of E and r.
The test problems are constructed so that Ae, be, and xe are known. Then random

perturbations are generated to give Ap and bp, so that A and b preserve the same
structure as Ae and be. The matrix E and r, Xp satisfying (7.6) are then computed
via LS, TLS, and STLN.

A comparison of these errors for LS, TLS, and STLN was made for three different
types of structured problems.

1. The matrix A and vector b are unstructured, but errors can occur only in
certain elements.
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TABLE 7.2
Solution accuracy, A and b unstructured, m 20, n 16, q 4.

Method berr Aerr
LS 3.3e-4 6.5e-4
TLS 2.4e-5 6.5e-4
STLN2 2.2e-5 9.7e-5
STLN1 2.4e-5 7.6e-5
STLNc 2.6e-5 1.6e-4

Xerr
1.8e-3
1.8e-3
2.0e-4
2.1e-4
3.4e-4

TABLE 7.3
Solution accuracy, A Toeplitz, b unstructured, m- 11, n- 6, q- 4.

Method berr Aerr Xerr
LS 8.9e-3 1.2e-2 1.5e-2
TLS 5.3e-4 1.2e-2 1.5e-2
STLN2 4.3e-4 5.3e-4 7.3e-4
STLN1 5.5e-4 5.4e-4 3.5e-4
STLNo 5.7e-4 5.2e-4 5.9e-4

TABLE 7.4
Solution accuracy, [AIb Toeplitz, m- 14, n- 4, q- 17.

Method Aerr Xerr
LS 4.4e-3 1.4e-1
TLS 4.0e-3 2.4e-2
STLN2 3.8e-3 3.3e-3
STLN1 2.2e-6 7.2e-6
STLNo 4.7e-3 1.3e-1

2. The matrix A is Toeplitz, with b unstructured.
3. The matrix [AIb is Toeplitz.

To illustrate the comparison obtained with over 200 test problems, a typical
case has been selected for each type of structured problem. These typical cases are
presented in Tables 7.2, 7.3, and 7.4. The following quantities are tabulated to give
the measure of robustness [8]:

bpert Ilbp bcll2/llbcl]2,
Apert --IIAp A IIF/IIA IIF,

berr --IIbp r b=ll2/llb l]2,
Aerr llAp + E- AcllF/I]dcllF,

Table 7.2 gives the comparison for A and b unstructured, with all ,elements of b
and four elements of A perturbed, and m 20, n 16, and q 4. The values of
bpert 2.4e-5 and Apert 6.5e-4 were used. The matrices Ac and Ap are dense,
but E is sparse with only four nonzero elements, for the STLN solutions. The .matrix
E is zero for LS and dense for TLS.

Table 7.3 gives the comparison for A Toeplitz, and b unstructured, with m 11,
n 6, and q 4. The matrices Ac and Ap are both Toeplitz, and E is Toeplitz
with four nonzero diagonals for the STLN solutions. The matrix E is zero for LS and
dense for TLS. The values of bpert 5.2e-4 and Apert 1.2e-2 were used.

Table 7.4 gives the comparison for [AIb Toeplitz, with m 14, n 4, and



STRUCTURED TOTAL LEAST NORM PROBLEMS 125

q 17. The problem presented was selected to illustrate the performance of the STLN
algorithm with an outlier in the data. In addition to small random perturbations in
each diagonal of [A bl, a much larger error was introduced in one of the diagonals.
The small random perturbations gave Apert 2.1e-6 and the exact data with outlier
only gave Apert 5.1e-3. The berr is included in Aerr for [AIb Toeplitz. The matrix
E is zero for LS and dense for TLS. The most significant result shown in Table 7.4 is
that STLN1 is essentially unaffected by the outlier. Note that the STLNoc solution
is affected most by the outlier.

The results presented in Tables 7.2, 7.3, and 7.4 show that the errors in the STLN1
and STLN2 solutions are significantly less than in the LS and TLS solutions. Similar
results were obtained for all structured problems of these types tested.

8. Conclusions and future work. A new algorithm has been presented for
solving an important class of problems related to TLS. The main new features of this
approach are that it preserves the problem structure, and also permits the minimiza-
tion of error in different norms. Both the theoretical analysis and the computational
results show that the STLN algorithm is an efficient computational method for prob-
lems with a special structure, or where the number of elements with possible error (in
the matrix A) is not too large. The ability to minimize the error in norms other than
the 2-norm is also important, since we believe this will give more robust solutions in
certain cases. When the data are from the complex field, the presented algorithms can
be used in a straightforward way for the 2-norm. For the 1-norm and cx)-norm with
complex data, the STLN problem will require the solution of a nonlinear programming
problem rather than linear programming.

In order to more fully investigate the potential of the STLN formulation and
algorithm for a range of applications, a number of areas need further study. Future
work on STLN will include computational testing of much larger problems arising in
important applications where the matrix A has a special, or sparse structure, and
theoretical and computational analysis of the effect of the magnitude of the minimum
norm on the convergence rate.
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SOLUTION OF VANDERMONDE-LIKE SYSTEMS AND
CONFLUENT VANDERMONDE-LIKE SYSTEMS*

HAO LU
Abstract. It is shown that the solution of Vandermonde-like systems and the solution of con-

fluent Vandermonde-like systems can be obtained by evaluation of certain polynomials and Hermite
evaluation of certain rational functions in terms of a J-match of polynomiMs, respectively. Based on
these results, the existence of an O(n log2 n) algorithm is shown for both Vandermonde-like systems
and confluent Vandermonde-like systems for the case where the polynomials satisfy a three-term
recurrence relation.

Key words. Vandermonde-like system, confluent Vandermonde-like system, J-match, compu-
tational complexity, divide and conquer
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1. Introduction. Let to,..., tp be p + 1 complex numbers, no,..., np be p / 1
Ppositive integers and p(A) (po(A),pl(A),...,pn_l(A))T, where n -i=oni and

P(A) {P0(A), Pl (A),...,P-()} is a basis of the linear space

_
[A] of all complex

polynomials of degree at most n- 1. The confluent Vandermonde-like matrix (see
[16]), denoted by Vc(p), is given by

(1) Vc(p) (B0, B1,..., Bp),

where and throughout the paper the row index and the column index of an n m
matrix run from 0 to n- 1 and from 0 to m- 1, respectively, and Bk is an n nk
matrix with (i, j) entry

In the case of no nl np 1, Vc(p) yields a Vandermonde-like matrix [10],
[15]. We denote the Vandermonde-like matrix by V(p). Consider Vandermonde-like
systems

(2) V(p)x-- b

and confluent Vandermonde-like systems

(3) Vc(p)x b.

These systems are associated with the construction of quadrature formulae [2],[13],
[18], [23] and the approximation of linear functionals [3], [27].

The Vandermonde-like matrix and the confluent Vandermonde-like matrix are
generalizations of the well-known Vandermonde matrix and the confluent Vander-
monde matrix [4], [8], [9], [20], [22], respectively. In the early 1970s, Bjhrck, Elfving,
and Pereyra presented some O(n2) algorithms for Vandermonde systems and confluent
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Vandermonde systems based on forward and backward recursion [4], [5]. In 1988 and
1990, Higham considered Vandermonde-like systems and confluent Vandermonde-likv
systems [15], [16]. He derived some O(n2) fast algorithms for both systems for the
case where the polynomials Po (,k), Pl (,k), Pn- (,k) satisfy a three-term recurrence
relation that generalizes previous methods for pk(,k) ,kk. In 1990 and 1994, I showed
that solution of Vandermonde systems and confluent Vandermonde systems can be
obtained by evaluating certain polynomials and certain rational functions [19], [20],
respectively. By incorporating fast polynomial arithmetic, it is shown that the number
of operations for solving Vandermonde systems in [19] and confluent Vandermonde
systems in [20] and [22] can be further reduced to O(n log2 n) and O(n logp log n), re-
spectively. Other O(n log2 n) algorithms for Vandermonde linear systems can be found
in [7] by Canny, Kaltofen, and Yagati and in [11] by Gohberg and Olshevsky. There
are a number of O(n2) fast algorithms for Vandermonde systems (see Trash [27], Tang
and Golub [26]) and Chebyshev-Vandermonde systems (see Reichel and Opfer [25],
Gohberg and Olshevsky [12]). For the numerical properties and stability of algorithms
for solving the systems, Gautschi estimated the condition number of Vandermonde-
like matrices for various choices of the polynomials P0(A),PI (),..., Pn--i() in 1983
[10]. Higham derived some error bounds for certain algorithms in 1987 and 1990 [14],
[16]. In [17] he proposed iterative refinement to enhance the stability.

The discussion of inversion of Vandermonde matrices, confluent Vandermonde
matrices, Vandermonde-like matrices, and confluent Vandermonde-like matrices can
be found in various sources. Formulas for the entries of the inverse of a Vandermonde
matrix were given by Macon and Spitzbart in 1958 [24] and by Traub in 1966 [27].
Later in 1988, Verde-Star considered structure and algebraic properties of the inverses
of confluent Vandermonde matrices [28]. The expression of inverses of confluent Van-
dermonde matrices is given in [20]. A number of fast algorithms for inversion are
available (see, for example, Traub [27] for Vandermonde matrices, Gohberg and O1-
shevsky [12] for Chebyshev-Vandermonde matrices, and Calvetti and Reichel [6] for
Vandermonde-like matrices).

The purpose of this paper is to extend the structure results on solution of Van-
dermonde systems and confluent Vandermonde systems to Vandermonde-like systems
and confluent Vandermonde-like systems, respectively, and show the existence of
O(n log2 n) asymptotically fast algorithms for both Vandermonde-like systems and
confluent Vandermonde-like systems for the case where the polynomials P0(A),P (A),
.., Pn-() satisfy a three-term recurrence relation. The rest of the paper is organized

as follows. In 2, we introduce J-matches for bases of n- [A] and links of a basis
with its J-match. The existence of a J-match for any basis of -I[A] is established.
If the polynomials P0(,), Pl(), Pn- (,) satisfy a k-term recurrence relation, we
show an expression of the J-match for the basis P(A) {P0 (A), Pl (,), , Pn-1 ()}.
In 3, it is shown that the solution of Vandermonde-like systems can be obtained by
evaluating certain polynomials in terms of a J-match. By using this result it follows
immediately from [20] that the solution of confluent Vandermonde-like systems can
be obtained by Hermite evaluation of certain rational functions. In 4, we show the
existence of an O(n log2 n) algorithm for confluent Vandermonde-like systems for the
important case where the polynomial po(A),p(.X),... ,pn-(.X) satisfy a three-term
recurrence relation.

2. J-matches of polynomials. For discussion of Vandermonde-like systems
and confluent Vandermonde-like systems, we introduce J-matches for bases of the
linear space n-1 [A] in this section and show the existence of a J-match for any basis.
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Finally, we give an expression of the J-match for the basis {P0(A), Pl (/),..., Pn-1 ())}
if Pi(A), 0, 1,..., n 1 satisfy a k-term recurrence relation.

DEFINITION. Let P(A) {P0(A), Pl(A),..., Pn-I(A)} be a basis of the linear space
n-l[A] of all complex polynomials of degree at most n- 1. If there exists a basis
Q() {qo(),ql(),...,q-l()} of n-l[] and a polynomial p() such that

n-1

(4) P(A) p(#) E Pi(A)q,--i--1 (#),A # =0

Q(A) is called a J-match of P(A) and p(A) is called a link of {P(A), Q(A)}.
Some particular J-matches and links had been used earlier without a formal def-

inition. Lu [19] used the J-match {1, A-I} with the link p(A) A for Van-
dermonde linear systems. Verde-Star [28], Calvetti and aeichel [6], Gohberg and
Olshevsky [11] used the link w(A) (A- tl)(A- t2)... (A- t) for inversion of a
Vandermonde-like matrix with the nodes tl, t2,..., t. For any basis of ,-1 [A], we
now show the existence of a J-match.

THEOREM 2.1. For any basis P(A) {po(/),pl(/),...,Pn_l(/)} of the space
Cn_i [A], there exists a J-match Q(A) {q0(A), qi (A),..., qn-1 (A)} of P(A).

Proof. Let pi(A) n--1 )j n--1-=0 where i,j 0 1, n--j=o aij qi(A) bijAj aij,
1 are known and bii, i,j 0, 1,... ,n- 1 are unknown. Our task is to prove the
existence of bij, i, j 0, 1,..., n 1 such that Q(A) {q0 (A), ql (A),..., qn- (A) } is a
J-match of P(A). Let

n--1

E aijbn-i-l,k j, k O, 1,... n 1,
Cjk i=0

0 j =nor k=n.

A straightforward computation shows that

Therefore, there exists a polynomial p(A) such that (4) holds if and only if

(5) cj0 c0j, j 0, 1,...,n- 1,

(6) cj-l,k Cj,k-1, j, k 1, 2,..., n.
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Let

aoo alo

A
aol all

ao,n-1 al,n-1

an-l,0

an-l,1

an-l,n-1

bn-l,n-1 bn-l,n-2
bn-2,n-1 bn-2,n-2

bo,n-1 bo,n-.

bn-l,0
bn-2,o

b0,0

and C be an upper triangular Toeplitz matrix of the form

On-- an--2 CO

0 Cn--1 Cl

0 0 n--1

It is readily seen that (5) and (6) hold if and only if B is a solution of

(8) AX C.

It is straightforward to show that P(&) is a basis of n-l[A] if and only if A is
nonsingular. Hence, by choosing cn-1 0 equation (8) has the nonsingular solution
S. Then Q() {qo()), ql(),... ,qn-())} is a J-match of P() with a link p()

n--1 cii+l)-=o / do, where do is a constant. [:]

COROLLARY 2.2. Let Q()) be a J-match of a basis P(A) in (n-i[A] and p(A) be
a link of {P(A), Q(A)}. Then deg(p(A)) n.

Proof. From the proof of Theorem 2.1 that Q(A) is a J-match of P(A) if and only
if B is the solution of (8) with Ca--1 O. This implies that deg(p()) n. [:]

The important fact for Vandermonde-like matrices and confluent Vandermonde-
like matrices is that the polynomials Po(A),P (A),..., pn-l(A) satisfy a k-term recur-
rence relation. We derive an expression of the J-match for this case.

THEOREM 2.3. Assume that the polynomials pi(A) and qi(A) satisfy k-term re-
currence relations

(9) P0(A) 1, pi(A) 0, i < 0,

k-1

(10) pi(A) oi(,, i)Pi_l()) -- "ijPi_j()O, i- 1,... ,n,

(11) q0()) 1, qi(A) 0, i < 0,

k-1

(12) qi(A) i--- 1,...,n,
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where ai 0 for 1, 2,..., n. Then Pn() qn() and

(13)
n-1

oi+pi(A)q,-i-(I.t).
)- # =o

Proof. By using (9), (10), (11), and (12) a computation shows that

Pn() an (t).
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Setting A It shows that Pn(It) qn(It) and (13) follows immediately. D
Denote by Tk() and Uk() Chebyshev polynomials

Tk() cos(karccos()), Uk() sin((k + 1)arccos(A))
sin(arccos(A))

of the first and the second kind, respectively. It is well known that Chebyshev poly-
nomials can also be defined by the following three-term recurrence relations:

T0(A) 1, TI(A) A, Ti(A) 2ATi_I(A)- T-2(A), i _> 2,

U0(A) 1, UI(A) 2A, U(A)- 2AUi_I(A)- Ui-2(A), i >_ 2.

If we choose k 3, al 1, ai 2, "i2 -1 for i 2,...,n and /i 0
for i 1,2,...,n, then pi(A) Ti(A) for i 0,1,...,n and qi(A) Ui(A) for
i 0,1,...,n- 1. If we choose k 3, ai 2, /i 0 for i 1,2,...,n and
7i2 -1 for i 2,..., n, then pi(A) qi(A) Ui(A) for 0, 1,..., n. Therefore,
the equalities

Tn(,) Tn-,-, + T0( )V -iA It =o

Un(A) Un(,)
2 Un-i-1A- It =o

in [12] follow from Theorem 2.3 immediately.

3. Solution of Vandermonde-like systems and confluent Vandermonde-
like systems. In this section, we show that the solution of Vandermonde-like systems
and confluent Vandermonde-like systems can be obtained by evaluating certain poly-
nomials and certain rational functions, respectively.

LEMMA 3.1. Let P(A) {pi(,,) Ei=on-1 aijJ, i= O, 1, n- 1} be a basis of
Cn-i [A]. Then the confluent Vandeonde-like matrices defined by(l) are nonsingu-
lar g and only if ti tj, i j, i, j 0, 1, ,p and

detV(p) det(A) k! (ti t)
i=0 k=0 pi>jO

where.A is the matrix given by (7).
Proo A simple observation shows that

p() (po(),pl(),...,Pn_l())T AT(1,,...,n-1)T,
which implies that

p(#)(A) AV d#
(1,A, An-1)v.

Therefore, V(p) ATv, where V is the corresponding confluent Vandermonde ma-
trix. Applying Proposition 2.1 in [20] or the determinant of a confluent Vandermonde
matrix (see [1], pp. 121)shows that

det(V(p)) det(AT)det(V) det(A) H k! (t- t).
i=0 k=0 pE/>jE0
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As mentioned above, A is nonsingular since P(A) is a basis of ([n_l[/]. Hence, Vc(p)
is nonsingular if and only if t tj, j, i, j O, 1,..., p.

Let A(x) and B(x) be two polynomials. For convenience, quot(A(x),B(x)) de-
notes the quotient of polynomial division A(x)/B(x), i.e., ignoring the remainder
r(x): A(x) B(x)quot(A(x),B(x)) + r(x), in the rest of the paper. Now we show
our fundamental result on solution of Vandermonde-like systems if ti ty, i : j,
i,j 0, 1,...,p.

THEOREM 3.2. Let P(A) {Po(A),Pl(A),...,Pn-I(A)} be a basis of n-l[A],
Y(p) be the Vandermonde-like matrix defined by p(A)= (p0(A),pl(A),... Pn-l (A))T
via (1) with no nl np 1 and t tj, i j, i,j 0, 1,... ,p, and

l(/) (/k to)(/ tl) (/ tn-1),

i =0,1,...,n- 1.

Then the solution of the Vandermonde-like system

(14)

is given by

(15)

where

V(p)x b

x g(t)/l(t), i O, 1,...,n- 1,

g(A) quot(/(/)b(/k), p(A)),
n--1

i--0

Q(A) {qo(A),...,qn-l())} is a J-match of P(A) and p(A) is a link of {P(A),Q(A)}.
Proof. Let Ai, i 0,1,...,n-1 be n numbers such that Ai Aj, i j,

i, j 0, 1,..., n 1 and Ai tj, i, j 0, 1,..., n 1. Consider a matrix of the form

qn-1 (0) qn-2(AO) qo()O)

qn-l (,kl qn-2()l qo(,kl

qn-l(/n-1) qn-2(.Xn-1) qo(/n-1)

Applying Lemma 3.1 shows that V is nonsingular. Therefore, x is the solution of (14)
if and only if x is the solution of the following system:

(16) VV(p)x Vb.

Furthermore, using (4) shows that

VV(p)

[ P()O) p(tO) P()O) p(tl) P(/O) P(tn-1)
Ao to Ao tl /o tn-1

P(/I) p(to) p(,kl) p(tl) p(A1) p(tn-1)
/1 to 1 tl /1 tn-1

P(/n-1) --p(to) P(/n- 1) p(tl) P(/n- 1) --p(tn-1)

\ An--1 tO An--1 tl An--1 tn-1
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Denote d Vb (d0, dl,..., dn-1)T and

n-1

g()) E xili()),
i-0

n-1

f(ik) E P(t)xl(A),
i--0

f(),).

Clearly, di b(A), i 0, 1,..., n-1. It follows from Corollary 2.2 that deg(p(A)) n.
Since deg(f(A)) _< n- 1 and deg(F(A)) _< 2n- 1, we have

g(A) quot(F(A),p(A)).

On the other hand, (16) implies that

(17) F(Ai) l(Ai)di, O, 1,..., n 1,

and a simple calculation shows that

(18) F(ti) p(ti)xili(ti) p(ti)xili(ti) O, i O, 1,..., n 1.

Therefore, there exists a unique polynomial u(A) of degree at most n- 1 such that
F(i) l(i)u(i). It follows from (17) that

u()) l(,k)d/l(A) d, 0,1,...,n- 1.

Uniqueness of interpolating polynomial shows that u(A) b(A). Hence, we have
g(A) quot(/(A)b(A) p(A)) Furthermore, g(A) n-iE=0 xl(A) shows (15).

The result of Theorem 3.2 can be extended to confluent Vandermonde-like systems
by using the approach in [20].

THEOREM 3.3. Let Vc(p) be a confluent Vandermonde-like matrix defined by
p(A) (po(),pl(/),...,Pn_l())T via (1) with ti tj, j, i,j 0,1,...,p,
where P(A): {po(),pl(/),...,Pn-l()} is a basis of Cn-l[A], and

r(/) () to)TM () tl )nl () tp)np,

0, 1,...,p.

Then the solution of confluent Vandermonde-like system (3) is given by

1 (v(A)) (n-k)
(19) xi (k- 1)!(nj k)! rj())

j--1

mj + k -1, O < j < p, l < k < nj, too-O, mj E nt,
t=0

where v() quot(r())b()),p()), b(), and p()) are the same as those in Theorem
3.2.

Proof. Under the assumptions of the theorem, Lemma 3.1 shows that V(p) is
nonsingular. The rest of the proof is essentially the same as that of Theorem 2.2 in
[20] by using Theorem 3.2 of this paper. []

Applying Theorem 3.3 shows the following structure result on inverses of confluent
Vandermonde-like matrices.
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COROLLARY 3.4. Let Vc(p) be a confluent Vandermonde-like matrix satisfying
the conditions of Theorem 3.3. Then Vc(p) is nonsingular and Vc(p) -i (vii), where

(20) v (k 1)!(nm k)! \r,()]
--tm

m--1

i= Enr+k-l’ l<_k<_nm, 0_<m_<p, j=0,1,...,n-1,
r---0

where uj(A) quot(q_j_l(A)r(A),p(A)), p(A), and q(A) are the same as those in
Theorem 3.2 and r(A) is given in Theorem 3.3.

Proof. The proof is essentially the same as that of Corollary 2.3 in [20] by using
Theorem 3.3. []

4. Computational complexity. In this section, applying Theorem 3.3 we show
the existence of an O(n log2 n) algorithm for the solution of Vandermonde-like systems
as well as for the solution of confluent Vandermonde-like systems if the polynomials
p0(/k),pl(/k),... ,P-i()) satisfy the three-term recurrence relation (9) and (10) with
k 3. We consider confluent Vandermonde-like systems only. Vandermonde-like
systems can be viewed as a special case of confluent one with no nl np- 1.

Define Pn(A) a(A -/)P-I(A) + /2Pn-2(A) with Cn : 0 and any constants
/3n and 7n2. Let qo (), ql (),..., qn() be the corresponding polynomials defined by
(11) and (12). Theorem 2.3 shows that Q(A) {aq0(A),a-lql(A),...
is a J-match of P(A) {po(A),pl(A),...,p-l(A)} and p(A) q(A) is a link of
{P(A),Q(A)}. Let q0(A) (1,0)T, q(/k) (qi()),qi_l(/k))T for i= 1,...,n. It
follows from (11) and (12) that q(A) can be represented by

q(/k) Aq-i AA_I... Alq0, i 1, 2,..., n,

where A is a A-matrix given by

A= I Ozn-iWl()-n-izt’l)l ")’n-i-}-2’2I0
and n+l,2 0. Denote (A) n-1’i=0 oz+lbq_i_2(/k) and c()- (b()),b())T It is
easy to show that

(:(/) Olboqn-1 ()) -+-"""-+- OZn-lbn-2ql (/) -- oznbn-lqo()(OlboAn-l A1 +... + On-lbn-2A1 + ab-lI)q0(A),

where I denotes the unit matrix of order 2. Denote

Dk(A) AkAk-l... A1, k 1, 2,..., n,

E(A) alboDn-1 -- + an-lbn-2D1 - anbn-lI.

It is readily seen that pn(A) qn(A) and b(A) are the (0,0) entries of On(A) and
E(A), respectively. Assume that n 2m for some positive integer m without loss of
generality. The following algorithm converts b(A) and pn() into the form hA.
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ALGORITHM CONVERT
Dli(A) Ai(A), Eli(A) an-i+lb-iI, i 1, 2,..., n

Fori=2:m+l
For j 1:2m-i+

Dij()) Di-l,2j-l(,)Di-l,2j()
Eij(A) Ei-l,2j(A)Di-l,2j-l ()) - Ei-1,2j-1())

endfor j
endfor i

It is straightforward to show that D(A) nm+,(A) and E(A) Em+,(A).
Let B(A) (fij (A)),=o be a polynomial matrix, where fii (A) is a polynomial of, and define deg(B()) maxo<i,j<kdeg(fij(;k)). Clearly, deg(Dij()) _< 2i- and
deg(Ei(A)) _< 2-1 1. If a standard fast polynomial multiplication based on the fast
Fourier transform (FFT) is used in Algorithm CONVERT, the number of operations
is bounded by

y y O(i2i) O(n log2 n).
i----1 j--1

With a straightforward modification of Algorithm 3.2 in [20], we can solve con-
fluent Vandermonde-like systems as follows.

ALGORITHM FSCVLS (a fast solver of confluent Vandermonde-like systems). Let
p(A) be polynomials satisfying the three-term recurrence relation defined by (9) and
(10) with k 3 and to, t,..., tp be p+ 1 distinct complex numbers. Based on Theorem
3.3, Algorithm FSCVLS computes the solution of confluent Vandermonde-like systems
V(p)x- b.

i--1Stage I: r,+y ti, mo O, mi Yk=o nk,

j--1,...,ni, i=0,...,p,
Toi A ri, i 1, 2,..., n, Sin1 {0, 1,...,p}
Compute Tyi Ty-,2i-lTy-l,2i for 1, 2,..., 2"-y and j 1,..., m
Perform CONVERT to obtain p(A) and b(A).
Compute rml quot(Tmlb(A),pn(A)).
rl TI

Stage II: For j -m"-l’m- [log(p + 1)] + 1
For 1" 1" 2m-j

if Sji {/} then
call SOLUTION(ryi, rji, a, n)
Xm+k-1 v,-k/(k-- 1)! for k 1,...,n

elseif Syi 0 for k 2i- 1, 2i
rj-l,k rji (modTj_l,k), j-l,k ri (modTj2_l,k)
endfor k
if r(2i-1)2- -tl and S then

call SOLUTION(ri, ri, at, nt)
Xml+k_ Vn,_k/(k- 1)! for k 1,..., n
Sj-1,2i-1 ={t: t e Sji and t < l}
Sj_l,2i={t: t e Sji and t > l}

endif
endif
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endfor i
endfor j
Algorithm SOLUTION(A(), B(), n, a)

for k 0,1,...,n- 1
Compute ..1. A(+k)(a) bk B(k)(a)ak --n+k)!
Solve triangular Toeplitz linear system
tri(ao, al,..., an-1)v (bo, bl,..., bn-1)T

end
where [x is the integer ceiling function of x and tri(ao, al,..., an-l) is t lower tri-
angular Toeplitz matrix of the form

tri(a0, al,..., an-l)

ao
al a0

an-1 a ao

The proof of the correctness of FSCVLS is essentially the same as that of Algo-
rithm 3.2 in [20]. The difference between two algorithms is that Algorithm 3.2 in [20]
uses preprocessing of polynomials to compute polynomial divisions

rj_l,k rji (modTj_,), rj_l,k r-ji (modTj2_l,k).

Using preprocessing of polynomials makes polynomial divisions involved in FSCVLS
fast, but we directly compute rj-l,k and Kj_,k by polynomial division in FSCVLS for
clarity and convenience. Following the proofs of Propositions 4.1 and 4.2 in [20], we
can show that the number of operations of FSCVLS, except operations of CONVERT,
is O(n log n logp) if fast polynomial multiplication and division are used. Therefore,
the Algorithm FSCVLS needs O(n log2 n) operations. Note that we can also construct
an algorithm for confluent Vandermonde-like systems with a straightforward modifi-
cation of Algorithm HERF in [22]. The computational complexity is also O(n log2 n).

Many computations in Algorithm FSCVLS can be omitted in practice for some
special points ti. For example, if we use Theorem 3.2 to Chebyshev-Vandermonde

(2i+) i 0, 1 n- 1. The solutionlinear systems with Chebyshev points, ti cos 2n
of the systems is deduced to FFT [21]. This yields an O(n log n) stable algorithm for
this important case. The implementation and numerical examples are given in [21].

It is readily shown the existence of an O(C(k)nlog2 n) algorithm for the case
where the polynomials Po(), Pl (),..., Pn- (/k) satisfy the k-term recurrence relation
(9) and (10) with a straightforward modification of the method in this section, where
C(k) denotes the number of operations for multiplication of matrices of order k 1.

5. Conclusions. The O(nlog2 n) algorithm in 4 remains a theoretical one.
Many open problems remain. From a practical point of view some O(n2) stable
algorithms hopefully can be constructed for Vandermonde-like systems and inversion
of Vandermonde-like matrices by using the results in 3.

Acknowledgment. I would like to thank Dr. Nicholas J. Higham and the ref-
erees for their useful comments that helped to improve the presentation.
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A SCHUR METHOD FOR LOW-RANK MATRIX APPROXIMATION*

ALLE-JAN VAN DER VEENt

Abstract. The usual way to compute a low-rank approximant of a matrix H is to take its
singular value decomposition (SVD) and truncate it by setting the small singular values equal to 0.
However, the SVD is computationally expensive. This paper describes a much simpler generalized
Schur-type algorithm to compute similar low-rank approximants. For a given matrix H which has
d singular values larger than e, we find all rank d approximants /:/ such that H-/:/ has 2-norm
less than e. The set of approximants includes the truncated SVD approximation. The advantages
of the Schur algorithm are that it has a much lower computational complexity (similar to a QR
factorization), and directly produces a description of the column space of the approximants. This
column space can be updated and downdated in an on-line scheme, amenable to implementation on
a parallel array of processors.

Key words, matrix approximation, rank revealing factorizations, subspace estimation
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1. Introduction. We consider the following problem" for a given matrix H E
Cmn and tolerance level e _> 0, describe all matrices/:/such that

(1) (a) IIH-/t/ll_<e,
(b) rank(/:/) d,

where d is equal to the number of singular values of H that are larger than e. (11
denotes the matrix 2-norm.) Such a matrix /?/ is a low-rank approximation of H
in 2-norm. Note that there are no approximants of lower rank than d, and that we
do not try to compute an approximant H of rank d that minimizes H- [-I II, but
rather one in which the approximation error is limited. These approximants can be
computed with significantly less effort.

One way to obtain an approximant that satisfies (1) is by computing a singular
value decomposition (SVD) of H:

H UEV* [U1 U2]

Here, U and V are unitary matrices, and E is a diagonal matrix which contains the
singular values ak of H. The matrices are partitioned such that 1 contains the
singular values that are larger than e, and E2 contains those that are smaller than
With this decomposition, a rank d approximant /:/ is
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This "truncated SVD" approximant is widely used and effectively obtained by setting
the singular values that are smaller than e equal to zero. It actually minimizes the
approximation error: [[H-/[[ ffd-bl ( e, and is optimal in Frobenius norm as
well. However, the SVD is expensive to compute, and much of the information that
it reveals is not even used. Often, we are not so much interested in the individual
singular vectors, but rather in the principal subspaces spanned by the columns of U
and V. As we show in this paper, it is indeed possible to obtain a parametrization
of these subspaces and of all rank-d 2-norm approximants. All necessary information
is gleaned from an implicit and nonunique factorization of HH* -e2I as

HH* 6.21 BB* AA* [A, B] invertible,

which is provided by a "hyperbolic" QR factorization of [6.I HI. Such a factorization
is similar to an ordinary QR factorization, except that it uses a matrix that is unitary
with respect to an indefinite inner product. Under additional regularity assumptions
on H, this factorization may be computed using a generalized Schur-type method,
which requires only about 1/2 m2n operations (elementary rotations) for a matrix of
size m x n. 1 The column span of the approximants is directly obtained from B and
A: it is proven that all suitable column spans are given by the range of

B AM, M -< 1.

The computation of an approximant itself requires an additional n x n matrix inversion
or a projection of H onto this subspace.

Continuing efforts on SVD algorithms have reduced the computational complexity
of the SVD to be mainly that of reducing a matrix to a bidiagonal form, which
is not much more than the complexity of a QR factorization. However, a remaining
disadvantage of the SVD in demanding applications is that it is difficult to update the
decomposition for a growing number of columns of H. Indeed, there are important
applications in signal processing (e.g., adaptive beamforming, model identification,
adaptive least squares filters) that require on-line estimation of the principal subspace
for growing values of n. A number of other methods have been developed that alleviate
the computational requirements, yet retain important information such as numerical
rank and principal subspaces. Some of these techniques are the URV decomposition
[1], which is a rank revealing form of a complete orthogonal decomposition [2], and
the rank revealing QR decomposition (RRQR), [3]-[8]; see [8] for a review. The URV
algorithm is iterative and requires estimates of the conditioning of certain submatrices
at every step of the iteration. This is a global and data-dependent operation--not a
very attractive feature. The SVD and URV decomposition can be updated [9], [1],
which is still an iterative process, although it has been shown recently that a simpler
scheme is feasible if the updating vectors satisfy certain stationarity assumptions [10],
[11]. An initial computation of the RRQR consists of an ordinary QR, followed by an
iteration that makes the decomposition rank revealing. As a one-sided decomposition,
the RRQR is easier to update than an SVD, but also requires (incremental) condition
estimations at each updating step.

An important aspect of the hyperbolic QR factorization is that, similar to a QR
factorization, it can be updated very straightforwardly for growing n. The rank of
the approximants (the dimension of the principal subspace) is updated as part of the
process without any condition estimation. Nonetheless, the method provides an exact

To set our mind, we usually assume that m

_
n, but all results remain true when m > n.
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error bound on the subspace estimates, in terms of the associated matrix approxi-
mation error e. Similar to the URV and the RRQR, the value of e must be fixed
beforehand. Another aspect is that the Schur method for computing the hyperbolic
QR factorization is a parallel algorithm with only local and regular data dependencies
and is very straightforward to implement on a systolic array of processors. The struc-
ture of the array is the same as that of the well-known Gentleman-Kung triangular
array for the computation of a QR factorization using Givens rotations [12]. One
negative aspect of the Schur algorithm is that it uses hyperbolic rotations, which are
potentially unbounded and could make the approximation scheme less robust than
the SVD or the URV. This is more a property of the implementation than of the
overall technique: it occurs only if certain submatrices have a singular value close to
e, and in these cases, a simple local pivoting scheme suffices to virtually eliminate any
risk of breakdown. Alternatively we may derive factorization schemes that minimize
the number of hyperbolic rotations.

1.1. Connections. Schur methods an sich are well known. Originally, Schur
devised this algorithm to test whether a polynomial is bounded within the complex
unit disc [13]. Schur algorithms occur in certain constrained interpolation problems
(viz. [14], [15]), rational approximation by analytic functions [16], factorization and
inversion of positive definite and later also indefinite Toeplitz matrices (viz. the review
in [17]), and have been generalized in a number of senses to non-Toeplitz matrices. A
generalization that comes close to the description here is by Dewilde and Deprettere
[18] for Schur-parametrizations and band approximations of positive definite matrices,
and by Diepold and Pauli [19], [20] for indefinite matrix cases. In the linear algebra
community, similar generalized Schur methods, known under other names, have been
used for the solution of positive definite systems [21], [22] and for the downdating
of QR and Cholesky factorizations [23], although the main emphasis has been on
hyperbolic Householder transformations for the same purposes [24]-[28]. The HR-
decomposition in [24], later known as the hyperbolic QR factorization (e.g., [29]), is
in fact precisely the tool we need.

The present application to low rank matrix approximation has been unknown so
far. It is derived as a special case of a new theory for model reduction of time-varying
systems [30], [31]. The time-invariant counterpart (approximation of a Hankel matrix
by one of lower rank) has been known for more than a decade and is widely used in
systems theory and control for model reduction and for solving Ha-control problems
(viz. [32], [33]). This theory goes back to the work of Adamjan, Arov, and Krein, in
1971, on the solution of the Schur-Takagi interpolation problem [16].

1.2. Structure of the paper. The remainder of the paper is organized as fol-
lows. Section 2 is a review of those properties of J-unitary matrices that we need
in this paper, such as the existence of a hyperbolic QR factorization. In 3, this
factorization is used to prove a basic version of the approximation theorem, and we
introduce a parametrization of all 2-norm approximants of rank d. Some values of the
parameters that lead to interesting approximants are discussed. The computation of
the factorization is the topic of 4. It is shown that the factorization can be computed
using a Schur-type algorithm, although certain extra conditions must be imposed on
the matrix H. We derive necessary and sufficient conditions so that the algorithm
does not break down, and discuss some simple pivoting schemes to alleviate these
conditions. Finally, in 5, the algorithm is applied to a test case to show the behavior
of some of the approximants and the effectiveness of the pivoting scheme.
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1.3. Notation. The superscript (.)* denotes complex conjugate transposition,
7(A) is the column span (range) of the matrix A, I, is the m m identity matrix,
and 0,n is an m n matrix with zero entries. At denotes the pseudoinverse of A.
At some point, we will use the notation A[] to be the submatrix of A consisting of its
first row through its ith row, and A[i,k to denote the first k columns of A[I.

2. J-unitary matrices. We review the definition and some properties of J-
unitary matrices, most of which are well known. A matrix O is J-unitary if it satisfies

(3) O*JO J, OJO*= J, where J [I -I

J is a signature matrix; the identity matrices need not have equal sizes. O is neces-
sarily a square matrix and invertible as well: O-1 JO* J. We partition O according
to J as

(4) O
21 22

The J-unitarity of O implies among others (a.o.) O2022 I + O2012. From this
expression, we derive in turn the properties

(5) (a) O22 is invertible, (c) O12021 < 1,
(b) 02 -< 1, (d) 011 (}120-21(21 1.

Indeed, (a) follows because 0 is also square, (b)is obtained from

(6) 02"021 + (02"0)(0102) I,

so that O2"O-21 <_ I, and (c) results from the same expression because O2"O21 > 0.
By elementary algebra, one verifies that the matrix

Oll --O-21021012O’21021 O12O-210-21 1
is in fact unitary, which implies (d).

Similarly, we have

(7) (a) Oll is invertible, (c)
(b) _< 1, (d)

o51o  < 1,
0210{-:012 -< 1.

inner product. Suppose that A, B, C, D are matrices, related as [C
The J-unitarity of O implies

Another important property of J-unitary matrices is the preservation of the J-
D] [A B]O.

AA*-BB*=[A B]J[A B]*
(8) =[A B]OJO*[A B]*

CC* DD*.

Motivated by this equation, we say that J associates a positive signature to the
columns of A, a negative signature to the columns of B, and likewise for C and D.
We will sometimes denote this in equations by writing / and over A and B.

So far, the signature matrix J in (3) was sorted: the diagonal first has all the
positive entries, then the negative ones. We will at some point also need unsorted
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signature matrices , which is any diagonal matrix with diagonal entries equal to +I
or -I. As a generalization of the definition in (3), we will say that a matrix is
(I, 2)-unitary2 with respect to signature matrices i, 2 if it satisfies

(9) O*JO J2, OJ20* J.
Again, ( is square and invertible: - 2*. Sylvester’s law of inertia claims
that the number of positive entries in J1 must be equal to the number of positive
entries in J2, and similarly for the negative entries. An unsorted signature matrix J
can always be sorted by a permutation matrix H such that J1 HJ1H is sorted.
If J2 H2J2II is also sorted and O satisfies (9), then actually J J2 =" J, and
O :- HI(H is J-unitary in the sorted sense of (3). The permutation, and hence O,
is not unique, but this is usually irrelevant. We work with O rather than in cases
where its partitioning into submatrices, as in (4), is important, but the properties (5)
are independent of precisely which O is chosen.

A matrix A is said to be J-nonsingular, with respect to a certain signature matrix, if AA* is nonsingular. It is immediate that if A is -nonsingular and ( is a
(1, 2)-unitary matrix, then A( is 2-nonsingular. The following basic result claims
that J-nonsingular matrices can be factored.

THEOREM 2.1. A matrix A m (m + n) is -nonsingular if and only if there
exists a signature matrix 2 and a (J1, J2)-unitary matrix 0 such that

(10) AO IX 0m], X’m m, invertible.

Proof. Assume that A is -nonsingular. Then we can factor AA* as

AA* X’X* X m m, invertible,

for some m m signature matrix 0’. This factorization exists and can in principle
be computed from an LDU factorization with pivoting, or from an eigenvalue decom-
position of AIA*. Since A is -nonsingular, it is also nonsingular in the ordinary
sense, so that there exists a matrix T (m + n) m, such that AT X. T is not
unique. Because X is invertible, we can take

T= A*(AA*)-X.
Using (AIA*)-I Z-*’X-1, it is directly verified that this T satisfies T*T ’.
The remainder of the proof is technical and shows that T can be extended to a square,
J-unitary matrix. From T*IT ’ it follows that the m columns of IT are linearly
independent. Taking any basis of the orthogonal complement of the range of J1T
gives a matrix K, with n independent columns, such that T*JK 0. The matrix

IT K] is invertible because it is square and its kernel is empty:

and, subsequently, it also follows that x2 0. It remains to normalize the columns of
K. Put

2 We will sometimes generically write J-unitary to avoid being overly detailed.
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N is nonsingular because IT K] is invertible, and we can factor it as N R*J’R.
Put

( IT KR-] 22 diag[’, "].
Then O is (J, Ju)-unitary and satisfies (10).

A recursive application of this theorem proves that, under additional conditions,
A has a triangular factorization.

COROLLARY 2.2. Let A" m (m + n) be Jl-nonsingular. Denote by A[il the
submatrix of A, consisting of its first rows. Then there exist a signature matrix J2
and a (J-, 2)-unitary matrix ( such that

AO IX Orehi, X: m m, lower triangular, invertible

if and only if A[i] is -nonsingular, for 1,..., m. If the diagonal entries ofX are
chosen to be positive, then X is unique.

Such a factorization was proven in [24] for square matrices A and upper triangular
X, but this result extends directly to the rectangular case. In [24], it was called the
HR-decomposition, and it is also known as the hyperbolic QR factorization [29].

3. Approximation theory.

3.1. Central approximant. For a given m n data matrix H and threshold
denote the SVD of H as in (2). Suppose that d singular values of H are larger than
e, and that none of them are equal to e. Our approximation theory is based on an
implicit factorization of

(11) HH* 2I BB* AA*

This is a Cholesky factorization of an indefinite Hermitian matrix. A and B are
chosen to have full column rank. They are not unique, but by Sylvester’s inertia
law, their dimensions are well defined. Using the SVD of H, we obtain one possible
decomposition as

HH* e2I U (E21 e2I)U + U2(E e2I)U
where the first term is positive semidefinite and has rank d, and the second term is
negative semidefinite and has rank rn- d. Hence, B has d columns, and A has m- d
columns.

To obtain an implicit factorization that avoids computing HH*, we make use of
Theorem 2.1.

THEOREM 3.1. Let H m n have d singular values larger than e and none equal
to e. Then there exists a J-unitary matrix 0 such that

(12) [eIm U]O--[A’ B’],

where A’ [A 0mxd], B’=[B Omxn-d], A:m (m-d), B’m x d, and [A B] is

of full rank.
Proof. The matrix [eIm HI is J-nonsingular; by assumption, e2I- HH* has d

negative, m- d positive, and no zero eigenvalues. Hence Theorem 2.1 implies that
there exists O’[eIm H]O IX 0mn]. The columns of Z are the columns of [A, B],
in some permuted order, where A, B correspond to columns of X that have a positive
or negative signature, respectively. After sorting the columns of [X 0] according to
their signature, (12) results.
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Note that, by the preservation of J-inner products (8), equation (12) implies
(11). From the factorization (12), we can immediately derive a 2-norm approximant
satisfying the conditions in (1). To this end, partition O according to its signature J
into 2 2 blocks, such as in (4).

THEOREM 3.2. Let H m n have d singular values larger than e and none equal
to e. Define the factorization [eIm HID [A’ B’] as in Theorem 3.1. Then

(13) /:/=

is a rank-d apvroximant such that H- [-I < e.

Proof. H is well defined because O22 is invertible (53). It has rank d because
B’ [B 0] has rank d. By (12), B’ elO12 + HO22; hence g-/2/= -eO1202.
It remains to use the fact that O120-21 is contractive (5c). El

We mentioned in the introduction that the column span (range) of the approx-
imant is important in signal processing applications. From Theorem 3.2, it is seen
that this column span is equal to that of B: it is directly produced by the factoriza-
tion. However, note that [A B] in (12) is not unique: for any J-unitary matrix
[A1 B1] [A BID1 also satisfies e2I- HH* A1A BIB, and could also have
been produced by the factorization. For example, for some choices of O1, we will have
7(B) 7(U1) and T(A) TO(U2). Using O1, we can find more approximants. A
parametrization of all 2-norm approximants is the topic of the following section.

3.2. Parametrization of all approximants. We will now give a formula of all
possible 2-norm approximants /2/ of H of rank equal to d; there are no approximants
of rank less than d. The formula is in terms of a chain fraction description. Similar
formulas frequently occur in constrained interpolation theory (see, e.g., [14], [15], and
references therein).

The set of all minimal-rank 2-norm approximants will be parametrized by matrices
SL :m n, with 2 2 block partitioning as

m-d(14) SL d

and satisfying the requirements

d n-d

[ (L)I1 (SL)12 ]("L)21 (SL)22

contractive: SL <-- 1,
block lower: (SL)12 O

The first condition on SL will ensure that H- -< e, whereas the second condition
is required to have/?/of rank d.

THEOREM 3.3. With the notation and conditions of Theorem 3.2, all rank-d
2-norm approximants [-I of H are given by

[-I (B’ A SL)(O22 O21SL) 1,

where SL satisfies (i): SL 1 and (ii): (SL)12 O. The approximation error is

(16) S := H -// (O11SL O12)(O22 O21SL)-1

Proof. The proof is given in the appendix. El
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By this theorem, an estimate of the principal subspace of H is given by 7(/7/)
T(B’-A’SL) 7E(B-A(SL)ll), for any valid choice of SL. Note that (SL)ll ranges
over the set of all contractive (m- d) d matrices, so that all suitable principal
subspace estimates are given by

T(B AM), M <- 1.

The distance of a subspace estimate with the actual principal subspace, 7E(U1), is
measured only implicitly, in the sense that there exists an approximant /-/ with this
column span that is e-close to H. Actually, for each subspace estimate there are many
such approximants, since the subspace estimate only depends on (SL)11, whereas the
approximant also depends on (SL)21 and (SL)22.

The choice of a particular approximant H, or subspace estimate ?Z(/:/), boils down
to a suitable choice of the parameter SL. Various choices are interesting.

1. The approximant H in Theorem 3.2 is obtained by taking SL O. This
approximant is the most simple to compute; the principal subspace estimate is equal
to the range of B. The approximation error is given by ell O120{21 ]1. Note that, even
if all nonzero singular values of H are larger than e so that it is possible to have
/2/ H, the choice SL 0 typically does not give zero error. Hence, this simple
choice of SL could lead to "biased" estimates. This is confirmed in the simulation
example in 5 and occurs in cases where ad is close to e.

2. As the truncated SVD solution satisfies the requirements, there is an SL
that yields this particular solution and minimizes the approximation error. However,
computing this SL requires an SVD or a hyperbolic SVD [29].

3. It is sometimes possible to obtain a uniform approximation error. First write
(16) in a more implicit form,

e-ISG ] [ O11 O12 J [ SL ]-G O21 O22 -In
where G is an invertible n n matrix. This equation implies

G*(e-2S*S- In)G SSL In.

Suppose m _< n. If we can take SL to be an isometry, SLS Im, then rank(SSn
In) n- m. It follows that e-IS must also be an isometry, so that all singular
values of S H-/2/are equal to e: the approximation error is uniform. SL can be
an isometry and have (SL)12 0 only if d >_ m- d, i.e., d >_ m/2. In that case,
we can take, for example, SL Jim 0]. This approximant might have relevance in
signal processing applications where a singular data matrix is distorted by additive
uncorrelated noise with a covariance matrix cr2Im

4. If we take SL O-11012, then we obtain/?/= H and the approximation error
is zero. Although this SL is contractive (viz. (7)), it does not satisfy the condition
(SL)12 0, unless d m or d n. Simply putting (SL)12 0 might make the
resulting SL noncontractive. To satisfy both conditions on SL, a straightforward
modification sets

[(17)

The corresponding approximant is

(IS)

On-d (O11012)21 0

I 0 -1o [o o/_/(1) :__ (B A,O-11012 [o 0])(022 --O21 12 ])
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and the corresponding principal subspace estimate is given by the range of

(19) B(1) ": B- A(O-11012)11
Both the subspace estimate and the approximant itself can be computed by a Schur
complement formula. The subspace estimate is "unbiased" in the sense discussed
below, and is usually quite accurate when ad is not very close to e, as is shown in
simulation examples (5). The approximation error is determined by

(20) S H-/_/(1) O12 0d I 0

--In-d (022 O210-11012 [0 0])-

This shows that the rank of S is at most equal to min(rn, n- d). If rn n, then
the rank of S is rn- d, i.e., the error has the same rank as a truncated SVD solution
would give.

5. In order to improve the approximation error, we propose to take (SL)ll
(O-11012)11, as in the previous item, and use the freedom provided by (SL)21 and
(SL)22 to minimize the norm of the error. The subspace estimate is only determined by
(SL)11 and is the same as before. Instead of minimizing in terms of SL, which involves
a nonlinear function and a contractivity constraint, we make use of the fact that we
already know the column span of the approximant- we are looking for/2/= B(1)N,
with B(1) given by (19) and N" d n a minimizer of

min H- B(1)N II.N

A solution is given by N B(1)tH, and the resulting approximant is

(21) /:/
=./:/(),

the projection of H onto T(B(1)). Although we do not compute the SL to which this
approximant corresponds, the residual error is guaranteed to be less than or equal to
e because it is at most equal to the norm of S in (20). Hence, there will be some SL
that satisfies the constraints, although we never compute it explicitly. For this SL, the
rank of the residual error is always at most equal to m-d, the rank of I,-B(1)B(1).

One other important feature of the subspace estimate B(1) in (19) is that it is
unbiased, in the following sense.

LEMMA 3.4. 7(B(1)) C T4(H).
Proof. From [(A 0) (B 0)] [A’ B’] [eI H]O, we have

[A 0] Oll --HO21,
[B 0] eO12 +HO2.

Hence

[g(1) 01--[g 0]- [A 0]O-11012

(O12 -- HO22) (Oll -- HO21)O-11012 [ I

H(O [ z 0] + HO [ 0

0]
I + eO12
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so that

B(1) --H(O22-O210’?O12)[I]0 D

With (7d), we also have

(22) II B(1) II -< II H II.
This shows that, although J-unitary matrices may be large, this particular subspace
estimate is bounded in norm by the matrix it was derived from.

4. Computation of . In this section, we consider the actual construction of
a J-unitary matrix such that

[eI H] O [A’ B’] J=[/’ ]
The proof of Theorem 2.1 provides a technique to compute O, but the construction
is global and not really attractive. We are looking for algorithms that do not square
the data and that allow easy updating of the factorization as more and more columns
of H are included (growing n). O will be computed in two steps: O H, where
is a (J, 2)-unitary matrix with respect to J and an unsorted signature 2 and is such
that

+ +/- +/-
(23) [eIm H](= X Omn], X’mm.

II is any permutation matrix such that IIII* J is a sorted signature matrix. The
latter factorization can be viewed as a hyperbolic QR factorization, in case X has a
triangular form, and can be computed in a number of ways. Hyperbolic Householder
transformations have been employed for this purpose [24], [29], zeroing full rows at
each step, but the most elementary way is to use elementary rotations to create one
zero entry at a time, like Givens rotations are used for QR factorizations. Such
techniques are known as (generalized) Schur algorithms because of their similarity
to the Sehur method for Toeplitz matrices. In contrast to hyperbolic Householder
transformations, they allow for straightforward updating and downdating. The main
differences with the QR factorization and also with the usual definite Schur algorithms
(for which e:I-HH* > 0) are that here the basic operations are J-unitary elementary
rotations of up to six different types and we must keep track of signatures to determine
which type to use.

The recursive construction of in this way is not always possible, unless extra
conditions on the singular values of certain submatrices of H are posed. This is a
well-known complication from which all indefinite Schur and hyperbolic Householder
methods suffer and that, in its ultimate generality, can be treated only by global
matrix operations (as in [19], [20], or as in the proof of Theorem 2., which uses
an altogether different algorithm). The exceptions occur only for specific cases, and
simple pivoting schemes (column or row permutations) are virtually always adequate
to eliminate this problem. We will briefly go into these aspects in 4.5.

4.1. _Elementary rotations. At an elementary level, we are looking for 2 x 2
matrices such that, for given scalars a, b,

Ix 0],
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where x is some resulting scalar. The matrices are J-unitary, but with respect to
unsorted signature matrices )1, 2"

The signature matrix jl is specified along with a, b and signifies the signature of [a b];
)2 is a resulting signature matrix to be computed along with and x, and will be
the resulting signature of Ix 0]. There are two rules that determine )2. From the
J-unitarity of 0, we have that

[a b])[a b]* x()2)x*

= (2)l=sign([a b][a b]*).
We must assume at this point that the expression in brackets is not zero, so that (2)
is either /1 or -1. The second diagonal entry of )2 then follows from the inertia rule:
by congruence, the number of positive entries in jl is equal to the number of positive
entries in j2, and similarly for the negative entries.

Depending on the signatures, we choose one of the following types of elementary
(,)2)-unitary rotations (taking Isl 2 + Icl 2 1 throughout).

1. 1 --1 2 --1 --8* 1 C

2. .1 --1 1 = 0
1 --S

a. .1 1 J --1 = 1 --S

4 " 1 1 = --S* 1 e"

15. .1 1 1 = S* C

6. 1=I--1 ] [--1 ]-1
)2 -1 = s* c

The first case is the standard elementary hyperbolic rotation. The next three cases
are obtained from this case by row and column permutations. Cases 5 and 6 are not
hyperbolic, but ordinary elliptic rotations; however they are (l,)2)-unitary nonethe-
less. These six cases are enough to consider because every possible signature pair
(),)2) is covered. With )1 and )2 known, we select the appropriate type of rotation
matrix, and the rotation parameters s and c follow subsequently from the equation
[ ] [ 0]

4 (I, 1 > Ibl):
2, 3 (1 1 < Ibl):

Cases 5, 6:

s b/a,
s a/b,
s b(a*a + b’b) -1/2

c (1 s* s)/2
c (1 s’s)/2
c (1- s*s)/

4.2. Indefinite~ Schur algorithm. To compute_ the factorization (23), elemen-
tary rotations 0 are embedded in plane rotations O(i,k) which are applied to the
columns of [eI HI in the same way as Givens rotations are used for computing a
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QR factorization. Each plane rotation produces a zero entry in H; specifically, ((i,k)
annihilates entry (i, k). A difference with QR is that we must keep track of the signa-
tures associated with the columns of the matrix to determine which type of rotations
to use. The general scheme, however, is as follows.

+ + +

/-/1
0

+ +

x __e

+ +

x

._

x x x x] (.,,.)
X X X X J --e.

X X X X

0 X X X ] (.,.)
x x x x ]X X X X

0 x x x]
0 x x x Jx x x x

-t- -I-
0 0 0 O]
0 0 0 0 =IXJ0 0 0 0

(Except for the first matrix, the signatures of the columns in the above matrices
are exemplary since they are data dependent.) The pivot elements at each step are
underlined; these entries, along with the signatures of the two columns in which
they appear, determine the elementary rotation 0 that will be used at that step, as
well as the resulting signature j2. This signature is the new signature of these two
columns after application of the rotation. The algorithm is summarized in Fig. 1.3

The nulling scheme ensures that [eI H]O [X 0], where X is a resulting lower
triangular invertible matrix; it contains the columns of A and B in some permuted
order. The columns of X with a positive signature are the columns of A; the columns
with a negative signature are those of B. Hence, the final step (not listed in Fig.~l)
is to sort these columns, such that IX 0]II [A 0 B 0] [A’ B’]. Then O OH
is J-unitary with respect to J, and [eI H]O [A’ B’].

The complexity of the algorithm is similar to that of the QR factorization--about
1/2 m2n rotations, or 2m2n flops. The Schur algorithm has a direct implementation on
a systolic array of processors. This array is entirely similar to the classical Gentleman-
Kung triangular Givens array [12], except that now all data entries have a signature
associated with them and the processors must perform different types of rotations,
depending on these signatures. We omit the details.

4.3. Updating and downdating. The Schur method is straightforward to up-
date as more and more columns of H become known. If [eI Hn]O() [Xn 0] is the

3 As an aside, we mention that Bojanczyk et al. [23] have developed a numerically more stable
implementation of the application of hyperbolic plane rotations to vectors. This is probably of
relevance in the present context.
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IX Y] := [dm H]

for k 1 to n and i 1 to m,
[a b] :- [X(i,i) Y(i,k)]. J(i, i) 0
,i

0 (m + k,m + k)
Compute (,)2 from a, b, s.t. [a b]( [, 0]
Embed into (i,)
IX Y] .= Ix

i) :=

+ + k):=
end

FIG. 1. Schur algorithm to compute the factorization [eI H](--- IX 0] from H.

factorization at point n and Hn+I [Hn ha+ll, then, because the algorithm works
columnwise,

[eI H+I](+I)= IX,+1 0] [X 0 hn+l]((+l)= [X+I 0 0]

for some J-unitary matrix (+) acting on the columns of Xn and on hn+l. Hence,
we can continue with the result of the factorization that was obtained at the previous
step. Each update requires about 1/2m2 rotations.

The downdating problem involves computing the factorization for Hn with its first
column hi removed, from a factorization of Hn. It can be converted to an updating
problem, where the old column hi is now introduced with a positive signature,

+/- +
[X hi] [X,+I 0].

This is possible because, implicitly, we factor e2I-HnH+hlh XnX+hlh. The
uniqueness of the hyperbolic QR factorization into triangular matrices with positive
diagonals ([24], viz. Corollary 2.2) implies that the result X+I is precisely the same
as if h had never been part of H at all.

4.4. Breakdown. In 4.2, we had to assume that the data matrix H was such
that at no point in the algorithm is [a b])l[a b]* equal to zero. If the expression is
zero, then there is no J-unitary rotation such that [a b]}- [, 0]. In Theorem 3.1
note that the condition that none of the singular values of H equal e does not preclude
this case, but merely ascertains that there exists a O which will zero H. One simple
example is obtained b_y taking H [1 1] T, e 1. It is straightforward to show that
there is no J-unitary O such that

1 1 x x 0
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since the J-norms of the first row will not be equal. Hence O cannot be obtained by
the recursive algorithm. However, a more general O does exist, such that

+ +
1 [ 11 1O--

1

viz.

O= --1 -1 01= 1 2= -1
2 -v/’ -1 1

The difference is that, in this factorization, the resulting matrix X is no longer lower
triangular. Theorem 4.1 gives necessary and sufficient conditions on the singular
values of H and a collection of submatrices of H, so that the Schur algorithm does
not break down.

THEOREM 4.1. Let H: m x n be a given matrix, and e >_ O. Denote by H[i,k
the submatrix consisting of the first to the i th row and the first k columns of H. The
Schur algorithm does not break down if and only if none of the singular values of H[i,k]
is equal to e, for i 1,...,m and k 1,...,n.

Proof. (Necessity) When processing the kth column of H by the Schur algo-
rithm, we are in fact computing a triangular factorization of [eIm H[m,k]]. Corollary
2.2 claims that a suitable J-unitary operator exists if and only if [eIi H[i,k]] is J-
nonsingular, for 1,..., m, i.e., if and only if none of the singular values of H[i,k] is
equal to 1. The triangularization is done for k 1, 2,..., n in turn.

(Sufficiency) Sufficiency at stage (i, k) follows recursively from the factorization
at the previous stage and the existence and uniqueness of the factorization at the
current stage. E]

Similar results are known for the case where the factorization is computed via
hyperbolic Householder transformations where all zeros in a row are generated at
the same time. In this case there are fewer conditions [24], viz. Corollary 2.2. It
should be noted that the conditions in Theorem 4.1 are quite elaborate, as only one
condition (none of the singular values of H are equal to e) suffices for the existence
of O. Numerically, we might also run into problems if one of the singular values
is close to e, in which case the corresponding hyperbolic rotation has a large norm.
How serious this is depends on a number of factors, and a careful numerical analysis
is called for. One example where a large rotation is not fatal is the case where the
singularity occurs while processing the last entry of a column (i rn). Although the
rotation will be very large, the resulting X remains bounded and becomes singular"
Xm,m 0. Hence, the subspace information is still accurate, and X varies in a
continuous way across the e-boundary; only its signature is necessarily discontinuous.
Pivoting schemes can be used to prevent large rotations, and are discussed in the next
subsection.

4.5. Pivoting schemes. Because a breakdown occurs only for special values of
the entries of H, we can in almost all cases employ a simple pivoting operation to
avoid a large hyperbolic rotation. If such a rotation occurs at the zeroing of entry
hi,k, then the matrix H[i,k] has a singular value close to e. At this point, there are a
number of remedies based on the relative freedom in the order in which zero entries
are created. The simplest solution is to permute the current column with the next
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one, which is possible if k < n. We can also permute the ith row with the i / 1-st if
i < m. Instead of permutations, other more complicated operations are also possible,
such as plane rotations of two columns or rows. Finally, if (i, k) (m, n), i.e., h,k
is the last entry to be zeroed, then H has a singular value equal to e and there is no
remedy--there is no bounded O. However, because it is the last rotation, X will still
be bounded, but it becomes singular.

A column permutation at stage (i, k) swaps the kth column of H with the k + 1-
st, and also swaps the corresponding rows of (. Before the permutation is done, the
first i- 1 entries of hk+l must be made zero. Hence, a column permutation scheme
is most easily implemented when entries of H are zeroed row by row, rather than
column by column as in the algorithmic description in 4.2. Note that it is already
sufficient to create zero entries of H in an antidiagonal fashion. This is what actually
happens in a systolic array implementation, where zeros on antidiagonals of H are
created in parallel. Hence, a column pivoting scheme can be readily implemented on
such an array, with only one extra buffer required at each processor (to queue entries
of a second column), but without sacrificing the systolic nature of the algorithm in
any sense. In column permutation schemes, X stays upper triangular and, after the
processing of both hk and hk+l, is the same as it would be without pivoting. ( is, of
course, different: it is unbounded in the first case, bounded in the second.

Row permutations are necessary, e.g., if there is no next column (k n), or if
columns are to be processed one at a time. It is a requirement that the first k-1 entries
of the + 1-st row of H be zeroed before permuting these rows. This is automatically
the case if columns are processed one by one, or requires one rotation if we use an
antidiagonal zeroing scheme. Another rotation is needed to keep X lower triangular
after the permutation has been performed. This makes row pivoting computationally
more expensive. We also must keep track of the permutations because we are now in
fact computing a factorization

H[eI HI O=[X 01 , [eI H]O=[H*X 0]
IX’ 0].

X is lower triangular, but the resulting X’ generally is not. It is possible to use
any other invertible transformation of the rows instead of a permutation, such as a
unitary plain rotation for example. This more general approach was suggested in [29],
and provides a solution even in the special cases where permutations do not lead to
bounded results, such as, e.g., in the case of (24). The resulting factorization can be
viewed as a hyperbolic URV decomposition. The added generality allows reduction
of the number of hyperbolic rotations to one or two per column update, and leads
to stable numerical implementations. (A discussion of this is relegated to future
publications.)

5. Simulation results. In this section, we demonstrate some of the properties
of the approximation scheme by means of a simple example. We take H(a2)
U-((T2) V* to be a sequence of 3 x 4 matrices, with U and V randomly selected as
constant unitary matrices, and with singular values equal to

(20, a2, 0.5), a2 0, 0.01, 3.99, 4.

The approximation tolerance is set to e 1. We compare the approximants/:/(0) given
by SL 0,/:/(1) given by (18),/:/(2) given by (21), and/:/(1) when the factorization is
computed with pivoting. The pivoting scheme consists of column permutations, ex-
cept when processing the last column, in which case we switch to row permutations.
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25

2O

15

10

w/o pivotin

with pivotir.

(3, 3) (2, 4)

i,.....
(3, 2)

O0 0.5 1.5 2 2.5 3 3.5 4
O’2

FIG. 2. Norm of e. With pivoting, oo Ior certain values of a2 when the indicated entry
(i, j) o] H is processed. With pivoting, this only occurs when r2 1.

The pivoting is applied in its extreme form, i.e., whenever this leads to elementary ro-
tation matrices with a smaller norm. The approximantsare compared in the following
ways: (a)II II, with and without pivoting; (b)II H- H II, for each of the mentioned
approximants; (c) the accuracy of the subspace estimates, compared to the principal
subspace of H (the column span of the singular vectors with corresponding singular
values larger than 1). The distance between two subspaces jt and B is defined as
dist(A, B) PA PB II, where PA is the orthogonal projection onto A [2].

Figure 2 shows ( as a function of a2. Without pivoting, there are a number
of peaks, corresponding to the values of a2 where one of the submatrices H[i,k] has a
singular value equal to 1. In the range 0 _< a2 _< 4, this occurred for (i, k) (3, 4),
(3, 3), (3,2), and (2, 4), respectively. When pivoting is applied, the peak at a2 1
is, necessarily, still present, but the other peaks are mostly smoothed out. Figure 3
shows the norm of the columns of B in the scheme without pivoting. For (y2 K 1, the
rank of the approximant is 1. At ry2 1, the dimension of B increases, although at
first, the new column has a very small norm. For larger values of a2, the norm grows
and the subspace becomes better defined. There is a peak at the point where H[2,4]
has a singular value equal to 1; this peak can be removed by row pivoting but not
by column pivoting. There are no peaks when H(i,j) has a singular value equal to 1
and i m, because X becomes singular rather than unbounded when a singularity
occurs at the last entry of a column. Figure 3 also shows that no peak occurs for the
norm of the columns of the "improved" subspace estimate B(1) of (19), on which both
/:/(1) and//(2) are based. This is as predicted by Lemma 3.4: B(1) < H 20.
Instead of having a peak, the norm of the first column of B(1) dips to about 0.12.

In Fig. 4, the norm of H-/?/ is shown for the various choices of [/ that we
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discussed in 3.2. The lowest line corresponds to the truncated SVD solution, which
gives the lowest attainable error. It is seen that, for all approximants, the approxima-
tion error is always less than c 1. Of the nonpivoted schemes, the approximation
error for/(0) is always higher than the error for/_/(1), /_(2) (but there is no proof
that this is necessarily always the case), and the error for/2/(1) is always higher than
the error for/?/(2), since the latter approximant minimizes this error while retaining
the same subspace estimate. The approximation error for/2/(2) is almost identically
close to the theoretical minimum, except in a small region 1 _< 62

_
1.5. The errors

for/:/(o) and/2/(1) touch a number of times on the (c 1)-line. For/:/(0) this can be
explained as follows. The error for SL 0 is given by (16) as -eO1202-21. Because
the J-unitarity of O implies O2"O2 + (O-2"O2)(O1202-21) I (viz. (6)), it follows
that whenever O22 --+ (:X:), necessarily O12021 --+ 1. The analysis of H-/_/(1)I[
from (17) is more involved and is omitted at this point.

Figure 5 depicts the distance between the principal and estimated subspaces. For
(72 < 1, this distance is very close to zero (< .0002) for each of the methods. The
distance jumps up when r2 crosses 1: the subspace increases in dimension but is at
first only weakly defined. For B(1), the distance goes down again quickly, whereas for
B, it stays constant for a while before going down.

6. Conclusions. We have derived a general formula that describes all rank-d
2-norm approximants of a given matrix H. The formula relies on a factorization that
exists if none of the singular values of H is equal to e, and that can be computed
by a Schur-type algorithm if additional singular value conditions are satisfied. Up-
dating and downdating is straightforward, and the algorithm is amenable to parallel
implementation. It is highly suitable for adaptive subspace estimation because some
of these approximants are quite close to the truncated SVD solution (as shown by a
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numerical experiment), but much easier to compute. Such an application is reported
in [34]. Another application is the regularization of ill-conditioned total least squares
problems [35], cf. [36].

There are several open problems and remaining issues. Apart from the listed
approximants, there might be other interesting choices, such as approximants that by
construction have all their singular values larger than e. There are applications in
which an on-line computation of the approximant or its last column (instead of only
its column space) is required. An integral scheme for doing this would be interesting.
As a final remark, we mention that while this paper was in review, an updated version
for the "improved" approximant B(1) was obtained. An orthonormal basis for this
subspace can be updated using about twice the number of operations as the basic
Schur updating algorithm, without the need for pivoting and keeping the number of
hyperbolic rotations as small as possible. This will be reported elsewhere.

Appendix A. Proof of Theorem 3.3. The proof of Theorem 3.3 consists of
two propositions. The first proof shows that any SL that satisfies the constraints
gives rise to a valid approximant and the second proves the converse. Without loss of
generality, we take 1.

PROPOSITION A. 1. Let H m x n be a given matrix, with d singular values larger
than 1 and none equal to 1, and let SL be a given matrix satisfying conditions (15)
(i) and (ii). Define O, A’, B’ as in equation (12). Put

S (OllS O)(O OS)-
Then S is well defined, and [-I .= H- S is a 2-norm approximant of rank equal to d,
satisfying

[-I (B’ A’SL)(022 02SL)-
Proof. Let

Then

G2 O2 O22 I

G1 Oll’L O12,
G2 --O21SL + 022 022(1 O-21021SL)

Because O2102 < 1 and SL <-- 1, G2 is invertible, and hence S GIG1. The
J-unitarity of O implies SSL I GG -GG2 G(S*S- I)G2. Since G2 is
invertible and SSL I is negative semidefinite, it follows that the same holds for
S*S- I. Hence S is contractive: Jl S -< 1, and/:/is a 2-norm approximant of H. To
derive the alternate formula for H and show that it has rank d, write

[-I= H- S= [I HI[
[I H]O --SLI ] (022 O21,cL) -1

--SLI ] (022 O21’L)-1
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Hence [-I (B’-A’SL)(022- O21SL) -1. The rank of/:/is equal to the rank of
B’- A’SL. In this expression, B’= [B 0] is of full column rank d, and A’ [A 0],
where A is of full column rank m- d. Because (SL)12 0, it follows that ASL
[A O]SL [A(SL)ll 0] is also of rank less than or equal to d. Finally, B’- A’SL is
precisely of rank d because the columns of A are linearly independent of the columns
of B. i-I

PROPOSITION A.2. Let H: m n be a given matrix, with d singular values larger
than 1 and none equal to 1. Define O,A,B as in (12). Suppose that a matrix H
satisfies

(a) H-/-:/II <- 1,
(b) rank(/:/) _< d.

Then rank(/?/) d, and I;I H- S where

(A.25) S (O11SL O12)(O22 O21SL)-1

for some contractive SL with (SL)12 0.
Proof. It follows directly that S is contractive. Define matrices G1, G2 by

-G1

As in the proof of Proposition A.1, it follows that G2 is invertible. The J-unitarity
of O and the contractiveness of S implies GG1 <_ GG2. Hence SL :-- GIG is well
defined and contractive, and (A.26) implies (A.25). The rest of the proof is technical
and shows that (SL)12 0. First, we define the partitionings

d n-d
m-d Jell] G2

d [e21 ] GI_ [(e_l) (_1)2]G1 =d G12 =n-d G22

which conform with the partitionings of A’ and B’. Then (SL)12 0 : Gll(G-I)2
0. To prove that Gll(G[1)2 0, we look at [G G]. The use of (A.26) and
0-1 JO*J gives

(A.27) IS*
[-/-7/* 01o + [H* I]0.

We also have

[I HI [A’ B’]O-1

H* B, JOJ B,

0- [H* In]J H* [H* In]OJ A’*
Bt*

[H* In]O= [(0n(m-d)*)(0d *)],
where is some quantity whose precise value is not of interest. In the last step, we
used the fact that [A B] is of full rank. Inserting this result into (A.27) shows that

n(Gl) c 7(/:/*), ’(a:l) c T(/2/*).
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G2 is invertible; hence 7(G1 is of full dimension d. Since the rank of/:/is less than
or equal to d, it follows that the rank of/2/is precisely equal to d, and that actually
7(a1) 7(/*). This implies 7(al) c 7(al), so that there is some matrix M
such that G MG21. Hence

G2(G2)-1 I

* a [(a-)l (a-)]= 0 I

=: a21 (a- )2 0

=V GI(G)2 MG21(G)2 0.
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JACOBI ANGLES FOR SIMULTANEOUS DIAGONALIZATION*

JEAN-FRAN(OIS CARDOSO AND ANTOINE SOULOUMIAC

Abstract. Simultaneous diagonalization of several matrices can be implemented by a Jacobi-like
technique. This note gives the required Jacobi angles in close form.

Key words, simultaneous diagonalization, Jacobi iterations, eigenvalues, eigenvectors, struc-
tured eigenvalue problem

AMS subject classifications. 65F15, 65-04

Introduction. Simultaneous diagonalization of several commuting matrices has
been recently considered in [1], mainly motivated by stability and convergence con-
cerns. Exact or approximate simultaneous diagonalization was also independently
introduced as a solution to a statistical identification problem [2] (see [3] for a later
paper in English). The simultaneous diagonalization algorithm described in these pa-
pers is an extension of the Jacobi technique: a joint diagonality criterion is iteratively
optimized under plane rotations. The purpose of this note is to complement [1] by
giving a close form expression for the optimal Jacobi angles.

1. Jacobi angles in close form. Consider a set A {Aklk 1, K} of K
complex N x N matrices. When the matrices in A are normal commuting matrices,
their off-diagonal terms can be set to zero by a unitary transform, thus simultaneously
diagonalizing the set A. Define, as in [1],

(1) off(A) de_f laijl2
l<_i#j<_N

where aj denotes the (i, j)th entry of matrix A. Simultaneous diagonalization may be
obtained by minimizing the composite objective ’]k=l,g if(UAkUH) by a unitary
matrix U. The extended Jacobi technique for simultaneous diagonalization constructs
U as a product of plane rotations globally applied to all the matrices in A.

Denote R(i, j, c, s) the complex rotation matrix equal to the identity matrix but
for the following entries:

( )(-)(2) r r,j c s
with c, s e C and ]cI 2 -]812 1.

rji rjj --8 c

It is desired, for each choice of i j, to find the complex angles c and s which
minimize the following objective function:

(3) O(c,s) de off (R(i,j,c,s)AkRH(i,j,c,s)).
k--1,K

Received by the editors December 9, 1993; accepted for publication (in revised form) by A.
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For a given pair (i, j) of indices, a 3 3 real symmetric matrix G is defined as

(4) Gde=fReal(__E,ghH(Ak)h(Ak))’k
h(A) dad [aii ajj aij - aji i(aji aij)].

For any set jt of N N matrices, commuting or not, real or not, and regardless
of symmetry properties such as hermitianity, unitarity, normality, etc., the following
theorem allows the Jacobi angles to be computed in close form.

THEOREM 1. Under constraint Icl 2 + 1812 1, the objective function O(c, s) is
minimized at

y-ix(6/
v/(x + 1

v/ + + z,

where Ix, y, z]T is any eigenvector associated to the largest eigenvalue of G.
Proof. Let aij and aj respectively denote the (i,j)th entry of matrices A and

A’ R(i, j, c, s)ARH (i, j, c, s). Since ak akk for k = and k - j for plane rotations
on the pair (i, j), the following invariance holds:

(7) off(A’) + lal 2 + la.yl 2 off(A)+ lal e + layyl 2

because unitary transforms preserve the norm Ykt laktl 2" Hence, minimization of
2 ,[2 Theoff(RdRH) is seen, by (7), to be equivalent to maximization of ]aii + [ajj

2latter, in turn, is equivalent to the maximization of [ai- ajj[ as seen by the identity
2 2 (invarianceof2([a[ 2 + [ajjl 2) la + ajy[ + [a ajj[ and by a + ayy a + ajj

the trace under unitary transforms). One finds

(8) aii ayj (Icl 2 -1812)(a- ajy) + 2csaij + 2f,aji,

h(A)v(c, s) between thewhich is better rewritten as the inner product a- ajj
complex 1 3 vector h(A) defined in (5) and the 3 1 real vector v(c, s) defined as

(9) V(C, 8)T deal [Icl = -I,I = c, + era, i(cs- e) ].

Hence, the Jacobi angles minimizing O(c, s) are those maximizing

(10) E Ih(&)v(c, s)l e
k=l,K

__V(C,s)T (=l,KhH(Ak)h(Ak)lv(c, 8)
"k

Note that the 3 3 matrix on the right-hand side of (10) is hermitian: its imaginary
part is skew-symmetric and consequently contributes nothing to a quadratic form in
the real vector v(c, s). Therefore the right-hand side of (10) also is v(c,s)TGv(c,s).
Next,we recognize that

(11) {v(c,s)lc, s e C, Icl + tsl 1} {[x, y,z]T[x, y,z e R,x2 + y2 + z2 1}.

This imaginary part is zero in the special case where 4 contains only hermitian matrices.
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Thus minimization of O(c, s) under the constraint Icl 2 / Isl 2 1 is equivalent to the
maximization of a real 3 3 quadratic form under unit norm constraint. The solution
is known to be given by any unit norm eigenvector of G associated to the (possibly
degenerate) maximum eigenvalue. Now, if Ix, y, z]T is a nonzero eigenvector of G, not
necessarily normed to unity, associated to the largest eigenvalue, its normalization
and the inversion of relation (9) yields expression (6) by choosing c real positive. This
choice is possible since for any real angle , one has v(c, s) v(cei, se-i).

2. Remarks on implementation and approximate simultaneous diago-
nalization. Regarding implementation, the following remarks are in order.

(i) When ,4 is a set of real symmetric matrices, the rotation parameters c and s
are real: the last component of each vector h(Ak) then is zero and G can be reduced
to a 2 2 matrix by deleting its last row and last column: Theorem 1 then is similar
to Theorem 6.1 of [1].

(ii) For the sake of numerical stability, the Jacobi technique should be restricted
to "inner rotations" [1]. In our setting, it corresponds to choosing an eigenvector with
x>0.

(iii) Since matrix G is only 3 3, its dominant eigenvector may be computed
explicitly. However, lacking a close form expression with proven stability, a standard
numerical eigenvalue method should be preferred for the sake of numerical stability.

(iv) It seems sensible to initialize the Jacobi algorithm for simultaneous diag-
onalization of a set ,4 with the unitary matrix obtained as the (plain) diagonalizer
of some matrix in Jr. This initialization turns the spurious stationary point of the
Jacobi algorithm given in (9)-(10) of [1] into a well-behaved set.

We conclude with a few words about the relevance of approximate simultaneous
diagonalization. There is a current trend in signal and data processing of extracting
information from the eigenstructure of matrices which are functions of the available
data. In some cases of interest, there is a set AT of matrix-valued statistics computed
from a number of T available samples with the property that, almost surely, the limit
set jt contains commuting matrices; the common eigenstructure could then be com-
puted from any member of the set jt or from some linear combinations of matrices in
jt. In practice though, only a finite number of samples is available and the matrices
in AT do not exactly share the same eigenstructure. Determining the eigenstructure
of interest from only one matrix in AT is not satisfactory because, besides relying on
an arbitrary choice, it amounts to discarding the information contained in the other
matrices of AT. Also, it may happen that each matrix of Jt has some degenerate
eigenvalues but that the whole set Jt has well-determined common eigenvectors.
Hence, from a statistical point of view, it is very desirable, for the sake of accuracy
and robustness, to rather define the "average eigenstructure" of AT. Optimizing a
joint diagonality criterion, possibly appropriately weighted, offers a quantitative defi-
nition of such an average eigenstructure. In this stochastic context, we note that the
criterion can only be minimized but cannot generally be driven to zero: the "average
eigenstructure" is well defined but corresponds only to an approximate simultaneous
diagonalization.

Note. A MATLAB implementation of the extended Jacobi technique for simul-
taneous diagonalization is freely available upon request from cardoso@sig.enst.fr.
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APPLICATION OF ADI ITERATIVE METHODS TO THE
RESTORATION OF NOISY IMAGES*

D. CALVETTIt AND L. REICHEL$

Abstract. The restoration of two-dimensional images in the presence of noise by Wiener’s
minimum mean square error filter requires the solution of large linear systems of equations. When
the noise is white and Gaussian, and under suitable assumptions on the image, these equations can
be written as a Sylvester’s equation

Ti-k + kT. C

for the matrix representing the restored image. The matrices T1 and T2 are symmetric positive
definite Toeplitz matrices. We show that the ADI iterative method is well suited for the solution of
these Sylvester’s equations, and illustrate this with computed examples for the case when the image
is described by a separable first-order Markov process. We also consider generalizations of the ADI
iterative method, propose new algorithms for the generation of iteration parameters, and illustrate
the competitiveness of these schemes.

Key words. Wiener filter, rational approximation, noise reduction

AMS subject classifications. 65F10, 65E05, 30E10

1. Introduction. We describe an application of the alternating direction im-
plicit (ADI) iteration method and a generalization thereof to the computation of the
minimum mean square error estimate of a two-dimensional image in the presence of
white Gaussian noise. Let F be an N M matrix of samples from the image normal-
ized to have zero mean, and let f be the NM-vector obtained from F by ordering its
entries in lexicographic order, i.e.,

f :--- (F(1, 1),... ,F(1, M),F(2, 1),... ,F(N,M))T

Generally, the components of the vector f are not statistically independent, and
the dependency among the various components is described by the covariance matrix
of f, denoted by I" If we assume that the variability of the image in the horizontal
direction is unrelated to the variability in the vertical direction, then (I)f can be
expressed as a Kronecker product

(1.1) f (I)y (R)

Here (I)x is the covariance matrix of the vector in the horizontal direction of the image
and (I)y is the covariance matrix of the vector in the vertical direction.

Assume that white Gaussian noise is added to the image, for example during
transmission, i.e.,

(1.2) g:- f +u,
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where ? is the noise vector and g is the vector of the degraded image, normalized
to have zero mean. A central problem in image restoration is the recovery of the
original image f from the deaded image g. A linear filter L is a linear operator
which determines an estimate f of the original image f from the corrupted image g,

(1.3) j := Lg.

Let denote the error in the estimated image

(1.4)

and let L be a linear filter that minimizes the mean square error. Then L is given by,
see 2 for details,

(1.5) n
where O is the covariance matrix of the noise. Therefore, the minimum mean square
error estimate of the original image f can be computed from the degraded image
g by solving the linear system of equations

(1.6)

The linear filter defined by (1.5) is often referred to as a Wiener filter. Assume that
the covariance matrix OI is separable and that the noise is white and Gaussian

2 Then, in view of (1.1), equation (1.6) can be written aswith variance a.
+

Recently, Cheong and Morgera 8] considered the solution of (1.7) for special matri-
ces x and u by iterative methods and proposed a stationary Richardson iteration
scheme. They found this scheme to be competitive with techniques based on the fast
Fourier transform algorithm. This paper investigates the solution of (1.7) by the ADI
iterative method and modifications thereof, and compares these methods with the
conjugate gradient method. The ADI iterative methods are found to typically yield
faster convergence than the conjugate gradient method, and it is well known that the
latter method generally converges more rapidly than stationary Richardson iteration.

In order to describe the ADI iterative method, we introduce the matrices and
G, whose entries are the elements of and g, respectively, stored row-wise. Then
(1.7) can be written as

(1.8) + ffolol G.

om (1.8) we obtain the Sylvester’s equation- G.(1.9) +
The ADI iteration method for the solution of (1.9) proceeds by alternating between
the solution of the two linear systems of equations,

F2k+l(Ox + Tk+lI) (Tk+lI 2 --1

(1.10) (aO + 5k+lI) F2k+2 F2k+ (Sk+I 0) + G,

in order to determine a sequence F1, F2, F3,... of approximants of . The matrix

Fo is an initial approximate solution; in the computed examples we let Fo := G. One
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seeks to choose the iteration parameters Tk and 5k so that the iterates Fk converge
to/ rapidly as k increases. The determination of suitable 5k and Tk is discussed in
3. There we also consider the choice of parameters 5k and Tk for the generalized
ADI (GADI) iterative method introduced in [21]. The GADI iterative method does
not require strict alternation between the equations (1.10), i.e., we allow one of the
equations in (1.10) to be applied more often than the other one. The GADI iterative
method can yield faster convergence than the ADI iterative method.

This paper is organized as follows. Section 2 reviews some fundamental concepts
of image formation, stochastic models and linear filters, and derives the Sylvester’s
equation (1.9). In 3 we review results on the ADI and GADI iterative methods,
and present new schemes for determining the iteration parameters k and k. The
results of some numerical experiments in which we apply the ADI and GADI iterative
methods, as well as the conjugate gradient method, to the restoration of some images
are reported in 4. Concluding remarks are found in 5.

2,. Image restoration. This section is divided into four subsections in which
we consider image formation, stochastic models, linear filters, and the derivation of
Sylvester’s equation (1.9), respectively. The discussions in the first three subsections
follow Andrews and Hunt [2].

2.1. Image formation. Assume that an object in the (, 7)-plane is illuminated
by a source of radiant energy or that the object itself is a source of radiant energy. We
represent this object by a radiant energy distribution function f(, 7). The radiant
energy reflected, transmitted, or emitted by the object propagates through space. An
image formation system, e.g., a lens, intercepts the propagating radiant energy, and
transforms it in such a manner that an image is formed in the (x, y)-plane. We will
occasionally refer to the (, 7)-plane as the object plane and to the (x, y)-plane as
the image plane. We represent the image by a radiant energy distribution function
g(x, y). Following Andrews and Hunt [2], the process of image formation is based on
the following three basic principles:

1. Neighborhood processes: the image of an object point may depend on the
object point and on points in a neighborhood of it.

2. Nonnegativity" the radiant energy distribution functions for the object and
the image must be nonnegative, i.e.,

f(, 7) -> 0,

g(x, y) >_ O.

3. Linearity: let (x, y, , 7, f(, 7)) be a function that describes how the image
formation system transforms energy f(, 7) at the point (, 7)in the object
plane, to energy h (x, y, , y, f(, 7)) at the point (x, y) in the image plane. We
say that the image formation system is linear if the mapping t - h(.,.,.,., t)
is linear, i.e., if

(x, y, , 7, f(, 7)) h(x, y, , 7)f(, 7).

We refer to the function h as the point spread function (PSF).
For linear, as well as for nonlinear, image formation systems, the radiant energy
distribution in the image plane is additive. Therefore, we can express the radiant
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energy distribution in the image plane as

(2.3) g(x, y) h (x, y, , 7, f(, ]) d dy

In particular, when h is of the form (2.2), formula (2.3) simplifies to

(2.4) g(x, y) h(x, y, , 7)f(, 7)d d7

When the image formation system acts uniformly across the image and object planes,
i.e., when h is of the form

h(x, y, , ]) (x y, ])

for some function , then h is said to be space invariant. We say that the PSF h is
separable if it can be decomposed according to the formula

h(x, y, , 7) hi (x, y)h2(,

Of particular interest in image restoration are point spread functions that are both
space invariant and separable. Such a PSF can be written as

h(x, (x

for some functions tl and .
Let G [gij]l<_i<_N,l<_j<_M be an N x M matrix obtained by sampling and quan-

tifying the radiant energy distribution function g(x, y). Assume for the moment that
the radiant energy distribution function f(, 7) that represents the object is explicitly
known, and let F [fij]l<_i_N,l_j<_M be an N M matrix obtained by sampling
and quantifying the function f(, r]). It is convenient to represent G and F by the
NM-vectors

g [gll, g12, glM, g21, g22, gNM]T

f [f11, f12,’’’, flM, f21, f22,’’’, fNM]T"

The point spread function matrix of the image formation system H E NMNM
satisfies

(2.6) g Hi’.

Properties of the PSF determine the properties of the matrix H. For instance, in view
of the nonnegativity (2.1) of the radiant energy distribution, we require that

fij

_
O, gij >_ O, 1 <_ <_ N, 1 <_ j <_ M,

(2.7) hij >_ O, 1 <_ i,j <_ NM.

If we assume that there is no loss of radiant energy in the process of image formation,
we have

N M N M

i=1 j--1 i=1 j--1
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Equation (2.8) is satisfied if

NM

(2.9) E hj 1, 1 <_ j <_ NM.
i-1

If the PSF h is separable, then H can be expressed as a tensor product of two matrices
Hy and Hx, i.e.,

H H, (R) H.
If, in addition, the PSF is space invariant, then Hy and Hx are Toeplitz matrices.

2.2. Image statistical models. It is often useful in image restoration to regard
a given matrix as a sample from a class of multivariate data. Let the NM-vector g
be given by (2.5), and introduce its expected value vector

/:= E(g)

and its covariance matrix (I)g. Define the vectors

glk --[gkl,gk2,... gkM]T, 1 <_ k <_ N,

and let

.Ok := E(gk), 1 <_ k <_ N,
(2.10) (I)kl := E [(gk --lk)(gl- .0t)T] 1 _< k, _< g.

Thus, (I)kt is the covariance between rows k and of G, and (I)kt (I). The covariance
matrix (I)g can be written in terms of the (I)kt blocks

(I)g

(I)11 (I)12 (I)IN

I)21 (I)22 (1)2N

TN1 (TN2 (TNN

The vector g is said to be wide sense stationary (WSS) if it satisfies the following
conditions.

(i) The expected value of g is a vector with all entries equal:

E(g) Iz [#, #, #]T

(ii) The covariance matrix (I)g of g is of block Toeplitz form:

(I)11 (I)12 (I)IN

". .. (I)12

(I)/ (1)5 (I)11
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We remark that if the mean vector tt is known, but its entries are not all the same,
then we can replace g by g- re. The latter vector has a zero mean vector. Thus, the
form of the covariance matrix determines whether the process is stationary.

Of particular interest in image restoration are those classes of images whose co-
variance matrices have specific properties. We say that the covariance matrix of the
image g is separable if

(2.11) (I)g

with

(z E{(gz z)(gz z)T} e {x,

where gz is the vector indicating the z-direction of the image matrix and E{gz } .
If the stochastic processes gx and gy are WSS, then (I) and (I)y are symmetric Toeplitz
matrices.

A common simplifying assumption in image restoration is that the image is mod-
eled by a separable first-order Markov process. Then the covariance matrix is of the
form (2.11 with ( a2Rz, where

(2.12) Rz

1 p p2

p2 pz 1

2and Pz, a are the adjacent element correlation and variance, respectively, in the
z-direction. Matrices of the form (2.12) are sometimes referred to as Kac-Murdoch-
Szeg5 matrices; see [19] for a discussion of their properties. For future reference, we
note that R[ is tridiagonal with explicitly known entries

(2.13) R; (1 pz)-(1 + pz) -1

1 --Pz 0
-Pz 1+ p2z -Pz

-Pz 1 + p2z -Pz

-Pz l + p2z -Pz

An application of Gershgorin’s theorem, see, e.g., [30], to R[ yields that the spectrum
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of R[ satisfies

l +pz](2.14) A(R/1)C lq-pz’l-p

It follows from the bounds (2.14) that

[X-pz X+pz](2.15) A(Rz) c
lq-p’l-pz

2.3. Linear filters. We now assume that the model describing the image-object
correspondence incorporates noise. The simplest model is expressed by the equation

(2.16) g-- Hf

where g is the known degraded image, f is the unknown original uncorrupted image,
the vector v/contains the noise and H is the point spread function matrix. We seek
to determine an approximation : of f by applying a linear filter L to g, i.e., : is
determined by (1.3). If no knowledge of the nature of the noise is assumed, a natural
choice of filter might be a linear operator that minimizes

(H --g)T(H --g).

When H is nonsingular, the solution to this minimization problem is given by

:- H-g= f + H-r.
The filter L H-1 is often referred to as the inverse filter. Computation of by
using the inverse filter requires the solution of a linear system of equations with the
NM x NM matrix H. This approach suffers from the drawback that the matrix H
may be severely ill-conditioned, and, therefore, straightforward application of formula
(1.3) may yield a very inaccurate estimate f, i.e., the error e given by (1.4) may be
large.

The Wiener filter yields the minimum mean square error in the estimation over
all possible images. This filter solves the following minimization problem:

min E{eTe} min E { tr(eeT)}

(2.17) min E { tr(ffT L(HffT + fT) (ffTHT _[_ fT)LT

’[L(HffTHT q-- IfTHT "-b HfvlT -[-T)LT)},
where tr(A) denotes the trace of the matrix A. Under the assumption that the
noise 7 and the image f are uncorrelated, we have E(fvlT) E(fT) O, and the
minimization problem (2.17) simplifies to

(2.18) min E { tr(eT)} min tr((I) 2LH +LHHTLT nu LnLT).

The solution of (2.18) is equivalent to the application of the filter

(2.19) L (IHT(H(IHT -b (v)-l;
see [2, 7.2] for details. When H-- I, formula (2.19) simplifies to (1.5).
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2.4. A Sylvester’s equation. Substituting (2.19) into (1.3) yields the equation

This equation reduces to (1.6) when H is the identity matrix. Assume that H
Hy (R) Hx and (I)f (I)y (R) (I)x, where Hz,(I)x E ]lgN and Hy, (y IMM are
symmetric matrices, and that the noise is white and Gaussian. Then (2.20) can be
written as

 (U7(Uy (R) Ux + (I); (R)

which can be expressed in the form

(2.21) Uy"Sx nt- o72(U-1(I);1)((I)-lu-l G

where the entries of the M N matrices/ and G are those of the vectors and g,
respectively. Solution methods for equations of the form (2.21) are discussed in [10].
The ADI iterative methods discussed in the present paper are applicable after writing
(2.21) in the form of a Sylvester’s equation,

2

The computed examples of 4 consider the solution of (2.22) in the special case where
2Rz, z {x, y}, where Rz is given byH and Hy are identity matrices and Oz oz

(2.12).

3. ADI iteration methods. We first review the ADI iterative method for com-
puting the solution/ NM of Sylvester’s equation

(3.1) FB- AF-- C

for fairly general given matrices A ][NxN, B ]MxM and C ]1NxM. Equation
(3.1) has a unique solution if the spectra ,(A) and ,(B) satisfy ,(A) N ,(B) q}; see
[13]. We will assume that there are explicitly known compact sets S and T in the
complex plane C, such that

(3.2) ,(A)

Solution methods for (3.1) that use the structure of the linear system of equations
include direct methods due to Bartels and Stewart [5] and Golub, Nash, and Van
Loan [14], and iterative methods, in which the matrices A and B are reduced to
Hessenberg or tridiagonal form; see [18], [26]. When sets S and T that satisfy (3.2)
are explicitly known, and the matrices A and B have a structure that makes it possible
to rapidly solve linear systems of equations with matrices A-TI and B-3’I for certain
parameters 7 (2, it can be attractive to solve (3.1) by the ADI iterative method.
Applications of the ADI iterative method to the solution of Sylvester’s equation are
reported in recent papers by Ellner and Wachspress [11], [33] and Starke [27], [28];
however, properties of the ADI iterative method were already studied in the 1950s and
1960s; see Birkhoff and Varga [6], Birkhoff, Varga, and Young [7], de Boor and Rice
[9], Gaier and Todd [12], Peaceman and Rachford [25], Varga [30], and Wachspress
[311, [32].
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We write the ADI iterations in a manner that can be generalized later,

(3.3) j "= j + 1,

(3.4) k := k + 1,
Fj+k := (A 5I)-1 (Fy+k-I(B 5jI) C)
Fy+k := ((A TkI)Fy+,:_I + C)(B TkI) -1

where we start with j k 0, and the matrix F0 is a given initial approximate
solution of (3.1). The classical ADI (CADI) iterative method proceeds by strictly
alternating between formulas (3.3) and (3.4) in order to determine a sequence of
approximate solutions F1, F2, F3,... of (3.1). We would like to determine the iteration
parameters 5j and Tk SO that the matrices Ft converge rapidly to the solution/ of (3.1)
as increases. A generalized ADI (GADI) iterative method, in which strict alternation
between the formulas (3.3) and (3.4) is not demanded, was introduced in [21]. The
analysis based on potential theory in [21] shows that the application of one of the
formulas (3.3) or (3.4) more often than the other one can result in faster convergence
than obtained with the CADI method. Related results have also recently been shown
by Levin and Saff [22]. In 3.1 we describe the rational approximation problem that
underlies the GADI iterative method. Section 3.2 presents several new algorithms
suggested by the rational approximation problem for generating sequences of iteration
parameters, and 3.3 shows a few computed examples with these algorithms.

3.1. A rational approximation problem. Introduce the error matrices Et :-
Ft -/, where/ solves Sylvester’s equation (3.1). Then (3.3) and (3.4) yield

Ey+k (A 5jI)-IEy+k_I(B 5jI)

and

E.+k (A TkI)Ej+,:-I (B TkI)-1

respectively, and therefore

(3.)
j k j k

E+k := H(A epI) -1 H(A TqI)Eo YI (B 5pI) II (B TqI) -1
p--1 q:l p--1 q--1

Assume that A and B are diagonalizable and have spectral decompositions A
UAAAU and B UBABU1, where AA and As are diagonal matrices. Let [1"
denote the spectral norm and define for any nonsingular square matrix U its condition
number 7-/(U):: I]U[I IIU-111. Then (3.5) yields the bound

(3.6)
k1-Iq=l Iz %1 EI=l Iz l[[Ey+II _< max max

ze.X(A) J1-I=l Iz 1 () [I= Iz
IIEoII(UA)(UB).

Introduce the rational function

(3.7) (z) :=
kII= (z )

In view of (3.2) and (3.6), we obtain the bound

I[E+kll < maxes Irkj(Z)l
minueT Irj(z)[ [[EolI(UA)(UB).
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This bound suggests the following approximation problem:

(3.8) lim inf(ma-XzesIrkj(z)l)
1/(j+k)

j+k rq,hp mlnzeT Irkj(z)l

We refer to this limit as the asymptotically optimal rate of convergence of the GADI
iterative method with respect to S and T. Special cases of the problem (3.8) have been
studied thoroughly. For instance, when S and T are real intervals and j k, optimal
parameters 5j and Tk can be determined by evaluating certain elliptic functions; see
[9], [12], [31], [32]. It is well known that the limit (3.8) exists for fairly general disjoint
compact sets S and T in C when j k, and equals exp(- 2C(S,T) )’ where C(S, T)
denotes the capacity of the condenser formed by "the plates" S and T; see Bagby [3],
[4] for details. An analysis of the limit (3.8) for j k was first presented in [21], and
more recently in [22].

3.2. Generation of iteration parameters. Bagby [4] proposed the following
algorithm for determining poles 5j and zeros Tk of the rational function (3.7).

ALGORITHM 3.1. (Bagby Points)
ChooseTiESand51 ETsuchthat IT--5I= max IT-

-S
5T

for /:= 1,2,... do
Choose Tt+ e S such that Iru(Tt+l)l max

zS
Choose 5t+ T such that Iru(ht+l)l min

zT
end

We call any sequence of points 5, T, 52, T2,... in C determined by Algorithm 3.1 a
sequence of Bagby points for the sets S and T. Bagby [4] showed that, under mild
regularity conditions on S and T, the parameters 5t and Tt determined in this manner
solve the approximation problem (3.8) for j k. Bagby [4] only requires T S and
51 T. We have found that the choice of 5t and T made in the algorithm is suitable in
the sense that, typically, it makes the quotient maxzes Iru(z)l/minzeT Irtt(z)l fairly
small already for small values of 1.

In [21, pp. 227-228] and [22, 7] several generalizations of Bagby points are pre-
sented that solve (3.8) as j oc and k aj for some rational constant a > 0. Here j
is chosen so that aj is an integer. Unfortunately, all of these generalized Bagby points
are very cumbersome to compute. In Algorithms 3.2-3.4 we therefore describe mod-
ifications of Algorithm 3.1 for the generation of generalized Bagby points that only
require a small computational effort. We illustrate the behavior of the generalized
Bagby points defined by Algorithms 3.2-3.4 with computed examples in 3.3.

When the matrices A and B in (3.1) are of different sizes or have different structure
it may be considerably faster to compute Fy+k from (3.3) than from (3.4), or vice versa.
We therefore would like to generate parameters 5j and Tk so that the indices j and
k are increased in a manner that makes the ratio k/j close to a given value a. The
computational effort to determine Ft, for given j + k, depends on a and so does the
rate of convergence. The tables in 3.3 illustrate the convergence for different values
of a and can be helpful when determining a ratio a that minimizes the computational
effort to determine an approximate solution Ft of desired accuracy. Algorithm 3.2 has
been described previously in [21, 4] for the special case a 2.
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ALGORITHM 3.2. (Generalized Bagby points {}=1 and {Tg}k=l with k/j a)
ChooseTIESandlETsuchthat ITI--II= max IT-I; J’-k’=l;

TES
5ET

for t:= 1,2,... do

ifl-l>j -._1 or I-1=j i._,_k and>k then
Choose 5j+l e T such that ]rkj(6j+l)l min Irkj(Z)l; j "= j + 1

zT
else
Choose Tk+ e S such that lrkj(k+)I maxlrkj(z)l; k := k + 1

zS
endif

end g

The algorithm above determines numerator degree k and denominator degree j
so that the ratio k/j is close to a given value of a > 0. Algorithm 3.3 below also seeks
to determine a ratio of the numerator degree j and denominator degree k such that
maxzes Irkj(Z)l/minzeT Irkj(Z)l is small. In each step of the algorithm we determine
one new zero and one new pole, and this defines rk+l,y and rk,y+, respectively. If

max
zS
min Irk+l,j(z)l -zT

max Irk,j+1
zES

min
zT

then we choose rk+l,j aS our new rational function; otherwise we choose rj,k+l. In
this manner each step of the algorithm increases either the numerator or denominator
degree.

ALGORITHM 3.3. (Generalized Bagby points {5 j}= and {T}= with k/j de-
termined adaptively)
ChooseT eSandS1 Tsuchthat IT1--511= max IT-51; j:=k:=l;

TS
5T

for t:= 1,2,... do
Choose 5y+l T such that Iry(Sy+l)l min

zT
Choose Tk+ S such that Irj(-k+l)l max

zES
if max Irk+,j(z)l/min Ir+,j(z)l < max Irk,j+x(Z)l/min Irk,j+(z)l then
zS zT zS zT
k:=k+l

else
j:=j+l

endif
end

Computed examples of 3.3 indicate that Algorithm 3.3 may determine a sequence
of rational functions that is close to optimal.

Algorithm 3.3 suggests a modification of Algorithm 3.1 for generating Bagby
points. This modification is described by Algorithm 3.4 below. In this algorithm the
points 5j+1 and Tj+ are determined sequentially, i.e., we first determine 5j+1 and then
Tj+, and vice versa, and then choose the one of the two pairs of points determined
that makes the quotient maXzET IJ+l’j+l(Z)l/z IrJ+l’j+l (z)l smaller.
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ALGORITHM 3.4. (Modified Bagby Points)
Choose T1 6 S and 61 6 T such that IT1 --51[ max

for

6s
56T

j-- 1,2,... do
Choose 5j+1 e T such that

zT
Choose Tj+I e S such that [rj,j+l(Tj+l)[ mzea[rj,j+l(z)[;
M’ max[r+l,j+lzes (z)[/ [rj+,j+ (z)[;

’ := +1; T’ := T+I;

Choose Tj+ S such that Irjj(Tj+l)l max
zS

Choose 5j+1 T such that Irj+l,j(Sj+l)l rain
zT

M" := maxlrj+15+i (z)l/minlry+lj+l(Z)l;
z6S z6T

tV’ "= 6+; T" "= T+
if M’ < M" then

(j+l :--- (’; Zj+l :-- T’
else

6j-51 :-- 6"; Tj+
endif

end j

Computed examples indicate that the sequence maxzes Iryy(z)l/minzes [rjj(z)l, j
0, 1, 2,... generated by Algorithm 3.4 typically decreases in a smoother fashion than
the corresponding sequence of quotients obtained by Algorithm 3.1.

3.3. Computed examples. Several schemes for allocating zeros {Tq}qk=l and

poles {(p j}p=l of rational functions (3.7) with a prescribed rational quotient k/j a
such that

(3.9) lim (ma-Xzes[raJ’J(z)[IJ+J-o mlnzeT Iraj,j(z)l
aj,j6N

lim min max max
--,o rq’6v k z6S J
aj,jN

have been proposed; see [21], [22]. The allocation schemes proposed generalize Fej4r
points, Fekete points, and Bagby points. These generalizations share the property
that they define points which are quite cumbersome to determine numerically. The
allocation schemes defined by Algorithms 3.2-3.4 are easier to implement on a com-
puter, and this is the main motivation for our interest in these allocation schemes.
Moreover, Algorithm 3.3 is the only available scheme that seeks to determine adap-
tively a ratio k/j such that the limit superior

(3.10) lim ( ma-xzeS ]rkj(z)l )j+k--.oo mlnzeT [rkj(z)l

1/(kTj)

of the computed rational functions rkj is minimal for fairly general sets S and T in
the complex plane. We remark that Levin and Saff [22] showed how to determine an



ADI AND IMAGE RESTORATION 177

TABLE 3.1
S [-9.136,-1.095.10-2], T [3.976.10-1,2.515].

Alg. 3.1
j + k j k eky

2 1 1 -0.1
8 4 4 -2.1
14 7 7 -5.3
20 10 10 -7.9
26 13 13 -11
32 16 16 -14

Alg. 3.4
j k ekj

Alg. 3.3

1 1 -0.1
4 4 -2.2
7 7 -5.1

10 10 -8.9
13 13 -11
16 16 -14

j k ekj
1 1 -0.1
3 5 -2.4
5 9 -5.9
6 14 -8.9
9 17 -12

11 21 -16

optimal ratio k/j by using elliptic functions if S and T are disjoint real intervals.
Example 3.4 below compares the rational functions obtained by Algorithm 3.3 with
numerical results presented by Levin and Saff [22]. This example suggests that the
rational functions determined by Algorithm 3.3 may be optimal or nearly optimal.
Examples 3.1 and 3.3 use sets S and T that arise in our applications to the restoration
of noisy images presented in 4. The tables show the quantities

ekj loglo \(maXzes Irky(z)l/minlrky(z)l)eT
where rkj are the computed rational functions.

Example 3.1. Let S :- [-9.136,-1.095.10-2] and T :- [3.976.10-1,2.515].
Algorithms 3.1-3.4 yield Tables 3.1 and 3.2. In Tables 3.1 and 3.2 the 6.kj are smaller
for k > j than for k < j when j + k is kept fixed. This is in agreement with the
theory developed in [21], [22], because the interval T is shorter than the interval
S. A comparison of the eee obtained from Algorithms 3.1, 3.4, and 3.2 with c 1
suggests that these schemes yield ee with similar asymptotic behavior as l increases.
However, for a fixed value of g, the values eet determined by the three algorithms can
differ substantially. As I increases, the decrease of the e determined by any one of
the algorithms is generally not monotonic when the sets S and T are close. Computed
examples with many sets S and T indicate that the et determined by Algorithm 3.4
typically decrease more smoothly as g increases than the ere obtained by Algorithms
3.1 and 3.2 with 1. Algorithm 3.3 determines j and k adaptively as j-+-k increases.
For j + k fixed, the ekj obtained by this algorithm are the smallest ones, or close to
the smallest ones, when compared to the ekj determined by the other algorithms of
this section.

Example 3.2. Let S := [-4.740.101, -2.110.10-3] and T :- [1.603.10-3, 6.249.
102]. Algorithms 3.1-3.4 yield Tables 3.3 and 3.4. In the tables it appears that
Algorithm 3.2 (with 1/2 and 1) and Algorithms 3.4 and 3.3 yield the smallest
values of ekj for fixed j + k. The length of T is larger than the length of S. The
theory in [21], [22] shows that in order to make ekj decrease as rapidly as possible as
j + k increases, we should let j be larger than k. The entries ekj of Tables 3.3 and
3.4 are in agreement with this observation.

Example 3.3. Let S :- [-8.771,-1.140.10-3] and T :- [9.405.10-3, 1.063. 102].
Algorithms 3.1-3.4 yield Tables 3.5 and 3.6.

The decrease of the ekj generated by any one of the algorithms of this section is
not always monotonic when j + k increases. It is therefore difficult to capture the
performance of the algorithms by one table. Nevertheless, Tables 3.1-3.6 together
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j + k j k ekj
2 1 1 -0.1
8 2 6 -2.3
14 3 11 -5.7
20 4 16 -7.9
26 5 21 -12
32 6 26 -15

TABLE 3.2
S--[-9.136,-1.095.10-2], T- [3.976.10-1,2.515].

j k
1 1 -0.1
3 5 -2.8
5 9 -5.9
7 13 -9.3
9 17 -12

11 21 -15

j k ekj
1 1 -0.1
4 4 -2.2
7 7 -5.2

10 10 -8.4
13 13 -11
16 16 -14

Alg. 3.2
j k ekj
1 1 -0.1
5 3 -2.2
9 5 -4.6
13 7 -6.8
17 9 -9.6
21 11 -12

Alg. 3.2
j k ek
1 1 -0.1
6 2 -1.7

11 3 -3.6
16 4 -5.7
21 5 -7.3
26 6 -9.8

TABLE 3.3
S [-4.740.101, -2.110.10-3], T [1.603.10-3, 6.249. 102].

Alg. 3.1 Alg. 3.4 Alg. 3.3
j+k j k ek j k ek j k ek

2 1 1 0.0 1 1 0.0 1 1 0.0
8 4 4 1.5 4 4 0.3 4 4 0.6
14 7 7 -1.0 7 7 -0.3 7 7 0.0
20 10 10 -0.4 10 10 -1.2 10 10 -1.6
26 13 13 -1.4 13 13 -2.3 15 11 -2.3
32 16 16 -3.0 16 16 -4.0 18 14 -3.5

suggest that Algorithm 3.4 typically yields smaller values of ekj than Algorithm 3.1,
and Algorithm 3.3 yields values of ekj which are never much larger, and sometimes
considerably smaller, than the ekj (for fixed j + k) obtained with the other schemes.

Example 3.4. This example compares Algorithms 3.2-3.3 with numerical examples
reported by Levin and Saff [22]. Instead of ekj, Levin and Saff [22, Table 8.1] determine
the quantities

’ky := --(j / k) -1 "eky ln(10)

for S [-}, 1] and T--[-1,-]. They determine the 9Vkj for Fejr-Walsh points Tk
and , a generalization of Fej6r points discussed in [22], [28], and for points they refer
to as Leja-Bagby points. These points were previously introduced in [21, Remark
3.4]. The interest in Feje!r-Walsh points and Leja-Bagby points stems from the fact
that for a given rational value of a, the ’kj, for k aj, can be shown to converge to a
constant 9() as j -- oc and j/o is an integer, and the limit ’(() is maximal for all
choices of rational functions raj,. The theory presented in [22] makes it possible to
determine the value of a that maximizes 9v(a) by evaluating certain elliptic functions.
For the intervals S and T of the present example Levin and Saff [22] find that
is maximized for a 4.28, and they compute ’kj for k 4j for Fejr-Walsh. and
Leja-Bagby points.

Table 3.7 supports the conjecture that the limit 9v(c) obtained by Algorithm 3.2
is the same as for Fej6r-Walsh and Bagby-Leja points. The entries marked with
an asterisk (.) are from [22]. The table also suggests that the kj determined by
Algorithm 3.3 satisfy

lim ’kj sup’(a).
jTk.--. cx) o
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j+k
2
8
14
20
26
32

TABLE 3.4
S --[-4.740.101, -2.110.10-3], T---[1.603.10-3, 6.249. 102].

Alg. 3.2
j k ekj
1
2
3
4
5

16

1
6

11
16
21
16

0.0
1.4
1.6

-0.1
-0.8
-1.3

j k
1 1 0.0
3 5 0.4
5 9 -0.6
7 13 -1.2
9 17 -2.9

11 21 -2.8

c=l
Alg. 3.2

j k e}
1 1 0.0
4 4 0.3
7 7 -0.5

10 10 -1.0
13 13 -2.3
16 16 -3.9

Alg. 3.2
j k ekj
1 1 0.0
5 3 0.4
9 5 -0.6
13 7 -1.3
17 9 -2.2
21 11 -3.6

Alg. 3.2
j k ek
1
6

11
16
21
26

0.0
-0.1
1.2
-0.2
0.0
-1.0

TABLE 3.5
S [-8.771,-1.140.10-3], T--[9.405.10-3, 1.063. 102].

j+k
2
8
14
20
26
32

Alg. 3.1
j k ek
1 1 0.0
4 4 0.8
7 7 -1.5

10 10 -1.4
13 13 -3.0
16 16 -4.7

Alg. 3.4
j k e}
1 1 0.0
4 4 0.0
7 7 -0.4

10 10 -2.2
13 13 -2.6
16 16 -5.0

Alg. 3.3
j k ekj
1 1 0.0
4 4 0.8
8 6 -1.8

11 9 -1.5
12 14 -3.4
13 15 -4.8

Table 3.8 illustrates that the ejk, k aj, obtained by Algorithm 3.2 are not very
sensitive to perturbations in a for a . a*, where -(a*) sup ’(a}. The insensitivity
of ekj to perturbations in a suggests that a can be chosen different from a* in order to
reduce the computational effort required for the iteration (3.3)-(3.4) without reducing
the rate of convergence very much.

4. Examples of image restoration. This section considers the iterative solu-
tion of equation (2.22) derived in 2.4. As pointed out in 2, the matrices in (2.22)
typically have a structure. By using this structure we can obtain rapid iterative meth-
ods for (2.22). For instance, when Hx Hy I, and Rx and Ry are positive definite
symmetric Toeplitz matrices, then the CADI or GADI iterative methods can be im-
plemented efficiently by using a superfast Toeplitz solver, such as the one developed
by Ammar and Gragg [1]. A recent discussion and comparison of iterative methods
is presented by Lagendijk and Biemond [20]. The construction of preconditioners for
the iterative solution of (2.16) when H is a block Toeplitz matrix with Toeplitz blocks
is discussed by Hanke, Nagy, and Plemmons [16], [23], [24].

The computed examples of this section consider the iterative solution of (2.22)
when H Hy I, and R and Ry are Toeplitz matrices of the form (2.12). The
simple form of R-1 and R-1 (see (2.13)) makes the solution of (2.22) by the CADI
or GADI iterative methods attractive. Thus, we identify

2

(4.1) A= % B
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TABLE 3.6
S --[-8.771,-1.140.10-3], T -[9.405.10-3, 1.063. 102].

j + k j k ek
2 1 1 0.0
8 2 6 1.8
14 3 11 1.2
20 4 16 0.1
26 5 21 -1.7
32 6 26 -1.3

c=2
Alg. 3.2

j k
1 1 0.0
3 5 0.1
5 9 -0.8
7 13 -1.9
9 17 -2.1

11 21 -3.7

Alg. 3.2
j k ekd
1 1 0.0
4 4 -0.3
7 7 -1.2

10 10 -2.2
13 13 -3.7
16 16 -5.4

J
Alg. 3.2

1 1 0.0
5 3 -0.2
9 5 -1.3

13 7 -2.8
17 9 -2.9
21 11 -4.5

Alg. 3.2

1 1 0.0
6 2 -0.2

11 3 -0.3
16 4 -1.5
21 5 -1.6
26 6 -3.9

TABLE 3.7
S [-, 11, T [-1,--561.

Fej4r-Walsh
j + k j k k
20 4 16 1.94"
60 12 48 1.99"

o 4
Bagby-Leja

j k
4 16 1.48"
12 48 1.81"

Alg. 3.2
j k
4 16 1.73
12 48 1.90

Alg. 3.3
j k
5 15 1.72

18 42 1.85

where a := a:o"u. Then the iterative scheme (3.3)-(3.4) becomes

(4.2) j := j + 1,

(4.3) k := k + 1,

a2n Rl + 5jI) Fj+k Fj+k-1 (5jI Rx) + GR0.2

-R + rI F+-I + aR.

In view of (4.1) and (2.14)-(2.15), the sets

(4.4)
l+py _2 l+pJS :-[---a-a--" l_pv

T := [l:p l+px],lq-px 1-px

)satisfy (3.2). Note that the matrices :h-R1 +6I and (R:- TkI) are positive

definite for 6 E T and Tk S.
The computational work required to carry out the iterations (4.2)-(4.3) can be

reduced by replacing the Toeplitz matrices (6jI R) and (R rkI) by tridiagonal
matrices as follows. Let to be a given vector. We compute the vector v defined by

(4.5) v := w(6jI- R)

by first using formula (2.13) to determine

(4.6) u "= w(6jR; -I)

and then solving

(4.7) vR’ U
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TABLE 3.8
S [-, 1], T--[-1,-].

a=4
Alg. 3.2

j -- k j k ekj
2O 4 16 -15.0
40 8 32 -32.8
60 12 48 -49.6

j k ekj
7 13 -14.5

13 27 -31.4
20 20 -47.9

Alg. 3.3
j k ekj
5 15 -14.9

12 28 -31.2
18 42 -48.1

Alg. 3.1
j k ekj
10 10 -12.2
20 20 -25.9
30 30 -40.4

for v by using the Cholesky factorization of R-1. The count of arithmetic operations
for computing v in this manner grows only linearly with the size of v. Similarly, given
the vector w, we solve

for v by first evaluating u wR- and then solving v(I- TkR-) U for v. We
will assume that the CADI and GADI iteration methods have been implemented as
outlined above when discussing requirements of arithmetic operations.

For comparison we also solve (2.22) by the conjugate gradient (CG) algorithm,
i.e., we apply the CG algorithm to the solution of (2.20) with Hx Hy I and
initial vector J’0 g. Each iteration by the CG method requires the computation of
a matrix-vector product with the matrix R (R) R- and the evaluation of two inner
products with NM-vectors; see, e.g., [15]. Note that each iteration by the CADI
and GADI methods, i.e., each application of formulas (4.2) or (4.3), requires fewer
arithmetic operations than one iteration by the CG method.

We remark that iterative methods other than the ones used in our computed.
examples may be attractive. For instance, a preconditioned CG method with a
GADI-preconditioner might perform well, but this kind of method requires further
investigation. For discussions on ADI-preconditioners, see Hochbruck and Starke [17]
and references therein. In these methods the structure of the linear system is used
by the preconditioner, but not by the CG method. Preconditioned iterative methods
in which both the preconditioner and the iterative method use the structure of the
linear systems deserve further study.

The matrices of the examples of the present section have a structure that makes
it possible to carry out each iteration with the CADI or GADI methods rapidly,
and we doubt that much can be gained by using more complicated iterative methods
for the solution of the linear systems in our examples. The study of alternative
iterative methods would appear to be attractive primarily when Wiener filters with
more complicated covariance matrices are used.

We turn to the description of the computed examples. Let be an N M
matrix that represents an image, i.e., let the entries of F represent pixel values. In
our examples each pixel is represented by eight bits, and each entry of F is an integer
between 0 and 255. Compute the mean # of the entries of/ and form

F := iI -eNeTM,
where ej [1, 1..., 1]T 6 IRJ. Let 6

2 be the variance of the entries of F, and let
px and py be the adjacent element correlation of the entries of F in the x- and y-

2 and add todirection, respectively. Generate white Gaussian noise with variance av
F. The matrix G + #eNe represents the noisy image, and G represents the noisy
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image modified to have zero mean.
signal-to-noise ratio

2 is chosen to yield a specificThe variance a

SNR 10 log10 dB.

We choose the initial approximate solution F0 in the iterative methods to be the
matrix G. Introduce the norm for H- [hj] E NM,

We terminate the iterations as soon as the difference between two consecutive iterates

F satisfies

1
(4.9) life- F_l][, < .
Let F be the final iterate. The restored image/ is obtained from

(4.10) / int (Fq + #eNeTM).

The operator int in (4.10) rounds each entry of the matrix to the closest inte-
ger, replaces negative entries by zero, and replaces entries larger than 255 by 255.
The computations were carried out on an IBM RISC 6000/550 workstation in single
precision arithmetic, i.e., with about seven significant digits.

Continued iteration after the criterion (4.9) was satisfied did not yield images
that could be distinguished by visual inspection from the images presented. More-
over, the restored images F obtained by the different iterative schemes could not be
distinguished visually. We show only one of the restored pictures and refer to it as
the restored image.

FIG. 4.1. 240 x 256 pixels, SNR=5 dB.

Example 4.1. Let/ be a 240 256 matrix that represents an uncorrupted image
with variance a2 4.149.103 and adjacent element correlations Px 0.4310 and
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FIG. 4.2. 240 256 pixels, restored image.

TABLE 4.1
Number of iterations required to restore Fig. 4.1.

Method

CADI
GADI
CG

Number of iterations
j+k k j
10 5 5
7 4 3

13

TABLE 4.2
Number of iterations required to restore Fig. 4.3.

Method

C/DI
GADI
CG

Number of iterations
j+k k j

18 9 9
16 8 8
51

2 1.825.103 is generated in orderpy 0.9331. White Gaussian noise with variance av
to obtain the matrix G as described above with SNR 5 dB. Figure 4.1 displays the
matrix given by G+#e240e2T56, where # is the average of the entries of/. The restored
image is shown by Fig. 4.2. Table 4.1 displays the number of iterations required. The
sets S and T used for CADI and GADI iteration are determined by (4.4) and are those
of Example 3.1. The parameters for GADI iterations are generated by Algorithm 3.3.
For comparison we use parameters determined by Algorithm 3.1 for CADI iteration
because the theoretical properties of this algorithm are well understood.

Example 4.2. Let/ be a 254 244 matrix that represents an uncorrupted image
with variance a2 5.775.103 and adjacent element correlations px 0.9505 and

2 1.826.103 in orderpy 0.9766. We generate white Gaussian noise with variance av
e Tto obtain the matrix G with SNR 5 dB. Figure 4.3 shows the matrix G+# 254e244,

where # is the average of the entries of . The restored image is shown by Fig. 4.4,
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FIG. 4.3. 254 244 pixels, SNR--5 dB.

FiG. 4.4. 254 244 pixels, restored image.

and Table 4.2 displays the number of iterations necessary for restoration. The sets
S [-2.609.101, -3.747.10-3] and T [2.514.10-2,3.977 101] are determined
by (4.4). The parameters for CADI and GADI iteration are determined in the same
manner as in Example 4.1. This example illustrates that very noisy images restored by
a Wiener filter require further processing in order to yield visually pleasing images;
see [20] for a discussion. The difference in iteration numbers in this example and
Example 4.1 depends on the sets S and T differing.

5. Conclusion. The paper presents several new schemes for generating param-
eters for the classical and generalized ADI iterative method. The computed examples
of 4 show these iterative schemes to be competitive with the CG method. Moreover,
they show the GADI iteration method to yield faster convergence than the classical
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ADI iteration method.

Acknowledgments. We would like to thank Greg Ammar, Eric Grosse, and
Salvatore Morgera for providing the pictures used in 4. The paper was completed
during a visit to the University of Bologna. We would like to thank Fiorella Sgallari
for making this visit possible and enjoyable. Finally, we would like to thank Martin
Gutknecht and a referee for carefully reading the manuscript.

REFERENCES

[1] G.S. AMMAR AND W.B. GRAGG, Numerical experience with a superfast real Toeplitz solver,
Linear Algebra Appl., 121 (1989), pp. 185-206.

[2] H.C. ANDREWS AND B.R. HUNT, Digital Image Restoration, Prentice-Hall, Englewood Cliffs,
NJ, 1977.

[3] T. BAGBY, The modulus of a plane condenser, J. Math. Mech., 17 (1967), pp. 315-329.
[4] , On interpolation by rational functions, Duke J. Math., 36 (1969), pp. 95-104.
[5] R. BARTELS AND G.W. STEWART, Algorithm 432: Solution of the matrix equation AX +XB

C, Comm. ACM, 15 (1972), pp. 820-826.
[6] G. BIRKHOFF AND R.S. VAR(A, Implicit alternating direction methods, Trans. Amer. Math.

Soc., 92 (1959), pp. 13-24.
[7] G. BIRZHOFF, R.S. VARGA, AND D. YOUNa, Alternating direction implicit methods, in Advances

in Computing, Vol. 3, Academic Press, New York, 1962, pp. 189-273.
[8] P.L.C. CHEONG AND S.D. MORGERA, Iterative methods for restoring noisy images, IEEE Trans.

Acoust. Speech Signal Proc., 37 (1989), pp. 580-585.

[9] C. DE BOOR AND J.R. RICE, Chebyshev approximation by a YI with application to ADI
xWsi

iteration, J. Soc. Indust. Appl. Math., 11 (1963), pp. 159-169.
[10] M.A. EPTON, Methods for the solution of AXD- BXC E and its application in numerical

solution of implicit ordinary differential equations, BIT, 20 (1980), pp. 341-345.
[11] N.S. ELLNER AND E.L. WACHSPRESS, Alternating direction implicit iteration for systems with

complex spectra, SIAM J. Numer. Anal., 28 (1991), pp. 859-870.
[12] D. GAIER AND J. TODD, On the rate of convergence of optimal ADI processes, Numer. Math.,

9 (967), pp. 452-459.
[13] F.R. GANTMACHER, Matrizentheorie, Springer, New York, 1986.
[14] G.H. GOLUB, S. SASH AND C. VAN LOAN, A Hessenberg-Schur method for the problem AX +

XB C, IEEE Trans. Automat. Control., AC-24 (1979), pp. 909-913.
[15] G.H. GOLUB AND C.F. VAN LOAN, Matrix Computations, 2nd ed., Johns Hopkins University

Press, Baltimore, MD, 1989.
[16] M. HANKE, J. NAGY, AND R. PLEMMONS, Preconditioned iterative regularization for ill-posed

problems, in Numer. Linear Algebra, L. Reichel, A. Ruttan, and R.S. Varga, eds., de
Gruyter, Berlin, 1993, pp. 141-163.

[17] M. HOCHBRUCK AND G. STARKE, Preconditioned Krylov subspace methods for Lyapunov matrix
equations, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 156-171.

[18] D.Y. Hu AND L. REICHEL, Krylov subspace methods for the Sylvester equation, Linear Algebra
Appl., 172 (1992), pp. 283-313.

[19] M. KAC, W.L. MURDOCK, AND G. SZEGS, On the eigenvalues of certain Hermitian forms, J.
Rat. Mech. Anal., 2 (1953), pp. 767-800.

[20] R.L. LAGENDIJK AND J. BIEMOND, Iterative Identification and Restoration of Images, Kluwer,
Dordrecht, 1991.

[21] N. LEVENBERG AND L. REICHEL, A generalized ADI iterative method, Numer. Math., 66 (1993),
pp. 215-233.

[22] A.L. LEVIS AND E.B. SAFE, Optimal ray sequences of rational functions connected with the
Zolotarev problem, Constr. Approx., 10 (1994), pp. 235-273.

[23] J.G. NAGY AND R.J. PLEMMONS, Some fast Toeplitz least squares algorithms, in SPIE, Vol.
1566, Advanced Signal Processing Algorithms, Architectures, and Implementation II, So-
ciety of Photo-Optical Instrumentation Engineers, Bellingham, WA, 1991, pp. 35-46.

[24] , Iterative image restoration using EFT-based preconditioners, Report, Department of
Mathematics, Southern Methodist University, Dallas, TX, 1992.

[25] D.W. PEACEMAN AND H.H. RACHFORD, The numerical solution of parabolic and elliptic dif-
ferential equations, J. Soc. Indust. Appl. Math., 3 (1955), pp. 28-41.



186 D. CALVETTI AND L. REICHEL

[26] Y. SAAD, Numerical solution of large Lyapunov equations, in Signal Processing, Scattering,
Operator Theory and Numerical Methods, M.A. Kaashoek, J.H. van Schuppen, and A.C.M.
Ran, eds., Birkhuser, Boston, MA, 1990, pp. 503-511.

[27] G. STARKE, Optimal alternating direction implicit parameters for nonsymmetric systems of
linear equations, SIAM J. Numer. Anal., 28 (1991), pp. 1431-1445.

[28] , Fejdr-Walsh points for rational functions and their use in the ADI iterative method,
J. Comput. Appl. Math., 46 (1993), pp. 129-141.

[29] M. TsuJ, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
[30] R.S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[31] E.L. WACHSPRESS, Optimum alternating-direction-implicit iteration parameters for a model

problem, J. Soc. Indust. Appl. Math., 10 (1962), pp. 339-350.
[32] , Extended application of alternating direction implicit iteration model problem theory,

J. Soc. Indust. Appl. Math., 11 (1963), pp. 994-1016.
[33] , Iterative solution of the Lyapunov matrix equation, Appl. Math. Letters, 1 (1988), pp.

87-90.



SIAM J. MATRIX ANAL. APPL.
Vol. 17, No. 1, pp. 187--211, January 1996

1996 Society for Industrial and Applied Mathematics
011

STABILITY OF SYMMETRIC ILL-CONDITIONED SYSTEMS
ARISING IN INTERIOR METHODS FOR CONSTRAINED

OPTIMIZATION*

ANDERS FORSGRENt, PHILIP E. GILLS, AND JOSEPH R. SHINNERLS

Abstract. Many interior methods for constrained optimization obtain a search direction as the
solution of a symmetric linear system that becomes increasingly ill-conditioned as the solution is
approached. In some cases, this ill-conditioning is characterized by a subset of the diagonal elements
becoming large in magnitude. It has been shown that in this situation the solution can be computed
accurately regardless of the size of the diagonal elements.

In this paper we discuss the formulation of several interior methods that use symmetric diag-
onally ill-conditioned systems. It is shown that diagonal ill-conditioning may be characterized by
the property of strict t-diagonal dominance, which generalizes the idea of diagonal dominance to
matrices whose diagonals are substantially larger in magnitude than the off-diagonals. A perturba-
tion analysis is presented that characterizes the sensitivity of t-diagonally dominant systems under a
certain class of structured perturbations. Finally, we give a rounding-error analysis of the symmetric
indefinite factorization when applied to t-diagonally dominant systems. This analysis resolves the
(until now) open question of whether the class of perturbations used in the sensitivity analysis is
representative of the rounding error made during the numerical solution of the barrier equations.

Key words, nonlinear programming, constrained optimization, interior-point methods, barrier
methods, rounding-error analysis, indefinite systems, backward stability, condition number
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1. Introduction. This paper concerns the solution of the nonlinear program-
ming problem

NP minimize f(x)
subject to c(x) >_ O,

where c(x) is an m-vector of nonlinear functions with ith component c(x), i 1,...,
m, and f and {c} are twice-continuously differentiable. Let g(x) denote the gradient
of f(x) and J(x) the m n Jacobian of c(x).

In recent years, interior methods for NP have received considerable attention
because of their close relationship with the "new" polynomial approaches to linear and
quadratic programming. Many of these interior methods are based on the properties
of the logarithmic barrier function

m

(1.1) f(x) f(x) # In ci(x),
i--1
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which is defined for each value of the positive barrier parameter #. Fiacco and Mc-
* of the barrier functionCormick [5] give conditions under which local minimizers x

converge to a solution x* of NP as # 0 (see also Wright [25]).
In the classical logarithmic barrier method given by Fiacco and McCormick [5],

f(x) is minimized for each of a sequence of decreasing values of # using an uncon-
strained minimization method. If x is an approximate minimizer that lies in the strict
interior of the region {x c(x) >_ 0}, then the matrix C(x) diag(c(x), c2(x), ...,
Cm(X)) is nonsingular and the derivatives of f,(x) are given by

(1.2a) Vf(x) g(x) #J(x)TC(x)-le,
m

(1.2b) V2f(x) V2f(x)- .= c(x) V2c(x) + #J(x)TC(x)-2j(x),

where e is the m-vector of ones. If f(x) is minimized by Newton’s method with a
line search, the Newton direction Ax satisfies the equations

(1.3) V2f(x)Ax -Vf (x),

where V2f(x) and Vf,(x) are given by (1.2). Once Ax has been computed, a positive
step length a is chosen so that c(x+aAx) > 0 for all i, and f(x+aAx) is sufficiently
lower than ft,(x) (see, e.g., Murray and Wright [20]).

The idea of using a barrier function dates back to the mid 1950s (see Frisch [6]);
however, barrier methods fell into disuse during the 1970s, mainly because of the diffi-
culties associated with the numerical solution of the equations (1.3). These difficulties
are caused by the phenomenon of inevitable ill-conditioning in the barrier Hessian
V2f(x). To characterize this ill-conditioning, we need to make some assumptions
concerning a solution x* of NP. Let ,4* denote the set of indices of constraints that
are active (i.e., satisfied with equality) at x*. Throughout this paper, we use the suffix
+ to denote quantities associated with constraints with indices in a certain subset
of jr*. For example, J+(x) is the m+ n submatrix formed from the rows of J(x)
whose indices are in j[*+. Sufficient conditions for a feasible point x* to be a local
solution of NP are that there exists an index set /*+, and a strictly positive Lagrange.multiplier vector + such that

(1.4a) the vectors {Vc(x*)}, e Jr*, are linearly independent,

(1.45) g(x*) J+(x*)T+,
(1.4c) vTH(x*, A*)v > 0 for all nonzero v such that J+(x*)v O,
(1.4d) ,4/*+ A*,
where H(x, .) denotes the Hessian of the Lagrangian V2f(x)-E AV2c(x) Con-
ditions (1.4) imply the existence of a locally unique differentiable trajectory of barrier

such that lim_,0 xt,* x* (see Fiacco and McCormick [5, pp. 79-82]).minimizers x
Murray [19] has shown that as # 0, V2f(x) has m+ unbounded eigenvMues

(x*. T and n m+ boundedcorresponding to eigenvectors in the range space of J+,
eigenvalues corresponding to eigenvectors in the null space of J+(x*). If 0 < m+ < n
the barrier Hessian accordingly becomes increasingly ill-conditioned as # is reduced.
More general properties of the barrier Hessian are discussed by Wright [26].

Several approaches have been suggested for the treatment of ill-conditioning in

V2f (x). If one is willing to predict the active set, the ill-conditioning can be avoided
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in several ways. For example, the Newton direction can be approximated by the sum
of two independent directions, one of which lies in the null-space of the matrix of
predicted active constraint gradients (see Wright [24]).

More recently, with the growth of interest in the use of barrier methods as a means
of avoiding the combinatorial complexity of active-set methods, there has been an em-
phasis on methods that do not require an estimate of the active set. One approach is
to convert the inequality constraints c(x) >_ 0 into equalities using nonnegative slack
variables (see 2.1). The resulting Newton equations for the equality-constrained prob-
lem are also ill-conditioned, but the ill-conditioning is caused by the presence of some
large elements on the diagonal. This diagonal ill-conditioning will be defined and an-
alyzed in 2.6. The importance of diagonal ill-conditioning was first demonstrated by
PonceleSn [21], who gave a perturbation analysis of diagonally ill-conditioned systems
andshowed that the sensitivity of the equations under certain structured perturba-
tions is independent of the large diagonals. Moreover, it was shown that as # 0, the
sensitivity of the Newton barrier equations is identical to the sensitivity of a system
whose condition reflects the condition of the original problem (see 2.5 for a definition
of this system).

There are situations, however, when it is not convenient to add slack variables. In
many physical and engineering applications, the constraint functions not only char-
acterize the desired properties of the solution, but also define a region in which the
problem statement is meaningful (for example, f(x) or some of the constraint func-
tions may be undefined outside the feasible region). In this situation, a barrier trans-
formation requires the strict satisfaction of all constraints c(x) >_ 0 at the starting
point and subsequent iterates. If slack variables are used to transform the inequality
constraints into equalities, the barrier transformation is applied to the nonnegativ-
ity constraint on the slack variable, allowing the original inequality constraint to be
violated.

If slack variables cannot be used, other methods must be used to circumvent the
ill-conditioning in the unconstrained barrier equations (1.3). One possibility is to
formulate the Newton equations as an unsymmetric system whose condition number
does not go to infinity as # 0 (see McCormick [15]). This idea is illustrated in

2.2. As far as efficiency is concerned, there may be little disadvantage in using an
unsymmetric system instead of a symmetric system (e.g., sparse matrix packages are
able to exploit symmetric structure even when the numerical values are unsymmet-
ric). However, it is not yet known how methods based on unsymmetric systems can
be generalized to nonconvex problems. If the objective is not convex, even the verifi-
cation of optimality requires knowledge of the inertia of the Hessian in the subspace
orthogonal to the active constraint gradients. It is not at all obvious how the inertia
can be estimated efficiently without utilizing symmetry.

In 2 we describe a class of symmetric barrier equations that allow the Newton
barrier direction to be calculated accurately without the need to either add slack
variables or formulate the Newton equations as an unsymmetric system. A similar
approach (without analysis) is proposed by Gould [10]. The crucial feature of these
symmetric systems is that any inevitable ill-conditioning is caused by some large
diagonal elements. This behavior is characterized by the property of strict t-diagonal
dominance (see 2.6), which extends the standard definition of diagonal dominance
to the case where some of the diagonals are large in magnitude. If the only inequality
constraints are nonnegativity constraints, our formulation is the same as the one
analyzed by PonceleSn [21]. In 3 we describe the sensitivity of solutions of this class
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of symmetric Newton barrier equations when the matrix is changed by a particular
class of structured perturbations. The analysis suggests an effective condition number
for these equations and indicates that under suitable assumptions, the solution can
be computed accurately, even though the condition number of the system tends to
infinity.

Finally, in 4 we give a backward rounding-error analysis of the solution of t-
diagonally dominant Newton barrier equations by means of the symmetric indefinite
factorization. Our analysis completely characterizes the form of the backward error
and indicates that our assumptions concerning the form of the structured perturba-
tions used in the perturbation analysis are realistic.

Our results can also be used to extend the analysis of Wright [27], who discusses
the use of the LU factorization for solving ill-conditioned symmetric systems.

2. Formulation and solution of the barrier equations.

2.1. Standard form. Poncele6n [21] considers the sensitivity of solutions of
linear systems arising from the application of barrier methods to quadratic programs
formulated in "standard form." The standard-form equivalent of problem NP is ob-
rained by converting each inequality constraint c(x) >_ 0 into an equality c(x)-s 0
using a nonnegative slack variable si. This gives

minimize f x

subject to c(x)-s-O, s_>0,

where s is the vector of slack variables. (Since this format does not assume that the
x variables are nonnegative, it is different from the problem considered by Poncele6n.
We have chosen this form to demonstrate the similarities between the all-inequality
and standard form approaches.) The barrier transformation is applied to the nonneg-
ativity constraints, giving the barrier subproblem

m

minimize f(x) #E In s,
x,s

i=1

subject to c(x) s O.

The first-order optimality conditions of this problem are

(2.1)
g(x)- J(x)T, 0,

-#S-le O,

c(x) s o,
where S is the diagonal matrix diag(sl, s2, Sm) and A is the vector of Lagrange
multipliers associated with the equality constraints c(x) s 0. These relations
imply that (x, s,*, A) solve n + 2rn equations in the n + 2rn unknowns (x, s, A).

The nonlinear equations (2.1) can also be solved using a form of Newton’s method.
Suppose that (x, s, ,) is an estimate of (x, st, ,). Let g, c, J, and H denote the
quantities g(x), c(x), J(x), and H(x,,k). Given (x, s,,), the next iterate of New-
ton’s method is (x + aAx, s + aAs, , + aAA), where a is a scalar step length and
(Ax, As, A)) satisfies

0 pS-2 I AS , #S-1 e
J -I 0 A) c- s
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Simple rearrangement gives the symmetric system

(2.2) 0 #S-2 -I As , #S-le
J -I 0 AA c- s

(For details of related applications of Newton’s method in the context of linear and
quadratic programming, see, e.g., Kojima, Mizuno and Yoshise [13], Lustig, Marsten
and Shanno [14], Megiddo [16], Mehrotra [17], Monteiro and Adler [18], and Gill et al.,
[7].) As (x, A) (x%,) and # --+ 0, this system becomes increasingly ill-conditioned,
with some of the diagonals of #S-2 becoming unbounded. The numerical properties of
this diagonal ill-conditioning have been discussed by PonceleSn [21], who showed that
diagonally ill-conditioned systems can be solved accurately even when the magnitude
of some diagonal elements goes to infinity. Diagonally ill-conditioned systems are
considered further in 3.

In general, the sequence generated by this slack-variable form of the primal barrier
method will differ from that of the unconstrained form discussed in 1. In particular,
since only the slack variables are constrained to be strictly feasible, the constraints
c(x) > 0 may or may not be violated. This could prove to be a disadvantage in some
applications where strict feasibility of the constraints c(x) > 0 is required.

2.2. Unsyrnrnetric primal formulation. An alternative to adding slack vari-
ables is to derive a system of unsymmetric Newton equations that is not always
ill-conditioned as x converges to x*. Consider the all-inequality form of problem NP
and the resulting Newton equations (1.3). Define rn auxiliary quantities A #/c(x).
The vector with components A can be written as A #C(x)-le and can be used to
derive the n / rn conditions

(2.3)
g(x)- J(x)TA O,
A #C(x) -le 0,

with C(x) diag(cl(x), c2(x), Cm(X)). To simplify the notation, we shall de-
note C(x) by C, and define A diag(Al, A2, Am). The relations (2.3) imply
that (x, A) solve n / m equations in the n / rn unknowns (x, A). If these nonlin-
ear equations are solved using Newton’s method as in 2.1, we obtain the Newton
equations

#C-2j I AA A- #C-le

Premultiplying the last rn rows by C and performing some simple rearrangement gives

(2.4)
#C-1J -C AA CA- #e

This unsymmetric system is the primal variant of the one discussed by McCormick [15]
(we have presented the primal form in order to be consistent with the primal slack-
variable approach of 2.1). When conditions (1.4) hold, this system is nonsingular
and does not suffer inevitable ill-conditioning as (x,A) --+ (x, A) and # 0. To
show this, consider the set M/*+ of active constraints with positive multipliers at x*.
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Let quantities associated with constraints whose indices are not in j[*+ be denoted by
0. If the rows and columns of the system (2.4) are reordered to match the indices in
j[*+ and jt, then

#C-J+ -C+ AA+ C+A+ #e

C J0 -Co AA0 CoA0 pe

where we have assumed without loss of generality that the rows of J+ are the leading
rows of A. Under the assumptions (1.4), the following relationships hold as (x, A) --+

(x, A) and # --+ 0:

* (4 0)
(:.)

0 - 4 (4 > 0); + - +
0 - ( 0); + - Z+ (: > 0).

Hence, as (x, A)--+ (x, A) and # --+ 0, we have #C-1 -+ A+, #C-1 --+ 0, and

].tV j+ -C+ --+ A+J+ 0 0

c Jo -Co 0 0 -Co

which is a block upper-triangular matrix whose condition number is bounded.

2.3. Symmetric primal barrier formulation. In this section we consider cer-
tain symmetric systems arising from the application of Newton’s method to the so-
lution of the equations (2.3). If the last rn rows of (2.4) are premultiplied by the
diagonal matrix (1/#)C, we obtain

(2.6) J -1C2 AA
1
C(CA- #e)

These symmetric primal barrier equations characterize the primal barrier Karush-
Kuhn-Tucker (KKT) system, and the symmetric matrix associated with this system
is known as the primal barrier KKT matrix.

The effect of symmetrizing the Newton barrier equations is to make the barrier
KKT matrix ill-conditioned. If the primal barrier KKT matrix is partitioned to match
the indices in j[*+ and ,4, then

JTA

c+ +
J0 _lcg# AA0 !C0(CoA0 #e)

The assumptions (2.5)imply that as (x, A) --. (x, A) and # -+ 0, then the diagonals
of (1/#)C+2 go to zero, the diagonals of (1/#)C02 go to infinity, and the primal barrier
KKT matrix becomes increasingly ill-conditioned.
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2.4. Related symmetric formulations. Following Ye [28], Gill et al. [7], and
Gonzaga [9], we note that other symmetric systems can be derived by symmetrizing
the three equivalent forms of (2.3b): (i) C(x)A- #e 0, (ii) C(x)e #A-ie O, and
(iii) e- #A-1C(x)-le- O. In case (i) we obtain the primal-dual system

J -CA-1 AA c-#A-le

In case (ii) we obtain the dual system

(2.9) ( Hj -#A-2 AA c- #A-le

Finally, for case (iii) we have

(2.10) ( Hj jT --Ax
1

-CA-1 A,, ;C(C,,
Each of these systems becomes ill-conditioned in the same way, namely, as (x, A) --.

(x, A) and # ---, 0, some diagonal elements become infinitely large while others con-

verge to zero. Moreover, if (x, A)= (x, A), then CA #I and the matrices associ-
ated with the systems (2.6), (2.8), (2.9), and (2.10) are identical. An error analysis of
the symmetric indefinite factorization is considered in 4. We note that our analysis
does not treat symmetric systems that are derived by column symmetrization. For
example, in the primal-dual case, if the matrix A is applied to the last m columns of
(2.4), we have the symmetric system

H
AJ -CA A-AA CA- #e

The partitioned form of this matrix is given by

H

A+J+
AoJo

T+A+
-C+A+ A- AA+ C+A+ #e

-CoAo Ag AAo CoAo #e

These relations imply that some of the diagonals converge to zero while others remain
bounded. Although the analysis of systems of this type is not covered by the tech-
niques proposed in this paper, it is possible that the symmetric indefinite factorization
can also be used stably in this situation.

2.5. Solution of the symmetric barrier KKT equations. We will assume
that the barrier KKT equations are solved using the symmetric indefinite factoriza-
tion (see Bunch and Parlett [4] and Bunch and Kaufman [2]), which we refer to as
the LBLT factorization. If A denotes the particular barrier KKT matrix under con-
sideration, then the LBLT factorization defines a permutation P, a block-diagonal
B, and a unit-lower triangular L such that

pTAp LBLT, where B diag(Bll,B22,...,Bss).
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Each Bjj is either 1 1, or is 2 2 having one positive and one negative eigenvalue.
The permutation P incorporates certain symmetric interchanges that are needed to
preserve numerical stability.

The choice of permutation P depends on the particular pivoting strategy used (see
Bunch et al. [3] for a discussion of the various strategies available). The analysis of 4
requires that the large elements on the diagonal are used to define the first sequence
of 1 1 pivots. (For example, this would be the case for the pivoting strategy of
Bunch and Parlett [4].) With this sequence of pivots, the symmetrically permuted A
can be partitioned so that

(2.11) pTAp=( AliA21 A2T1/A22
where All is the matrix whose diagonals are large in magnitude. For example, suppose
that the equations and variables of the primal barrier system (2.7) are reordered to
give

(2.12) JoT H jT+ -Ax
1 2 zA+0 J+ --C+

1
- Co(Co o

g-- JTA
1;c+

where -(1/#)C is the matrix whose diagonals are large in magnitude. In this case

All and A22 are defined from the rows and columns of the matrices

1 C and(2.13) J+

(For the purposes of this discussion, the order of the rows and columns in All and
A22 is not important.)

When optimality conditions (1.4) hold and (x, A) (x, A), then A22 converges
to the KKT matrix

which is invariant of the particular barrier method used. The condition of this KKT
matrix is determined by the singular values of J+ and the eigenvalues of the reduced
Hessian ZT+HZ+, where the columns of Z+ form a basis for the null space of J+. In
effect, these quantities may be considered as defining the condition of the original
problem NP.

The following informal argument indicates that the sensitivity of the barrier equa-
tions principally depends upon the condition of A22 (and hence on the condition of
the KKT matrix) rather than on the condition of A (a rigorous analysis is given in 3).
Suppose that the first r rows of A are scaled by the diagonal matrix D diag(A11)-l.
Then D - 0 as # --, 0, and

A21 A22 A21 Aee
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Since the solution of a system is unaltered by a diagonal row scaling,_this result leads
us to expect the sensitivity of the barrier solution to be based on (A) IIA-11111AII.
The identity

implies that the limiting sensitivity of the barrier solution depends upon A22 and A21.
In 3 we give a rigorous derivation of the sensitivity of barrier solutions for the case
where # is small (but nonzero).

2.6. Strict t-diagonal dominance. Each of the systems (2.2), (2.6), (2.8),
(2.9), and (2.10) has the property that some diagonal elements become infinitely,
large in magnitude as (x, A) (x,)) and # --, 0. In order to analyze the numer-
ical properties of systems of this kind, it is important to be able to characterize the
behavior of symmetric barrier matrices in a way that is invariant with the particular
barrier formulation being employed. Our approach is illustrated by the matrix

(2.15) A
-2t 0 1 /0 -2t 1

1 1 1

where t >_ 1. For all t >_ 1, the LBLT factorization A LBLT is given by

1 -2t2

L 0 1 and B -2t

1 11 1
1 1 +-- +---=2t2 2t 2t 2t

Note that the last diagonal differs from the (3, 3) element of A by a term of order l/t,
which is the order of the inverse of the smallest "large" diagonal. This implies that
the contribution to the rounding error in this element diminishes as t - c. This
observation is crucial in the error analysis of 4.

For large t, the magnitude of a large diagonal dominates the other elements in its
column. Matrices with this property can be characterized as follows. Let A denote a
symmetric n n matrix, and let t denote a scalar such that t _> 1. The jth column
of A is said to be strictly t-diagonally dominant if

If every column is strictly t-diagonally dominant, then A is said to be strictly t-
diagonally dominant. If t 1, our definition of t-diagonal dominance is equivalent to
the usual definition of diagonal dominance (see Golub and Van Loan [8, pp. 119-120]).
We also define subsets of t-diagonally dominant columns. A subset of r columns jl,
.., jr is said to be strictly block t-diagonally dominant if

min {aj.jql>t max E [aij.l.
l<_q<_r

l(i(n
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If t is sufficiently large but some diagonals are independent of t, the matrix is
ill-conditioned. We refer to this type of ill-conditioning as diagonal ill-conditioning.
An important feature of diagonally ill-conditioned matrices is that the diagonals of
t-diagonally dominant columns define a sequence of acceptable 1 1 pivots for the
LBLT factorization.

3. Perturbation analysis. This section is concerned with an analysis of sys-
tems whose matrices are strictly block t-diagonally dominant. To simplify the no-
tation, we use Ax b to denote the system under discussion. It will be assumed
throughout that the rows and columns of A may be reordered to give a matrix of the
form

A21 A22

where A22 is nonsingular, and the matrices All and A21 form a subset of r strictly
t-diagonally dominant columns of A. (In terms of the barrier equations (2.11), these
assumptions imply that # is small enough to ensure that A22 is sufficiently close
to the KKT matrix (2.14). The optimality conditions (1.4) then imply that A22 is
nonsingular.) The dimension of All is denoted by r. A similar notation is used for
the block partition of all other matrices of order n.

For the remainder of this discussion, we use IIAII to denote the spectral norm

IIAII supx.0 IIAxll2/llxll 2. Similarly, (A) denotes the spectral condition number
(A) -IIA--IIIIAII. The matrix with elements lajl is denoted by IAI. The matrices
consisting of the diagonal and off-diagonM elements of A are denoted by diag(A) and
offdiag(A) respectively, so that A diag(A) + offdiag(A).

In the next theorem, we analyze the effect on the solution of Ax b of perturbing
a block t-diagonally dominant matrix A by a specific class of structured perturbations.
It is shown that any perturbation from this class produces a relative perturbation in
x that can be of the order of the relative perturbation of A magnified by terms of
the order of t(A22) and IIA2II[[A2II. This result is in contrast to the standard
result, which predicts that the relative perturbation in A can be magnified by at most
(A). It is shown in Theorem 4.4 and Corollary 4.5 of 4 that these perturbations
are representative of the backward error made when solving Ax b using the LBLT
factorization of A.

THEOREM 3.1. Let A be a symmetric n n matrix partitioned so that

A21 A2

where A is r r and A22 is nonsingular. If the first r columns of A form a strictly
block t-diagonally dominant submatrix, with

(3.1) t > 1 + rllAlll]A)ll,
then A is nonsingular. Moreover, consider the system Ax b and the perturbed
system (A + E) b, where

A + E ( All+El1 A2T1 q-E12)A2+E21 A2+E2

and E is such that
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(i) diag(E11)l <_ e diag(All)l;
(ii) offdiag(Ell)ll _< ell offdiag(All)ll;
(iii) IIE2111 ellA2111 IIE1211 ellA2111;

1
(iv) I[E2211 <_ ([[AII + ]]A2]]).
and 2 denote constants r/(t- 1) and 62 (t + )/(t- 1), then

’1 + Y2(A22) + IIAIIIIA]],

where
and 9/3 ne(6l + 52 + (1 + 1#)(1 + 61))/(1 IlIAIIIIA]I).

Proof. We first show that A is nonsingur. To do this, IIA-II nd IIAIIIIA-J
are bounded by deriving 8ome inequalities involving A21 and the diagonal and off-
diagonal parts of All. Define AD diag(All) and Ao offdiag(All), with similar
definitions for ED and Eo. The strict block t-diagonal dominance of the first r columns
of A is equivalent to

so that

IIA;IlI1 A21

1 1
(3.2) IIA-IIIIAoII < , and IIA;IlIIIAII <

In terms of the two-norm, these bounds may be written as

(3.3) IIA;IIIIAoll < v/7 and IIA;IIIiAII < /7

where liA[[ IIAI[, since Ao is diagonal. It follows from the first inequality of
(3.2) that I]A-;1AolI1 < l/t, so that standard norm inequalities give

I](I / A-Ao)-II < vll( / A-Ao)-II < v/7
-t-1

(see, e.g., Stoer and Bulirsch [23, p. 188]). Since All AD + Ao, (3.4) implies that

A-I may be written as

(3.5) A (I / A-IAo)-IA-1.

The second inequality of (3.3), (3.4), and (3.5) give

(3.6) IIA211111A-II
_

IIA211]IIA;IlI]](I-I-A-IAo)-I]] < 1,

where
r

(I
t-i

This inequality allows us to show that S and A are nonsingular, where S denotes the
--1 TSchur complement A22 A21All A21. The difference between the smallest singular

values of S and A22 may be written as
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where (:rmin denotes the smallest singular value (see, e.g., Golub and Van Loan [8,
p. 428]). Since A22 is nonsingular, it holds that IIA2II 1/rmin(A22 ). Substituting
(3.6) in (3.7) gives

(3.8) ffmin(S) >
1

IIAlll
This inequality and the definitions of t and 1 imply that ffmin(S) > 0, 80 that S is
nonsingular. Since S and A have been shown to be nonsingular, it is straightforward
to verify that the inverse of A may be written in the partitioned form

-1 T

(3.9) All A2T1 A + All A21S- A21A/ -AAIS-1
AI A -S-A2A S-1

Since A has now been shown to be nonsingular, standard analysis gives the bound

IA-Ell

(see, e.g., Stewart and Sun [22, pp. 124-125]). Consider the matrix

where F has been partitioned to match the partition of A. Substituting (.9) in (a.10),
we obtain Fll, F, FI, and F as

12 ( +1S-121)12 -1 TAll A21S- E22,

F2 -S-1A2A{EI + S-E2,
F22 -S-A21A/E12 + S-1E22.

All that remains is to bound the norms of Fll, F12, F2, and F22. Taking norms in
each of the expressions for F, F12, F21, and F22 above, and using (3.6) in conjunction
with IIS-]} < IIA]I/(1- 5111A2:IIIIA2II)from (3.8) gives

IIFx < IIA-Ell + 1 IIA11111E2
1 1 ]lAe ]IA

IIx211 < IIAIIIIE211 + xlIA-11111E221i
1 1 ]]A21 lIAr2

1121 -< IIA21 IIA IIA1Exx + IIA IIE2

IIF2211

1 lllAe Ah-
IIA211111E1211 + IIAIIIIEe.[I

1 1 [IA21 lIAr2111
It follows from (3.5) that A-IEI (I+A;1Ao)-I(A;Ez)+A-IEo). Taking norms
gives

(3.11)
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Inequalities (3.3) and the assumptions on AD, ED, Ao, and Eo give

(3.12)

where the strict block t-diagonal dominance of the first r columns of A has been used
to obtain the second group of inequalities. Collecting terms in (3.11) using (3.4) and
(3.12) gives

(313)
t ’ 1

where

v (t + eT)

Using (3.6), (3.13), and the given assumptions on t and the norms of Ell, El2, E21,
and E22 leads to the inequalities

It follows that [IFij[[ <_ eh/(1 -511[A211I[[A-2111), for i,j 1,2, where

5 51--1-- 52 -- (1-t- 51) A22 -- (5 -- 52 -- (1--- )
The required result now follows since the norm of F is no larger than n times the
magnitude of its largest element, and hence no larger than n times any ]IFj ]1, i, j
1,2. 13

This theorem implies that for large t, the sensitivity of the solution depends on

IIA2IIIIAII and (A22). For t sufficiently large, we obtain ")’1 nex/7, 2 he,
and 3 ne(v/- + 1). It is important to note that the only requirement on All is
that its diagonal elements are sufficiently large in magnitude. For example, the result
holds even when the diagonals of All go to infinity at widely varying rates. This
phenomenon may occur when the strict complementarity condition (lAd) does not
hold (see (2.15), where the diagonals are -2t and -2t2).

The results of Poncelehn [21] also follow from Theorem 3.1 if it is assumed that
Fll and F2 can be ignored compared to F12 and F22. This assumption implies that

IIF2211 (i.e., (A22)) is the dominating factor in the sensitivity of the solution.

4. Rounding error analysis. In this section we give a backward error analysis
of the solution of a strictly t-diagonally dominant system Ax b by means of the
LBLT factorization. The purpose is to justify the form of the perturbations used in
the analysis of Theorem 3.1.
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Throughout, we use the "standard model" of floating-point arithmetic in which
the evaluation of an expression in floating-point arithmetic is denoted by fl(.), with

(4.1) fl(aopb)- (aopb)(1 + 5), 151 _< u, op- +,-,.,/.

(See, for example, Higham [12].) Here, u is the unit round-off associated with the
particular machine being used. In the subsequent analysis it will be necessary to
assume that max{3n, 8}u < 1.

At the start of the kth stage (k >_ 1) of the LBLT factorization of a matrix A we
have

where Pk is a permutation and Li is either an n 1 or n 2 matrix consisting of
the column(s) of L computed at the ith stage. The matrix Ak is called the Schur
complement, and represents the part of A remaining to be factorized. At the kth
stage, a 1 1 or symmetric 2 2 submatrix of Ak is selected as the next pivot
Bkk. The pivot rows and columns are brought to the leading position of Ak using a
symmetric interchange, which must be applied to P[APk and the rows of each Li.
The 1 1 or 2 2 pivot is then used to eliminate one or two rows and columns from
the permuted Schur complement. The kth stage is completed by the computation of
Lk from B-k and the pivot columns of A(k) (for further details, see Bunch [1]).

In all of what follows, we assume a pivoting strategy that selects the large pivots
first. This implies that the r diagonals from the r r block t-diagonally dominant
submatrix of A are selected as the first r pivots, and that the matrices at the kth
stage (k _< r / 1) satisfy

k-1 n-k+1

(4.3) A(k) (a)) p[APk_ libiilTi k-i ( 0
n-kT1 0 Ak

i-1

where l/T (0,..., 0, 1, li,i+l, ..., lin). To simplify the notation, we assume that all
necessary interchanges are done at the start of the algorithm.

Once the r dominant rows and columns have been eliminated, the LBLT factor-
ization continues on the remaining matrix Ar+l with either 1 1 or 2 2 pivots being
used as necessary. If we assume that all necessary interchanges are done at the start
of the algorithm, A can be written as

A21All A2T1A22 LllL21 Bll( L1T1 L2T1 +
0 Ar+l

L21Lll Bll(L1T1 L2T1)-J-
0 L22B22L2T2

B Twhere A is r r, and L22 22L22 is the LBLT factorization of the (n r + 1) (n-
r-t- 1) remaining matrix Ar+. Note that BI and B22 denote block diagonal matrices
associated with the factorization

A2 A22 L2 L22 B22 L2T2
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The vector x is now found from the linear system LBLTx b by solving the
sequence of triangular and block-diagonal systems

(4.5) Lz b, By=z, and LTx y.

The next three lemmas concern the first r steps of the factorization and hence
relate to stages associated with 1 1 pivots. Here, and throughout, a "hat"" is used
to denote computed quantities. If a 1 1 pivot is chosen at step k of the factorization,
the following quantities are computed:

(4.6a) bkk- l-- 1,

aik aYk , > j > k + 1.

k+l) is defined to be uj for j > i.Note that
The next lemma shows that the updated uneliminated t-diagonMly dominant

columns remain "almost" strictly t-diagonally dominant in the matrix remaining to
be factorized. The lemma generalizes a standard result associated with diagonally
dominant matrices (see, e.g., Golub and Van Loan [8, p. 120]) to cases where A is
t-diagonally dominant and the computation is performed in finite-precision arithmetic.

LEMMA 4.1. Let A be a symmetric n n matrix whose first and j th (j >_ 2)
columns are strictly t-diagonally dominant for some t (t > 1). Then, it holds that

where u is the unit round-off.
Proof. Since columns 1 and j are strictly t-diagonally dominant, we have

Using (4.1) we can write

(4.8) ) aij(1 + oid) ailajl (1 + flil)(1 + o)1)(1
all

for i 1, ..., n, where laijl < u, Iflill < t, and lajll < u. Since we assume that
u < 1, it is straightforward to verify that I(1 + flil)(1 + ajl)(1 + aij) 11 < 7u. If
this bound is used to majorize the sum of the absolute values of the terms in (4.8),
we have
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The second factor on the right-hand side of this inequality can be further simplified
using (4.7) and the symmetry of A, i.e.,

(4.10)
_>2 >

Using t _> 1 in the right-hand side of this inequality gives

1 41
add-

all

Combining this inequality with (4.9) and (4.10) provides the bound

(4.11) 1+7u
t

41
add-

all

Letting j in (4.8) and using the bound on the rounding errors I(1 + flil)(1 -+-
O’jl)(1 + ad)l gives

(4.12) I)1 add-
all

7u 1-
lall lajjl

We need to bound this quantity from below by a term involving t and lajj--al/all [.
To do t.his, note that

(4.13) 41
aid

all
>_ lajl-

lall la111 lazl
lajjl,

The assumption of strict t-diagonal dominance for the first and jth columns implies
that the ratios lajll/lajjl and lajll/la111 are bounded above by lit. These inequalities
are used in (4.12) and (4.13) to eliminate lajj[, giving

41
ajj

all

The result now follows directly from this inequality and (4.11)..
The 3 3 example (2.15) indicates that for large t, the elements of the Schur com-

plement Ak are very close to the corresponding elements of A. Moreover, Lemma 4.1
states that the strictly t-diagonally dominant columns of A remain "almost" strictly
t-diagonally dominant in the computed Schur complements. In the next lemma we
make these observations precise. In particular, it is shown that the fraction of strict
t-diagonal dominance preserved in the computed Schur complements is close to one.

LEMMA 4.2. Let A be a symmetric n n matrix whose first r columns are strictly
t-diagonally dominant, with t >_ 43,-’+1 and ,’/= (1 8u)/(1 + 7u). Assume that the
first r steps of an LBLT factorization ofA involve i x i pivots from All. At the start
of step k (k <_ r + 1) let Ak denote the Schur complement remaining to be factorized
(see (4.3)). Then the first r- k + 1 columns of the computed Schur complement A
are strictly (@-lt)-diagonally dominant, and the elements of (k) satisfy
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q<_k-1

i >_j >_ k; and

(b) I)[ _< (1 + 7it)k-1 (1 + (.Ok) k-1

where wk 1/
Proof. The proof uses the definition of A as the last (n k + 1) x (n- k + 1)

p..rincipal submatrix of .(). The properties of are established by induction. Since
A1 A, it follows that the first r columns of A1 are strictly t-diagonally dominant,
and that the elements of (1) satisfy inequalities (a) and (b).

Now assume that the lemma is true for step k, i.e., the first r-k+ 1 columns ofA
are strictly (9,-lt)-diagonally dominant, and the elements of .k satisfy inequalities

(k+l) :(k-+- 1)(a) and (b). Recall that for i > j, the element aji is defined as uj where

is computed from .(k) using (4.65). The floating-point model (4.1) gives

(4.14) -.(k+l) a//3k.)(1 + a} ) (1 + ’k )(1 + Vjk )(1 +

() ,() ,(k)where la I< u, ,k I< u and I< u.

To show that the first r-k columns of.k+l are strictly (t)-diagonally dominant,
we use the definition (4.6b) for the elements of (k+l) and apply Lemma 4.1. Since
t _> 4-r+l with k _< r and _< 1, we conclude that /k-lt >_ 4q,k-r _> 4. However, if
k-lt _> 4, it is straightforward to verify that

(’k-lt)2 + 1 8

(’yk-lt)2 1
< ’

SO that Lemma 4.1 implies that, for j k + 1, ..., r,

This implies that columns 1, r-k of/k+l are strictly (/kt)-diagonally dominant,
as required.

Now we show that after the kth (k _< r) step, the bound (a) applies with k k+ 1.
Let i _> j > k. The strict (,k-lt)-diagonal dominance of column k of .(k) implies
that I)’k) 1/(k-1/akk <_ t). Using this inequality in (4.14) and applying the bounds
1 + u _< (1 + u)3 _< (1 + 7u) gives

( 1 ).-(k+l) 71/,) la-/ak.)I + .yk_lt[ai)l(4.15) I(i I_< (1 +

We use the inequality of Part (a) and the induction hypothesis to obtain the following
bounds on ) and k)"

I)l _< (1 + 7it)k-l(laijl q- ((1 + ")’tOk+l) k-1 1) max
q<_k-1

_< (1 + 7u)a-l(lal + ((1 + ,),OkT1)k-1 1) q<_k-lmax laq]),
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where Wk+l denotes the quantity 1/(k-lt). If the range of the maximization is

extended to include [aik[ and these bounds are substituted for ) and k) in (4.15)ik
we obtain

I_< (1 + 7u)k + ((1 +Wk+l)k-l(x +Wk+X)- 1) maxla,q[
qk

The identity (1 + 7w+1)-(1 + W+l) (1 + W+l) gives the required result.
Now we turn to the inequality of Part (b). Consider j such that k < j r. If

i j in (4.14), then

(4.16) +1)uy _< (1 + u)[)] + (1 + u)3 ,k)[)] [g)[ )["

Using the strict (-lt)-diagonal dominance of columns k and j of (), and the
inequalities 1 + N (1 + )a 1 + 7, it follows from (4.16) that

+1)

Using the inequality of Part (b)to bound @) gives

+1

as required.
In our analysis, the firs r steps of the factoriation are "special" in the sense that

hey are made with i x 1 pivots that are large in magnitude. The next lemma bounds
the error in the partially computed factors defined from the first r eliminations.

LNMMA 4.a. Assume that the BL fctozation of smmetric n x n mtri
A is defined so that 1 x 1 pivots re used drin9 the first r steps. Then

r ,(k)(k)

< 3(r+l)u ([a;+1) E laikajk’)1 3(r + 1)u I+__k=l lak)l
and

i, jkr/l,

k=l

3(j + 1)u 6 Ikk)k)jk
1 3(j + 1)u/--"=
, j<_r, i>_j.

Proof. Consider the qth stage of the factorization, where q _< r + 1. For i, j _> q
we have

q--1
ak ajk__< ai k=lE a()

(4.17) + kkkjk

To bound the first term of the right-hand side of this inequality, we start with (4.6b)
and obtain

q-1

aij
k--1

q-1 .k (k

i,j>__q.
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Some standard error analysis (see Stoer and Bulirsch [23, pp. 25-27] and Lemma 9.5
in Higham [11]) and the inequalities (1 / u) _< (1 + u) 2 _< (1 + 3u) gives

(4.1s)
q-1 k)k)

aik ajk < 3(q-1)u (
q--1 -(k) aj) )1- 3(q- 1)u I)1 +E aik

k--X ]ak)l
for all i, j >_ q. For the second term of the right-hand side in (4.17) we use (4.6) to
give

where (k) (k)
laik < U and I< u. Then, we havejk

,k)k)

< 3U laik ajkl
i, j > k.

A combination of (4.17), (4.18), and (4.19) now gives

(4.20)
q-1

k--1

< 3qu )
-’))

1-3qu -I+=1 iff(k)
i,j>q._

The first inequality of the lemma follows directly from the substitution of q r + 1
in this inequality.

To establish the second inequality of the lemma, consider the jth stage of the
factorization, where j < r. For i _> j, we have

J

k=l

j-1

k=l

A combination of (4.19) with k j and (4.20) with q j yields

J

k=l

laik< 3(j+ 1)U ,k)k)

1--3(j+l)uk=l
, j <r, i>j,

as required.
In the next theorem we show that the computed solution is the exact solution

of (A + E) b, where E is a backward-error matrix whose elements are bounded
in magnitude by quantities involving lit and the unit round-off u. The theorem
is established by accumulating the backward error from each of the following steps:
(i) the elimination of the rows and columns associated with the first r 1 1 pivots
and the subsequent modification to the remaining matrix Ar+l (see Lemma 4.3); (ii)
the LBLT factorization of Ar+; and (iii) the solution of the triangular and block-
diagonal systems (4.5). In the cases (ii) and (iii), we utilize some standard bounds on
the backward error derived in the literature.

THEOREM 4.4. Let A be a symmetric n n matrix whose first r columns are
strictly t-diagonally dominant, with t > 47-r+l and 7 (1 8u)/(1 + 7u). Consider
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an LBLT factorization (4.4) of A in which the first r stages involve 1 1 pivots from
All. Assume that the computed values of Ar+l and its factors satisfy

(4.21a)

(4.21b)

IAr+l L22-22L221 < 5 max lapq-1)leT,
q_>r+l

where 5 is of moderate size relative to u, is bounded and e denotes the vector of
ones. If is the computed value of x from the triangular systems (4.5), assume that
the computed values of y and z satisfy (B22 + BE,22) ’, where BE,22 is a block-
diagonal matrix such that

Then, is the exact solution of (A + E) b, where the elements of E satisfy

max{ lej I, lej I} < cz max laq
1_< lapql + ea ,>+max_

q2r+

j <_r,
j<r, i>j,

i,j>r+l,

with

7nu(2 + 3u)
1 1 3nu

(1 + 7u)r(1 + w2)(1 + rw2),
7nu(2 + 3u) (1 + + +

(Tnu(r/+ 1)
3 1 3nu + 5 (1 + 7u)r,

e4 (2((1 -- 02r+1 1)) (2 + 3u)(1 + w

7 (1 8u)/(1 + 7u), and wr 1/(3’-2t).
Proof. Any backward error matrix E is of the form E C + F, where C is the

error from the triangular solves and F is a backward error associated with the LBLT
factorization.

First we consider the backward error resulting from the solution of the block-
diagonal and triangular systems (4.5). The backward error C satisfies (,,T+C)
b,’where is the computed value of x from (4.5). It follows from Stoer and Bulirsch [23,
p. 196] that the intermediate vectors ’and satisfy (+,E)." b and (T+E) if,
where LE and UE have the same element-wise bound

IEI< n-------u I and IEI< nu ITI"1--nu 1--nu

The assumption on B22 implies that (B + BE)- , where
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Combining these equations, it follows that satisfies

( +)( + )(/7 +) b.

Collecting terms and bounding the error terms, we obtain the backward error matrix
C such that (/T ._ C)"--b, and

n----5- I1111ICI < 1-nu

If C is written in partitioned form, the bounds on each submatrix of C may be written
as

Now we turn to the backward error associated with the LBLT factorization itself.
On completion of the factorization, we have A + F /,T, which may be written
in the partitioned form

All A2T1 + Fll F2T1 11 11 T1 2T1 +
0 L22 22L22A21 A22 F21 F22 21 / ^T

(cf. (4.4)). First, consider the elements of Fll and F21, i.e., elements fij for j _< r.
Lemma 4.3 provides symmetric bounds on IFlll and IF211. Without loss of generality,
let _> j. Then, Lemma 4.3 gives

1 3(j + 1)u - j<_r, i>_j.

The bounds on E, E12, and E2 now follow by combining the bounds (4.22a)-(4.22c)
on C and this bound on F. Using the componentwise statement of II[IITI for j _< r
and >_ j, it follows that

leol <
7nu [kkkjkl + 3(j + 1)u k)k)

1--nuk=l 1--3(j+1)uk=1 ])1
This inequality may be simplified further using (4.19), viz.,

))
mk jk j<r, i>j.(4.ea) < 7( + a)

1-3nu
k=l I)1

In particular, when j, this inequality bounds the diagonal8 of Ell a8
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Lemma 4.2 now gives the required bound on lel in terms of 7 (1 -83)/(1 / 73)
and wr 1/(’yr-2t). A similar argument using inequality (4.23) and Lemma 4.2 gives
the required bounds on the elements of E21 and the off-diagonal elements of Ell.

The backward error E22 involves the error in the formation of Ar+l and the error
in the computed factors L22 and B22. We can write

-F22 A22 L21BI + +r+ 22B22 22,

which in conjunction with (4.22d) gives E22 G22 / H22, where

(4.25a) ]G221 _<
1 nu

7n-----U--U 12211/22112T21 + Ir+l 22222T21.(4.25b) IH22[ <
1-nu

To bound the elements of G22, we use Lemma 4.3 to give

k--1

i,j_r+l.

It follows from this bound and (4.19) that

i,j_r+l.

Lemma 4.2 can now be used to give

1
(4..) Il < 41al + 4 mx Ill_q_r

i,j>_r+l,

where

7nue 1 3nu
(1/7u) and e ((1 -03r-{- 1 + rw) ( + a)( + ))4.

To bound the elements of H22 in (4.25b), we use the assumptions (4.21) to give

i,j>_r+l.

This bound and Lemma 4.2 now gives

1
(4.27) Ihijl < e3

h max [apq -+- -. eh4 max
q_>r+l q_r

i,j>_r+l,

where

+ ) (1 + 7u)r and e4
h ((1 + 0)r+1)r 1)re3h.

A combination of (4.26) and (4.27) gives

1
Ijl < 3 mx laql + max

p>r+l " apq
p>r+l

q_r%1 qr

i, jkr+l,
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where

and

7nu(l + 1)
3 1 3nu

(2((1 + wr+l) 1)+ rw(2 + 3u)(1 + w)) te3. D

If (i) t is large; (ii) max{3n, S)u << 1; (iii) 5 is small; and (iv) is not too
large, then the ei, 1, 4 of Theorem 4.4 are "small", i.e., of the order of
u. In this situation, we obtain el 14nu, e2 14nu, e3 7nu( + 1)+ 5 and
e4 4r(7nu(+1)+5). This theorem gives componentwise bounds on E. Corollary 4.5
below provides a straightforward conversion to norms that conform to Theorem 3.1.

COROLLARY 4.5. The matrix E of Theorem 4.4 satisfies
(i)
(ii)
(iii)
(iv)

where

diag(E)l <_ e diag(Al)l;
offdiag(El)ll _< ell offdiag(All)ll;

1

e max{e, e2r, e2v/r(n r), e3(n r), e4(n r)}.

Proof. For any m n matrix C, it holds that

1

V.m.n

(see, e.g., Golub and Van Loan [8, p. 57]). Repeated use of these inequalities on the
partitioned submatrices of E and A gives the result. D

We have shown that if e, e2, e3, and e4 of Theorem 4.4 are small, then the
relative perturbation e of Theorem 3.1 is also small, thereby justifying the form of the
perturbations used in Theorem 3.1.

5. Conclusions. We have considered some numerical issues that arise when solv-
ing the nonlinear programming problem by minimizing a sequence of logarithmic bar-
rier functions. A class of Newton barrier methods has been proposed that requires a
symmetric indefinite system of linear equations to be solved at each iteration. These
symmetric systems are ill-conditioned, but the ill-conditioning is caused by some diag-
onal elements becoming large in magnitude. The numerical implications of diagonal
ill-conditioning were first considered by Poncele6n [21], who discussed the accuracy
of the Newton barrier equations for problems in standard form. Poncele6n has shown
that the sensitivity of the solution under certain structured perturbations is indepen-
dent of the large diagonals.

It has been shown that diagonal ill-conditioning can be exploited without the need
to add slack variables. A diagonally ill-conditioned matrix is an example of a strictly
t-diagonally dominant matrix, where the definition of a t-diagonally dominance gen-
eralizes the idea of diagonal dominance to the situation where the diagonals of a
matrix are substantially larger in magnitude than the off-diagonals. A perturbation
analysis has been presented that describes the sensitivity of t-diagonally dominant
systems under a class of structured perturbations that includes those of Poncele6n.
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Finally, we have given a rounding-error analysis of the symmetric indefinite factoriza-
tion when applied to t-diagonally dominant systems. This analysis indicates that the
class of perturbations used in the sensitivity analysis is representative of the errors
made during the numerical solution of barrier systems.
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NUMERICAL METHODS FOR NEARLY SINGULAR
CONSTRAINED MATRIX SYLVESTER EQUATIONS*

ALI R. GHAVIMIt AND ALAN J. LAUBt

Abstract. A recently published result describes a numerical procedure for solving a matrix
Sylvester equation that is subject to certain constraints. It is quite possible that this Sylvester equa-
tion, or another intermediate one in the solution process, is nearly singular. As a result, certain
computed parameters can have unexpectedly large norms and be very inaccurate. This paper incor-
porates an implicit deflation method for nearly singular matrix Sylvester equations to implement a
reliable version of the published algorithm.

Key words, matrix Sylvester equations, nearly singular equations, implicit deflation, reduced-
order observers

AMS subject classifications. 15A12, 65F05, 65F30, 65F35, 93B40

1. Introduction. In this paper, an effective numerical procedure is presented
for solving certain constrained matrix Sylvester equations. These equations frequently
arise in control theory in connection with the design of reduced-order observers for
linear time-invariant (LTI) systems that achieve precise loop transfer recovery when
possible [1], [12]. Another application of constrained Sylvester-like equations is the
design of minimum norm state feedback matrices via a pole placement method as in,
for example, [10].

In finite precision floating-point arithmetic, it is quite possible that the corre-
sponding Sylvester equations are nearly singular [4], [6]. Consequently, solutions of
these matrix equations computed using general-purpose algorithms are usually of large
norm and generally inaccurate. Such ill conditioning is normally an unknown function
of the data and cannot be predicted in advance. Therefore, countermeasures should
be taken to overcome this undesirable effect.

This paper modifies an existing method for solving constrained matrix equations
in [1] resulting in a more reliable version of the published algorithm. The following
describes the problem in detail. Let

(1) Ax + Bu,
Cx

denote a state model of an LTI system with n states, m inputs, and p outputs, that
is, A E ]Rnn, B E ]Rnm, and C ]Rp. Under the usual observability condition,
it is possible to design a reduced-order state observer z(t) ]Rn-p for x(t) to satisfy

(3) Fz + (TB)u + Ly,

where F ]p(n-p)(n-p) is stable and L :(n-p)p and T ]a(n-p)n are design
parameters. It can be shown that if TB 0, the resulting observer-based state
feedback control has the same robustness as that of the direct state feedback system
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[12]. In this respect, precise loop transfer recovery can be characterized [1], [12] by a
constrained matrix Sylvester equation of the form

(4) TA- FT LC,

(5) TB 0,

(6) and C is full rank.

In [1], existence conditions, along with a newly developed algorithm, are presented
for the solution to (4)-(6) under the assumptions that n > p > m and rank(CB)
rank(B) m. The algorithm is as follows.

1.1. Algorithm for constrained matrix Sylvester equation (Barlow et
al.). The following algorithm is taken from [1] and finds a solution of (4)-(6).

1. Denote a QR factorization of B by

where S E ]Rm’ is full rank and upper triangular, W [W1
orthogonal, and W1 E ]RnXm W2 ]anx(n-m)

2. Set

W2] e IRnxn is

A1 WfAW1 ]R(n-m)m,
A2 w2TAw2 IR(’-m) (,-m)

C1 CW1 IW’ "
C CW IRX(’-’)

3. Denote a QR factorization of C1 by

CI=[Q1 Q2] [ R ]0

where Q1 e ]Rpxm, Q2 e ]Rpx(p-m) and R JR,mxm is full rank and upper triangular.
4. Define E IR (,-m) by

] --QTc2E
E2

where E1 e ]Rm(n-m) and E2 E ]R(p-m)x(n-m).
5. Let . A2-A1R-1E1 ]R(n-m)x(n-m). Solve the reduced Sylvester equation

(7) Z_- FZ L2E2,

where the solution Z ]R(n-p)X(n-m) and L2 ]R(n-p)x(p-m) is chosen randomly.
Note that J =AIR-1 is computed by solving the triangular system JR A1.

6. Set L1 ZJ ]R(n-p)m, L ILl L2]QT, and T ZW2T.
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Steps 1-4 and 6 of the above algorithm depend on certain matrix factorizations
and multiplications. As long as R is not too ill conditioned with respect to inversion,
these operations can be performed reliably using stable algorithms and thus pose no
particular difficulty. Note from Steps 1-3 that the condition of R is intimately related
to rank properties of C and B. Obviously, R is ill conditioned if C is nearly rank
deficient. In the context of observer design such rank deficiency can result from either
poor scaling of the state variables or near redundancy of measurements. These issues
are usually resolved prior to any attempt to do an observer or a controller design. It
is generally the case that C is "robustly" full rank. Similar comments apply to the
regularity assumption that CB be of full rank and to the assumption that B is of full
rank.

Step 5, however, involves solving the Sylvester equation (7) which may be nearly
singular. Unfortunately, there is no straightforward relationship between the condition
of a Sylvester operator and the condition of its defining coefficient matrices, although
some relationships are known. For example, it is shown in [4] that a Sylvester operator
is nearly singular when both coefficient matrices are ill conditioned with respect to
inversion. In this respect, it is thus worth noting that this sufficient condition often
obtains in the case of large-scale dynamical systems whose matrix sizes often lead to
an undesired increase in ill conditioning.

When (7) is ill conditioned, the computed solution Z and, as a consequence, L and
T, are generally of large norm and numerically inaccurate. The problem is worsened
if, by the random choice of L2, the right-hand side L2E2 is rich in the direction
of the approximate (numerical) left null space [3], [6], [7] of the Sylvester equation
(7). It may be thought, at first glance, that large-norm computed solutions T and
L of (4) can be scaled properly so that (4) and (6) are still satisfied. However, note
that the near singularity of the system in (7) is intimately related to the overall ill
conditioning of the system in (4). Furthermore, the conditioning of either (4) or (7) is
scale-invariant with respect to any choice of the pair (T, L) or (Z, L2), respectively.
And finally, the conditioning of the matrix in (6) may even be worsened if T is scaled
by a large amount. This problem can be easily and accurately resolved by choosing L2
as a random matrix such that L2E2 is restricted to the approximate (numerical) range
space of the Sylvester operator [6], i.e., a consistent set of equations. Furthermore, the
resulting equation can be solved by the implicit deflation method for nearly singular
Sylvester equations in [4].

The rest of this paper is organized as follows. Section 2 outlines the computation
of approximate null vectors of nearly singular Sylvester equations. Section 3 provides
a summary of the implicit deflation algorithm for ill-conditioned Sylvester equations.
Section 4 describes the contribution of this paper for solving the ill-conditioned set of
constrained matrix Sylvester equations (4)-(6). Section 5 presents numerical examples
to illustrate the results.

2. Simultaneous inverse iteration algorithm. Suppose that the Sylvester
equation

(8) AX + XB C

with X E IRnx’ is nearly rank-u deficient. That is, the Kronecker form of the
associated Sylvester operator

(9) S I.. (R) A + BT (R) In ]Rmnxmn
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has small singular values of the order of the relative machine precision. Here Ik
denotes the k k identity matrix and (R) denotes the Kronecker product [9]. The
following algorithm employs inverse iteration, together with an acceleration scheme,
to construct approximations of the left and right numerical null vectors of S by the
orthogonal columns of U E IR" and V E IRm, respectively, one vector at a
time.

For nullity >_ 1, choose U0 with orthonormal columns.
Loop until convergence

1. Solve S V U0 for V
2. VT (QL factorization)
3. SolvesT=Vfor
4. U UR (QL factorization)
5. G=uTsv
6. G MANT (SVD)
7. U UM and V VN
8. If Ay > to1, a user-specified tolerance, for 1 j ,

a. U U(’, j + 1") (truncate the first j columns)
b. Y V(’, j + 1") (truncate the first j columns)

d. Stop
Else
e. +1
f. U0 -[U ] such that UUo I
g. Return to Innerstep 1.

Innersteps 1 and 3 of the above algorithm involve solving linear systems with
coefficient matrices S and ST, respectively. However, these systems are never formed
explicitly. Instead, equivalent Sylvester equations are solved with appropriate choice
of the right-hand-side vectors. The QL factorization in the above algorithm is of
the form Z QL, where Q nm has orthonormal columns and L x is
lower triangular with positive diagonal elements. Finally, note that in our calcula-
tions, without any reason to do otherwise, we generally achieve satisfactory results
by choosing to1 to be somewhat larger than the relative machine precision. For the
examples in 5, we used to1 10-4. rther details concerning convergence, as well
as certain practical aspects, have been studied extensively in [6].

The algorithm in 3 describes deflated solutions of nearly singular Sylvester equa-
tions.

3. Implicit deflation method for nearly singular Sylvester equations.
Suppose that (8) is nearly singular and the associated Sylvester operator S in (9)
has small singular values. Assume further that the numerical or approximate
le and right null vectors of S are denoted by the orthonormal columns of U
(vecU, vecU), Y (vecV1, vecV) , respectively, and have been
determined by the inverse iteration algorithm in [6]. Note that the vec of an m z n
matrix M is the ran-vector formed by successively stacking the n columns of M on

top of each other [9]. Let Q be an orthogonal projection denoted by Q Iron T.
Then the SVD-based deflated solution, i.e., the minimum norm least-squares solution
of (8), is obtained as follows.

Start with any X0 that satisfies Qvec(X0) vec(X0).
Set k 0.
Do while improvement
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1. Rk C- AXk XkB
2. Rk Rk Y’=I tr(UfRk)Uj (tr(.) denotes trace of a matrix)
3. Solve ADk 4- DkB Rk for Dk
4. Xk+ Zk 4- Dk Y’=I tr(VTDk)V.
5. Setkk4-1.

A choice of the initial condition X0 is obtained by setting vec(X0) Qvec(Z),
where Z E ]Rnm is a random matrix. Since Q is a projection, then the constraint
Qvec(X0) vec(X0) is satisfied. Because of the large size of Q, however, the following
manipulations are needed to avoid explicit formation of Q. Note that Qvec(Z) can
be written as

Qvec(Z) Z- TvecZ Z-I
(vecV1)Tvec(Z)
(vecV2)Tvec(Z)

(vecV)Tvec(Z)

vec

Therefore, X0 can be formed by X0 Z- j= tr(VdTZ)V for any arbitrary choice
of Z.

Conditions for the convergence of the above algorithm have been examined in
[4]. In particular, it is shown that convergence is guaranteed if the computed singular
vectors have sufficient accuracy. In practice, this poses no further difficulty since
the singular subspaces obtained by the inverse iteration algorithm are quite accurate.
This particular issue has been studied extensively in [6]. As far as the complexity of
the algorithm is concerned, a simple operation count reveals that the innersteps 1,
2, and 4 require only a small fraction of the floating-point operations needed for the
Sylvester solve in the innerstep 3. The Sylvester equations can be solved using the
Bartels-Stewart algorithm [2] or the Hessenberg-Schur method [8]. These methods
require certain relatively expensive initial factorizations (Schur or Hessenberg) of the
coefficient matrices A and B. Therefore, overall computational savings can be realized
since these factorizations need not be computed more than once.

4. Appropriate choice of L2 in (7). As was noted earlier, a critical step in
the algorithm of [1] involves solving the Sylvester equation in (7),

Z- FZ L2E2,

which is repeated here for convenience. This equation can be ill conditioned for a
number of reasons. For example, if . and F have any nearly equal eigenvalues, then
S 2T (R)I-I(R)F is nearly singular, or equivalently, (7) is ill conditioned. This can be
seen as follows. Let (#, y) and (k, xk) denote left and right eigenvalue/eigenvector

^Tpairs for and F, respectively. Specifically, suppose A yy #yyj and Fxk lYkXk.
Then Pi Yy (R) xk vec(xkyf) is an eigenvector of S associated with the eigenvalue
,i # uk. This can be seen easily from S(yy (R) xk) A^Tyj(R)xk--yj(R)Fxk
(# k)(Yj (R) xk). Moreover, if y and xk are of unit norm,

Thus when I-al is small, Pi xkyy can be considered as an approximate null vec-
tor of (7). In other words, the numerical or approximate null space of S is nonzero,
or equivalently, S is nearly singular. Therefore, in this sense, the nearness of the
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eigenvalues of the matrices and F provides a priori information on the near singu-
larity of the Sylvester operator S or the ill conditioning of the Sylvester equation in
(7). However, the reverse implication is not true. That is, S may be nearly singular
regardless of such an eigenvalue constraint.

The near singularity of S can best be defined in terms of its singular value de-
composition. Denote an SVD of S 2T (R) I- I (R) F by S UF.VT, where

U [vec(U1), vec(U2), vec(Uk)] e ]Rk x

V--[vec(V1), vec(V2), ..., vec(Vk)] e ]Rkxk

are orthogonal, F. diag(al, a2, ..., ak), and k (n- m)(n- p). Moreover, the
singular vectors Ui and V satisfy Svec(V) aivec(Ui) and STvec(Ui) aivec(V).
Equivalently, these singular vector equations can be written in matrix terms as AV /
VB aiUi and ATui T UiBT criVi where Ui, V E ]R(n-p)x(n-m). It should be
noted that there is no straightforward relationship between the singular vectors of S
and those of the parameter matrices and F.

The solution Z can be written in terms of the singular vectors as

vec(Z)- VE-1UTvec(L2E2)

or equivalently,

k tr(UTL2E2 V.(10) Z E o’,
i--1

From the above expression for Z, it is seen that for small values of the ai’s, i.e., when
the (approximate) numerical null space of S is nonzero, the solution Z is greatly
magnified in the direction of the corresponding V’s. In other words, if vec(L2E2) is
rich in the direction of the approximate null vectors, a large norm solution should be
expected.

In light of the above, a suitable choice for L2 can then be established by choosing
a random matrix L2 such that vec(L2E2) is orthogonal to the approximate left null
space of S. This ensures that vec(L2E2) is restricted to the approximate range space
of S and in turn, Z is purged of the approximate null vectors. In this respect, the
following provides a characterization of appropriate values of L2. Suppose that (7) is
nearly singular and its -dimensional left singular subspace associated with the small
singular values is given by the columns of

(vecU1, vecU2, vecUv) E ]R(n-m)(n-p)

where Ui ]R(n-p)x(n-m) for 1, . It is then required that

0 0Tvec(L2E2) (iT (ET2 (R) I(m-p)) vec(L2)

[(E2 (R) I(m-p))[]T vec(L2)

Hvec(L2),

where

H [vec(UIE2T), vec(U2E2T), , vec(UE")] T ]R,x (n--p)(n--m)
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Therefore, vec(L2) E Af(H) (the null space of H) from which a choice for L2 is easily
obtained.

Next, (7) is solved using the implicit deflation algorithm for nearly singular
Sylvester equations. This step is needed because L2 or the right-hand side of (7)
can only be computed approximately. Therefore, vec(L2E2) may not be exactly con-
sistent with the numerical range space of the corresponding Sylvester operator. As a
result, slight deviation of a proper right-hand side, together with roundoff errors, may
magnify the solution in the direction of null vectors and in turn degrade the accuracy
of the final result. Instead, the solution generated by the implicit deflation algorithm
provides an accurate representation of the actual solution for any proper choice of L2.
The following examples illustrate the underlying idea.

5. Numerical results. In this section, two numerical examples are presented to
demonstrate further the necessity of modifying the algorithm in [1]. These examples
are intended for the sake of illustration. However, examples of ill-conditioned observer
design can be found in a variety of problems in control theory, especially in connection
with the control of large-scale dynamical systems. It is well known that an increase in
problem size often results in a concomitant increase in ill conditioning. The work in
[11] provides a simple but dramatic example of this phenomenon. This is aside from
the fact that such an undesirable effect is also likely to occur even for problems with
moderate sizes when performing operations in floating-point arithmetic with finite
precision. All calculations described below were performed using Matlab 4.2b for
Windows implemented on a Texas Instruments 486 DX2 laptop computer.

Example 1. Consider designing a reduced-order observer that achieves precise
loop transfer recovery for the linear system (1)-(2) with

0 1 0 0 0 0
0 0 1 0 0 0

A= 0 0 0 1 0 B- 0 and C=
0 0 0 0 1 0
0 0 0 0 0 1

2 0 0 0 2]
0 2 0 2 0 J

Assume further that the desired eigenvalues of the observer matrix F are {-22 +/-

J2’ -5}, and the complex conjugate pair is subject to a random perturbation of the

order of 10-12 (here j x/Z). Without loss of generality, F can be chosen as

1

0 0 -5

with a, /3, -, and of the order of 10-12. The particular values of the perturba-
tions are insignificant in this example. However, in the interest of completeness, we
give the specific values used, rounded to five significant figures, as a 2.1896e- 12,
/3 4.7045e- 13, - 6.7886e- 12, and --6.7930e- 12.

Note. All numbers quoted in the remainder of this example and in Example 2
are given to five significant figures only. The full 16 significant figures are available
from the authors.
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It is clear in this case that A and F have no eigenvalues in common, and all the
existence conditions of the algorithm in [1] are satisfied. Furthermore, the magnitudes
of the eigenvalues of the Sylvester operator associated with (4)

S AT (R) I3 I5 (R) F

are the same as those of F. Therefore, the eigenvalues are well separated from the
origin. Moreover, the singular values of S range from 0.27586 to 6.0641. Thus, the
condition number a2(S) is approximately 21.982 and the Sylvester operator is well
conditioned with respect to inversion. Therefore, it is expected that the solutions
T and L have reasonable norms and accurately solve (4). For this problem, direct
application of the method in [1] gives the following results:

-4.8557e+ 10 -4.7227e/ 10 1.1535e+ 11 -1.1590e+ 11 0
T 1.1535e + 11 -1.1590e + 11 4.8557e + 10 4.7227e + 10 0 J2.8160e 03 1.2997e 02 -2.5994e 03 1.4080e 02 0

-.7948e + 10 5.09a2e 01 0
L= 2.a614e+10 8.1481e-01 TB 0

7.0a99e 0a a.ag00e 02 0

where IITIIF 2.5030e + 11 and IILIlF 6.2575e + 10. The residual norm of (4) is

IILC TA + FTIIF 1.3059e-04. It is worth mentioning that the associated relative
residual is of the order of the relative machine precision; however, this quantity is not a
good measure of the solution accuracy [5]. In particular, this quantity is meaningless if
the Sylvester equation is ill conditioned. In this case, (6) is full rank and its condition
number is approximately 1.4953e + 14.

The above results are somewhat unexpected since at first glance the problem ap-
pears to be well conditioned by construction. However, further analysis indicates that
the method is certain to produce such results since the Sylvester operator associated
with (7) is nearly singular. The reason for such ill conditioning arises from the fact
that A and F in (7) have two nearly equal eigenvalues, namely, two of the eigenval-
ues of F are O(10-12) perturbations of the stable eigenvalues of , i.e., -22 +/- J22"
This shows that a priori conditions on the eigenstructures of A and F in (4) and the
conditioning of S are not sufficient to guarantee stability of the proposed method. As
was stated in 1, a simple scaling of T or L is not sufficient to satisfy the required
conditions, e.g., a well-conditioned matrix in (6). It is easy to verify that if T is scaled

C]by its norm, then the condition number of the resulting matrix in (6), [-]-,
is about 6.0768e + 14.

While in this example the near singularity occurs as a result of nearly zero eigen-
values of the Sylvester operator associated with (7), it is generally an unknown func-
tion of the data and cannot be predicted in advance. As was suggested previously,
this problem can be solved easily by choosing L2 so that vec(L2E2) is orthogonal to
the left null vectors of (7). The solutions of the resulting equation are then obtained
by applying the implicit algorithm to the Sylvester equation (7). The results are as
follows:

[ -1.g0a9e 01 4.2592e 01 4.2206e 02 1.a619e 01 0
T 2.1561e- 01 2.4a61e- 01 1.2891e- 01 4.4111e- 01 0

-a.9499e- 01 -1.82a0e +00 a.6461e- 01 -1.970e + 00 0
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L- 2.2055e-01 1.2560e+00 TB- 0
-9.8748e 01 -4.7551e + 00 0

and IILC TA / FTIIF 8.4754e--15. The matrix in (6) is full rank and its condition
number is about 47.366; hence, it is well conditioned with respect to inversion. With
[[T[I F 2.8380, [[L[[ F 5.1018, and the small absolute residual norm, it is clear
that the latter results are both more accurate and efficient relative to those obtained
directly by the algorithm in [1].

The above example also suggests that it may even be possible to arrive at a
solution when A and F have several almost equal eigenvalues. That is, some of
the poles of the observer system F are approximately the same as stable poles of
the system matrix A. In this case, (4) and, consequently, (7) are nearly singular.
Therefore, direct application of the algorithm in [1] produces large norm solutions; as
a result, even if (5) is satisfied, the matrix in (6) is nearly rank deficient. This problem
can be resolved once again by the approach proposed earlier and the following example
demonstrates further the effectiveness of the method in this respect.

Example 2. Consider the problem in the previous example with

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 -1 -x/

and B, C, and F as before. The eigenvalues of A are

A(A)- 0, 0, 0,-=kj
Therefore, A and F have two almost equal eigenvalues and hence S is nearly singular.
Using the method of [1] yields

-5.2329e + 10 -6.2465e q- 09 6.1163e + 10 -8.0251e-b 10 0 ]
T 6.1163e q- 10 -8.0251e + 10 5.2329e / 10 6.2465e q- 09 0 J4.7760e 02 2.2043e 01 -4.4086e 02 2.3880e 01 0

L 3.1233e / 09 4.5378e- 01 TB 0
1.1940e 01 5.7495e 01 0

with [[T[I F 1.6099e-+-11, [[L[[ F 4.0247e/ 10, and [[LC- TA + FT[[F 8.7364e-
05. The matrix in (6) is full rank, and its condition number is about 5.6985e -+- 12.
Therefore, it is ill conditioned with respect to inversion. Furthermore, if T is scaled
to have unit Frobenius norm, the condition number of the resulting matrix in (6) is
about 2.3045e + 13. By contrast, the use of the deflation method in the algorithm
of [1] produces the same smaller norm T, L, and residual as in Example 1. (This is
because of the nature of T and the fact that . and F are the same in the reduced
Sylvester equation (7) and independent of the choice of L2.)

Again, the condition number of the matrix in (6) is about 47.366; therefore,
the full rank condition is satisfied. As before, a comparison between the norms of
the solutions and the residuals suggests that the deflation method more accurately
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solves the equations of interest. In this example S is nearly singular since A and
F have two nearly equal eigenvalues. However, as has been noted in [6], S can be
ill conditioned regardless of such an eigenvalue property. In any case, the proposed
modified algorithm is capable of producing accurate and efficient results.

6. Conclusions. This paper modifies the algorithm in [1] to efficiently imple-
ment a solution of the constrained matrix Sylvester equation (4)-(6). The method
inc.orporates the use of a newly developed implicit deflation algorithm for nearly singu-
lar matrix Sylvester equations to account for the case that (4)-(6) are ill conditioned.
The need for this modification is compelling since a priori information on system
parameters is not sufficient to guarantee the stability of the algorithm in [1]. Two
numerical examples have been presented to illustrate the underlying idea.
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RELATIONS BETWEEN GALERKIN AND NORM-MINIMIZING
ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS*

JANE CULLUMt AND ANNE GREENBAUM$

Abstract. Several iterative methods for solving linear systems Ax b first construct a basis
for a Krylov subspace and then use the basis vectors, together with the Hessenberg (or tridiagonal)
matrix generated during that construction, to obtain an approximate solution to the linear system.
To determine the approximate solution, it is necessary to solve either a linear system with the
Hessenberg matrix as coefficient matrix or an extended Hessenberg least squares problem. In the
first case, referred to as a Galerkin method, the residual is orthogonal to the Krylov subspace, whereas
in the second case, referred to as a norm-minimizing method, the residual (or a related quantity)
is minimized over the Krylov subspace. Examples of such pairs include the full orthogonalization
method (FOM) (Arnoldi) and generalized minimal residual (GMRES) algorithms, the biconjugate
gradient (BCG) and quasi-minimal residual (QMR) algorithms, and their symmetric equivalents,
the Lanczos and minimal residual (MINRES) algorithms. A relationship between the solution of the
linear system and that of the least squares problem is used to relate the residual norms in Galerkin
processes to the norms of the quantities minimized in the corresponding norm-minimizing processes.
It is shown that when the norm-minimizing process is converging rapidly, the residual norms in the
corresponding Galerkin process exhibit similar behavior, whereas when the norm-minimizing process
is converging very slowly, the residual norms in the corresponding Galerkin process are significantly
larger. This is a generalization of the relationship established between Arnoldi and GMRES residual
norms in P. N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J.
Sci. Statist. Comput., 12, 1991, pp. 58-78. For MINRES and Lanczos, and for two nonsymmetric
bidiagonalization procedures, we extend the arguments to incorporate the effects of finite precision
arithmetic.

Key words. GMRES, Arnoldi, biconjugate gradients, QMR, iterative methods

AMS subject classifications. 65F10, 65F15

1. Introduction. The Arnoldi algorithm [1] (also known as the full orthogonal-
ization method or FOM [22]) and the generalized minimal residual (GMRES) algo-
rithm [23] are two recently developed Krylov methods for solving nonsymmetric linear
systems

(1) Ax b.

In Brown [3], a theoretical comparison of the two methods is presented. Brown
exhibits connections between the singularity of the Hessenberg matrices generated
in the Arnoldi algorithm and the stagnation of the corresponding iterates in the
GMRES algorithm. From this he infers a relationship between the stagnation (the
plateaus) observed in GMRES and near-singularity of these Hessenberg matrices. He
also obtains relationships between the norms of the residuals generated by the Arnoldi
algorithm and the norms of the residuals generated by the GMRES algorithm which,
when combined with a relationship in [23], can be used to infer that if the iterates in
both methods are well defined, then if one of the methods performs very well on a
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particular problem the other one will also, and if one method performs very poorly,
then so will the other one.

In this paper we obtain a slightly different formulation of these GMRES/Arnoldi
residual norm relationships from which it is easier to see this interdependence. This
formulation explains the general correspondence between peaks in the plot of residual
norms in the Arnoldi algorithm and plateaus in the GMRES algorithm, as observed in
[4] for a different pair of iterative methods. Moreover, we demonstrate, by numerical
example, that plateaus (stagnation) need not be associated with near-singularity of
the Hessenberg matrices. In fact the proof given in [3] connecting stagnation of the
GMRES iterates to singularity of the Hessenberg matrices is not applicable to the
nearly singular case.

The biconjugate gradient (BCG) algorithm [7] and the quasi-minimal residual
(QMR) algorithm [8] are another pair of Zrylov methods for solving linear systems.
In [8], relationships are established between these two algorithms that are very similar
to the relationships obtained in [3] for the Arnoldi and GMRES residuals. In this case,
however, the appropriate quantities to compare are the BCG residuals and what we
refer to as the QMR quasi-residuals, the vectors whose norms are actually minimized
at each step of the QMR algorithm. From these relationships one can infer that if
the norm of the QMR quasi-residual is greatly reduced at a step, then the norm of
the BCG residual at that step is approximately equal to the norm of the QMR quasi-
residual, whereas if the QMR quasi-residual norm remains nearly constant, the BCG
residual norm is significantly greater than the QMR quasi-residual norm. The norms
of the actual QMR residuals may be somewhat larger than those of the quasi-residuals
(by as much as a factor v/k / 1 at step k [8]) or they may be somewhat smaller, but
it is, in some sense, a happy accident if the actual residual norms turn out to be much
smaller than the quasi-residual norms. No attempt is made to produce the sort of
cancellation that is needed to make this happen and in practice it seldom occurs. Thus
the relationship between BCG residuals and QMR quasi-residuals can be thought of
as an approximate relationship between BCG residuals and QMR residuals. Roughly
speaking, then, for a given problem these algorithms will either both perform well or
both perform poorly.

The above statements assume exact arithmetic. For real symmetric problems,
similar relationships are shown to hold in finite precision arithmetic as well. For real
symmetric problems, and in exact arithmetic, both of these pairs of algorithms reduce
to the MINRES [20] and Lanczos [17] algorithms. In this case, the Lanczos vectors are
orthogonM and the quasi-residual norms are the same as the residual norms, so the
relationship between BCG residual norms and QMR quasi-residuM norms becomes a
relationship between Lanczos residual norms and MINRES residual norms. In finite
precision computations, the computed Lanczos vectors may be far from orthogonal,
yet numerical experiments reported in [4] suggest that for certain types of problems
these relationships hold to a close approximation, even after orthogonality of the
Lanczos vectors is lost. The report [4] describes a series of numerical experiments
using a pair of bidiagonalization procedures, denoted by SQMR and BLanczos, for
solving nonsymmetric systems of equations. These procedures replace the original
nonsymmetric problem by a larger symmetric problem, and then use MINRES and
Lanczos on the associated symmetric iteration matrices.

We prove that for certain classes of real symmetric problems, the relationships
between the residuals demonstrated for GMRES/Arnoldi in exact arithmetic hold
approximately for the MINRES and Lanczos residuals even in finite precision. We then
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prove that if a nonsymmetric problem (1) is well conditioned, then the real symmetric
problems generated in the nonsymmetric bidiagonalization algorithm considered in [4]
belong to this class. We therefore obtain the result that the residual relationship, as
demonstrated numerically in [4], is theoretically valid in finite precision arithmetic
for that pair of bidiagonalization algorithms. These proofs rely on the fact that the
tridiagonal matrices generated by a finite precision Lanczos computation are the same
as those that would be generated by the exact Lanczos algorithm applied to a certain
larger matrix with nearby eigenvalues, and that components of the computed Lanczos
vectors can be related to corresponding groups of components in the exact Lanczos
vectors associated with this larger matrix [12].

The exact arithmetic results obtained in this paper are easy consequences of
relations between linear system solutions and extended least squares solutions that
have been established in a number of places. See, for example, [3, 8, 9, 15, 20, 28]. It
is indeed surprising that the precise relation between Galerkin and norm-minimizing
methods was not recognized and explicitly stated much earlier!

In 2, the theorem relating the solution of a linear system and an extended least
squares problem is established. In 3 the Arnoldi and GMRES algorithms are de-
scribed and the theorem of 2 is used to establish the relationship between Arnoldi and
GMRES residual norms. In 4 the BCG and QMR algorithms are described and the
analogous relationship between the BCG residual norms and the QMR quasi-residual
norms is derived. In both sections, numerical examples are given to demonstrate the
relationships.

In 5 we first define the real symmetric Lanczos and MINRES algorithms and
then define the two nonsymmetric bidiagonalization algorithms considered in [4]. In
6 we focus on the real symmetric case in finite precision arithmetic and establish the
analogous relationship between the norms of computed Lanczos and MINRES residu-
als for a class of real symmetric problems. We then prove in 7 that if a nonsymmetric
problem (1) is well conditioned, then the real symmetric problems generated by the
two bidiagonalization algorithms described in 5 belong to this class, so that in fact
the residual relationship holds for these nonsymmetric bidiagonalization algorithms
in finite precision arithmetic.

2. Relation between linear systems and least squares. Let
k 1,2,..., denote a family of upper Hessenberg matrices, where Ha is k by k
and Ha-1 is the k- 1 by k- 1 principal submatrix of Ha. For each k, define the k + 1

by k matrix (e) by

ha+l,ae )
T (0,.. 0,1).where ea

The matrix Hk(e) can be factored in the form alat)*(), where Qa is a k + 1 by k + 1

unitary matrix and R(k) is a k + 1 by k matrix whose top k by k block, denoted Ra,
is upper triangular and whose last row consists of zeros. This factorization can be
performed using plane rotations:

(Fa...F1)Hk() R(k) where Fi c -s
8i Ci
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Note that the first k- 1 sines and cosines, s, c, 1,...,k- 1, in the Givens
rotations used to factor H(e) are the same as those used to factor r(.)

Let > 0 and let el denote the first unit vector, either a k-vector or a (k + 1)-
vector, depending on the context. Assume that Hk is nonsingular, and let k denote
the solution of the linear system Hky el. Let Yk denote the solution of the least
squares problem min I[g(k)y- elll. Finally, let

The following result is established in a slightly different form in [9] and is implicit
in a number of other works [3, 8, 15, 20, 28].

THEOREM 1. Using the above notation, the norms of and fk are related to the
sines and cosines of the Givens rotations by

(2) IIPI[ lSlS2"’’Skl and

It follows that

or, equivalently,

V/1 -(lll]kll/lllZk_lll) 2’

Proof. Let Qk F... F1 be the k + 1 by k + 1 unitary matrix reducing () tok

R(). The least squares problem can be written in the form

min rr()
"-k Y --/3ell] min IIQ(H()y- el)]l min []R(k)y- Qkelll.

Y Y Y

The solution yk is determined by solving the upper triangular linear system with
coefficient matrix R and right-hand side equal to the first k entries of Qkel. The
remainder R(e)yk --Qkel is therefore zero except for the last entry, which is just the
last entry of-Qkel -(Fk... F1)el, which is easily seen to be --Sl’"sk. This
establishes the first equality in (2).

For the linear system solution k H-1el, we have

k H(ke)Hl#el #el,

which is zero except for the last entry, which is hk+l,k times the (k, 1) entry of H-1.
Now Hk can be factored in the form QRk~* where Q~ =/-1 /1, and/i is the k
by k principal submatrix of Fi. The matrix r-r(e) after applying the first k- 1 plane
rotations, has the form
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X X X

X X

(Fk_l F1) H(e)

h

where r is the (k, k) entry of the upper triangular matrix Rk and h hk+l,k. The
kth rotation is chosen to annihilate the nonzero entry in the last row:

r h
C=v/r+h’ s= V’r

Note that r and hence ck is nonzero since H is nonsingular. Now we have Hi
;k, and the (k, 1) entry of this is 1/r times the (k, 1) entry of k k-l"’",
and this is just s... s_. It follows that the nonzero emry of is (hk+,/r)s... s_.
FinMly, using the fact that ]s/c[ [h/r[ [h+,/r], we obtain the second equMity
in (2).
om (2), it is clear that

The results (3) and (4) follow from the fact that

3. The Arnoldi and GMRES algorithms. Consider a system of linear equa-
tions Ax b, where A is an N by N nonsingular matrix and b is a given N-vector.
For ease of notation we will assume that the matrix A and the vectors involved in
the solution algorithms are real, but our results here and in other sections are easily
modified for complex matrices. Given an initial guess x0 for the solution, the Arnoldi
and GMRES algorithms construct approximate solutions xk, k 1, 2,..., of the form

(5) xa xo + ta, ta Ka(A, ro) span(r0, Ar0,..., A-ro),
where ro =- b- Axo is the initial residual and Kk(A, ro) is referred to as the kth
Krylov space. The residual rk b- Axk is given by

rk ro Atk.

The two methods differ in how the approximate solutions are chosen from the
Aspace (5). For the irnoldi method (see [23]), the kth residual vector, denoted rk,

satisfies

A _i_ K(A, r)
while the kth GMRES residual vector, denoted r, satisfies

-[- AKk(A, ro).

From (7) it follows that of all vectors xk of the form (5), the GMRES approximation
has the residual of smallest Euclidean norm:Xk

(8)
xkE xoq-Kk(A,ro)
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The properties (5) and (6) completely characterize the Arnoldi iterates, while the
properties (5) and either (7) or (8) completely define the GMRES iterates.

In order to generate these approximate solutions, both algorithms construct an
orthonormal basis for the Krylov space Kk (A, r0). This can be accomplished by using
the modified Gram-Schmidt procedure, for example:

Modified Gram-Schmidt procedure:
1. Compute ro b- Axo and set Ul ro/llroll.
2. For j 1,...,k do:

Uj+I :-- Auj
for 1,...,j do:

hij :- uTi uj+l, Uj+l :-- Uj+l hijui

hj+l,j :--Illtj+lll, ltj-t-1 :-- tj+l/hj+l,j.

Other methods have also been proposed for computing these basis vectors [27], but
we will not be concerned with the particular implementation used. Note that it is
necessary to save all of the basis vectors and at each step to orthogonalize the new
vector against each of the previous basis vectors.

Let Uk denote the N by k matrix whose columns are the orthonormal basis
vectors Ul,...,Uk, and let Hk denote the k by k upper Hessenberg matrix whose
nonzero entries are the scalars hij. The above recurrence can be written in matrix
form as

(9) AUk UkHk + hk+l,kttk+leY,

where Uk+l is the (k + 1)st normalized basis vector and ek is the kth unit k-vector
(0,..., 0, 1)T. If Hk is nonsingular, then it can be seen from expression (9) and the

A is of the formdefinition (5), (6) of the Arnoldi iterates that the kth Arnoldi iterate xk

(0) x x0+u A
Yk

where yk
A satisfies

(11) HkyA el, --- lit011.

If Hk is singular, then it is shown in [3] that the kth Arnoldi iterate does not exist
and, moreover, that the kth GMRES iterate does not improve.

Defining the k + 1 by k matrix Hk() to be

0... 0 hk+l,k

equation (9) can be written in the form

(12) AUk Uk+lH(ke).

Using this equation and the characterization (5), (8) of the GMRES iterates, it is
c is of the formshown in [23] that the kth GMRES iterate xk

(13) x xo + Uky,
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where yk satisfies the least squares problem

(14) i[e TT(e) G j(e)yll"k Yk II- min libel --k
Y

The following theorem is an immediate consequence of Theorem 1. Let s and

G, i 1,..., k, be the sines and cosines of the Givens rotations used to factor H(e).
Relations between GMRES and Arnoldi residuals and the sines and cosines of Givens
rotations were established in [23] and [3], but the direct relation between GMRES
and Arnoldi residuals was never stated explicitly.

THEOREM 2. It exact arithmetic, if c 0 at iteration k, then the Arnoldi and
GMRES residuals are related by

A(15) IIr
G G1 II/llrk-lll)

Proof. From (10), (13), and (12), it follows that the Arnoldi and GMRES residuals
can each be written in the form

(16)

ro AUyA ’
() A,aro Uk+k y

Uk+l(/el H()ykA’G)"
Since the columns of Uk+l are orthonormal, it follows that

A,G(17) IIAI H()yk II,

and the desired relation (15) now follows from Theorem 1 and the definitions (11)
and (14) of yA and yk. B

Note that for the Arnoldi method, relation (17) follows from (16), even if the
columns of Uk+l are not orthonormal. It requires only that Iluk+lll 1, since the

quantity/el ..() A
Yk has only the last component nonzero.

Theorem 2 shows that if the GMRES residual norm is reduced by a significant
factor at step k, then the Arnoldi residual norm will be approximately equal to the
GMRES residual norm at step k since the denominator in the right-hand side of (15)
will be close to 1. If the GMRES residual norm remains almost constant, however,
then the denominator in the right-hand side of (15) is close to 0 and the Arnoldi
residual norm will be much larger. Table 1 shows the relation between the GMRES
residual norm reduction and the ratio of Arnoldi to GMRES residual norm. Note
that the GMRES residual norm must be very flat before the Arnoldi residual norm is
orders of magnitude larger than the GMRES residual norm.

To illustrate these results, we consider a real matrix A of the following form:

(18) A EVTAVE-1,

where E is a diagonal matrix with positive entries, V is an orthogonal matrix, and
A is a real block diagonal matrix, consisting of at most two by two blocks, each
corresponding to a complex conjugate pair of eigenvalues of A. We note that since
any of the 2 2 blocks in A can be diagonalized by a 2 2 unitary transformation, E
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TABLE
Relation between GMRES residual norm reduction and ratio of Arnoldi to GMRES residual norm.

.5

.9

.99

.9999

.999999

1.2
2.3
7.1
70.7
707

specifies the singular values of an eigenvector matrix of A. Every real diagonalizable
matrix B is unitarily similar to a matrix of the form (18), since if B XAX-1 for
some real matrix X and X UEVT is a singular value decomposition of X, then
we have B UAUT. Since the iterative methods we consider are invariant under
unitary similarity transformations--the residual norms at each step of the algorithm
for solving Ax b are the same as those at each step of the algorithm for solving
UAUTy Ub, x UTy--it follows that all possible residual norm plots corresponding
to diagonalizable real matrices can be obtained by considering matrices of the form
(18).

For our example, we set N 111. We chose E to have one small singular value
(.8), two large singular values (10 and 10.3), nd the remaining singular values ranging
from 2.6 upward with a uniform spcing of .02 between successive singular vlues. The
matrix A ws defined by specifying three randomly generated complex eigenvlues of
magnitudes .02, .1, and 10 and real eigenvalue of mgnitude 1, generating the
remainder of the spectrum randomly as complex numbers in the box 1 _< x _< 3,
2 _< y _< 4, and then defining a 2 2 real block in A for each corresponding complex
conjugate pair of eigenvalues. The V matrix was set equal to the permutation matrix
which for 1 <_ j <_ N- 1 maps each coordinate vector ej into ey+ and maps eN into
e. The solution was set equal to the vector whose components are all 1, and the initial
guess was the zero vector. The convergence tolerance was 10-, as measured by the
ratio of the norm of the residual at iteration k to the norm of the initial residuM.

Figure 1 shows a plot of the logarithms of the Arnoldi and GMRES residual
norms versus iteration number for this example problem. The solid line is the GMRES
convergence curve and the dashed line is the Arnoldi curve. The norm of the starting
residual was 92.7.

Observe that for the specified convergence tolerance these algorithms converged
simultaneously in 95 iterations. From iterations 63 to 95, the GMRES convergence is
basically fast and, as the picture indicates, on that portion of the curve and in fact on
similar steep portions of the GMRES curve, the Arnoldi norms converge in a similar
fashion.

Also observe the matching of the peaks in the Arnoldi residual norm plot with the
plateaus in the GMRES residual norm plot. The double peak corresponding approx-
imately to iterations 22 to 36 coincides with the rough recognition of the members of
the conjugate pair of size 10-1 as eigenvalues in the spectra of the associated Hessen-
berg matrices in (9). The second double peak from approximately iterations 42 to 62
corresponds to the identification of the members of the conjugate pair of size 2 10-2.
In test problems with smaller eigenvalues, these double peaks are more clearly visible
and may be either overlapping or split apart. We note that in [25, 26] connections
between the appearance of certain eigenvalues in the spectra of the GMRES/Arnoldi
Hessenberg matrices and subsequent speedups in the convergence of GMRES were
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FIG. 1. GMRES (solid) and Arnoldi (dashed) residual norms.
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observed.
On the scale of Fig. 1, it is difficult to see the precise correlation between the

degree of flatness of the GMRES curve and the height of the Arnoldi curve above the
GMRES curve. However, for example, at iterations 24 and 50 within the double peaks
in the residual norm curve for the Arnoldi iterations, the norm of the GMRES residual
was reduced, respectively, by factors of .989529 and .999825, and the corresponding
ratios of the Arnoldi to GMRES residual norms were approximately 6.93 and 53.4.
These values are as predicted by Theorem 2.

In this example, across the first double peak/plateau the condition numbers of
the corresponding Hessenberg matrices vary from 261 to 2351 and are less than the
condition number 4625.8 of the original iteration matrix A. Across the second double
peak/plateau, however, this is not the case. Over iterations 42 to 62 the condition
numbers of the Hessenberg matrices range from 965 to 106, 146. After iteration 62,
these condition numbers settle down to the condition number of A.

4. The BCG and QMR algorithms. The BCG [7] and QMR [8] algorithms
also construct approximate solutions xk, k 1, 2,..., of the form (5). They differ from
the Arnoldi and GMRES algorithms in that, instead of constructing an orthonormal
basis for the Krylov space Kk(A, ro), they construct sequences of biorthogonal vec-
tors spanning the spaces Kk(A, ro) and Kk(AT, 0), where 40 is an arbitrary vector,
often chosen equal to r0. This can be accomplished using the nonsymmetric Lanczos
algorithm and requires two simple three-term recurrences:

Nonsymmetric Lanczos algorithm:
1. Set Vl ro/llroll and w ?0/117011. Set Pl 1 and 1 1 and

V0 W0 O.
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2. For j 1,...,k do

wyAv/wyv,
o, ir j >

+ Av av flv_,
Pj+l II+lll, Vj+I Pj+l/flj+l,

Wi+l Awi aiwi (ipi/i)wi-1,
j+l IlWj+lll, j+l Wj+l/j+l"

Here we have used the nonsymmetric Lanczos formulation that scales by setting
the norms of the Lanczos vectors to unity. Note that each step of the nonsymmetric
Lanczos algorithm requires matrix vector multiplications by A and AT but does not
require saving and orthogonalizing against all previous basis vectors, as is required by
the Arnoldi/GMRES methods.

Unfortunately, the nonsymmetric Lanczos algorithm can break down. Ifwv 0
for some j, the coefficients in the above algorithm are undefined. If w 0 or v 0,
then this means an invariant subspace for either AT or A has been found, but ifwv
0 when neither wj nor v is zero, then this is referred to as a serious breakdown. While
an exact breakdown is unlikely, near breakdowns can cause numerical instabilities.
To avoid such problems, various look-ahead strategies have been proposed; see, e.g.,
[2, 8, 10, 21]. The relationship we establish between BCG and QMR residuals holds
in exact arithmetic provided the same look-ahead steps are used in the underlying
Lanczos recurrence for each algorithm.

Let V denote the N by k matrix whose columns are the basis vectors Vl,..., v
generated for the space Kk (A, r0) and let W denote the N by k matrix whose columns
are the basis vectors Wl,..., w generated for the space K(A, ?0). Let the tridiag-
onal matrix Tk be defined by

O1
p c

Tk= P3 "" ""
"" Ck-

pk

If no look-ahead steps are performed, then the a’s, ’s, and p’s are numbers. If look-
ahead steps have been performed then T can still be written in this form but now the
entries are matrices of size determined by the number of look-ahead steps necessary
before a regular Lanczos vector can be produced. For details see, for example, [8].

The above recurrences can be written in matrix form as

(19) AVk VkT + pk+lVk+le,
ATwk Wkr-lTkrk zr-k+lWk+le,

where

Fk diag(/1,...,’yk), "Yl 1, -),j "Yj-lPj/j, j > 1.

* satisfiesB is chosen so that the residual rkThe kth BCG iterate x
(20) rSk _1_ Kk(AT, o).
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This is somewhat analogous to the condition (6) defining the Arnoldi iterates and,
like (6), this condition may be impossible to satisfy with an iterate of the form (5).
Using expression (19), condition (20) can be written in the form

(21) x xo + Vky,

where yB satisfies

(22)

It is shown in [8] that this equation has a solution if and only if the (block) tridiagonal
matrix Tk is nonsingular. For the remainder of this discussion we will assume that
the matrices T1,..., Tk are nonsingular. Here again look-ahead strategies can be used
to deal with near-singularity of the tridiagonal matrices.

The QMR algorithm is derived in much the same way as the GMRES algorithm
described in the previous section. Define the k / 1 by k matrix r(e) byk

k 0...0 Pk+l

Equation (19) can be written in the form

(24) , r(e)AV +
Q is of the formThe kth QMR iterate x

x? xo +

so the kth QMR residual rk is of the form

(25) Q AVkyQ ro Vk+llf,.(e)ykQ Vk+l (el yQ)rk ro ()

where/3 IIr011 and el is the first unit (k + 1)-vector. Ideally, one would like to choose

yk
Q to minimize IIrl!, but since the columns of Vk+x are not orthogonal, this would

not be practical. Instead, the QMR iterate is defined by taking yQ to minimize the
quantity in the parentheses in (25). That is, yk

Q satisfies the least squares problem

(26) ]1/3el T() Q T()yYk min 11/3e II.
Y

T() QWe refer to the vector el-k Yk as the QMR quasi-residual and denote it z. The
actual QMR residual is

(27) rk
Q Vk+lZkQ"

In [8] a more general definition of the QMR iterate is given, allowing for an arbitrary
diagonal scaling of the least squares problem (26). It is not clear how this diagonal
scaling should be chosen, however, and here we consider only the scaling inherent in
(26) with the right and left Lanczos vectors each having norm one.

Since the columns of V+I are not orthonormal, the norms of the true residuals
are not the same as those of the quasi-residuals. One can give upper and lower bounds
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on the ratios of these norms, however. Since the columns of Yk+l each have norm
one, it is shown in [8] that

A  ower bou.d on IIr ll is  iven by

(29) Ilr ll _> min(Vk/l)llzk]l,
where Crmin(Vk+l) denotes the smallest singular value of Vk+l. While it is possible
that amin(V+l) could be very small (especially in finite precision arithmetic, where
this is usually the casel), it is unlikely, in such cases, that the inequality (29) will be
a near equality, since the approximate solution xk is chosen to satisfy (26) without
regard to the matrix Vk+l.

The following theorem is an immediate consequence of Theorem 1 from 2. Let. and , i 1,..., k, be the sines and cosines of the Givens rotations used to factor
e) Relations between BCG residuals and QMR quasi-residuMs and the sines and

cosines of the Givens rotations were established in [8], but the direct relation between
BCG residuals and QMR quasi-residuals was never explicitly stated.

THEOREM 3. In exact arithmetic, if k 0 at iteration k, then the BCG residual
and the QMR quasi-residual are related by

(30) ilrffll -- IIzll

Proof. From (21) and (24), it follows that the BCG residual can be written in the
form

r r0 AVkyff
7 (e)(31) To Vk+l-t k Y

gk+l (/el r(e) B

From the definition (22) of yff it follows that the quantity in parentheses in (31) has
a nonzero entry only in the (k + 1)st component, and since ]lV+l] 1, we have

(ze)

Using relation (32) and the definition (26) of the QMR quasi-residual, the desired
result now follows from Theorem 1.

Note that while the choice of the starting vector f0 ffects the tridiagonal matrix
that is generated and hence affects the sines.and cosines of the Givens transformations,
it does not affect the relationship (30). This relationship holds provided only that the
same vector 0 is used for both the BCG and QMR computations.

Figure 2 shows a plot of the logarithms of the norms of the BCG residuals (dashed
line), the QMR residuals (dotted line), and the QMR quasi-residuals (solid line) versus
iteration number for the same example described in the previous section. Observe that
for the convergence tolerance used, both algorithms converged in 101 iterations if the
norm of the true residuals is used to measure convergence. Note that on the log plot
it can be seen that the QMR residual norm and the quasi-residuM norm are of the
same order of magnitude, Mthough they are not identical.
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FIG. 2. QMR quasi-residual norm (solid), BCG residual norm (dashed), and QMR residual
norm (dotted).

On the scale of Fig. 2 it is again difficult to see the precise correlation between the
degree of flatness of the QMR quasi-residual norm curve and the height of the corre-
sponding BCG curve above the QMR curve. However, for example, at iterations 33
and 59 in the plot of the residual norms of the BCG iterates, the QMR quasi-residual
norms were reduced, respectively, by factors of .99647 and .99962. The corresponding
ratios of the BCG norms to the QMR quasi-residual norms were 11.9 and 36.4. These
values fit well with the predictions from Theorem 3. The corresponding ratios of the
BCG residual norms to the QMR residual norms were 7.95 and 26.04.

The BCG peaks covering approximately iterations 20 to 40 correspond to the
appearance in the spectra of the associated tridiagonM matrices in (22) of the con-
jugate pair of eigenvalues of magnitude 10-1. The next and more recognizable two
peaks, from approximately iterations 43 to 64, correspond to the identification of the
members of the conjugate pair of magnitude 2 10-2.

In this example, the condition numbers of the tridiagonal matrices converged
more or less monotonically to 62,609, a factor of almost 15 times greater than the
condition number of A. On iterations 20 to 40 the condition numbers ranged from
473 to 34,310, and from iterations 43 to 64 they ranged from 33,500 to 62,609.

5. Bidiagonalization/SQMR/BLanczos and symmetric Lanczos.

5.1. Real symmetric Lanczos algorithm. The Lanczos algorithm for con-
structing an orthonormal basis for the Krylov space Kk(A, ro), where A is a real
symmetric matrix, can be written as follows.

Real symmetric Lanczos algorithm:
1. Set Vl--roll]roll. Set pl-- 1 and vo 0.
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2. For j 1,...,k do

ozj v(Avj pjvj-1),
Pj+I Avj ozjvj pjvj-1,

Pj+I--11/2j+lll, Vj+I-

If Tk denotes the symmetric tridiagonal matrix

o1 P2

P2 o o

"" OZk-1 Pk
p ak

Pj+I

and T(e) the extended matrix (23), then formulas (19) and (24) express this recur-k
rence in matrix form. The MINRES and Lanczos algorithm iterates are defined using
equations (26) and (22), respectively.

For real symmetric problems, assuming exact arithmetic, the Lanczos vectors are
orthonormal and the norm of the quasi-residual and the actual residual defined in
(27) are the same. In this case relation (30) becomes

L

,V/1 (llr ll/ll ’ -lll)

5.2. Bidiagonalization of nonsymmetric systems. Any nonsymmetric sys-
tem (1) can be solved by solving a larger symmetrized version of the problem. The
use of bidiagonalization to symmetrize a nonsymmetric problem was suggested in [17]
and was subsequently used to compute singular values of A [11] and to solve (1) and
associated least squares problems [19] and [20]. Simple bidiagonalization replaces (1)
by the following 2N 2N real symmetric but indefinite system

(34) B2 b, where B AT 0
2 D

X 0

whose solution contains the desired solution. We have the following lemma relating the
eigenvalues of B to the singular values of A and the eigenvectors of B to concatenations
of left and right singular vectors of A.

LEMMA 1 (see [5]). Let A be any real nonsyrnmetric N N matrix with singu-
lar value decomposition A XEYT, where E diag {al,a2,... ,aN} and yTy
XTX I. Then

(35) BZ=z(E O) whereZ=
1 (X X )0 -E Y -Y

Both bidiagonalization procedures SQMR and BLanczos map (1) into (34) and
then use the real symmetric Lanczos recursion to map (34) into simple tridiagonal
problems. Specifically, if we apply the real symmetric Lanczos recursions to B with

starting vector wl fo/llf011, where f0 -B2o + ) with 2o (O, xTo)T, then in exact
arithmetic we obtain the matrix recursion

(36) TBWk WkTk -+-pk+lWk+lek
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where

(37)

0 P2
P2 0 P3

T= p 0 ".

pk 0

Because of the special structure of B and of Wl, all of the Ozj 0. Theoretically, the
Wk = {Wl,..., wk} are orthonormal, and T W[BW is an orthogonal projection
of B onto the Krylov subspace Kk(B, Wl).

If pj # 0, 2 _< j <_ 2k, then each T2j is nonsingular and its eigenvalues occur in
+ pairs. Each T2j-1 is singular. For details see [5]. Therefore, the Lanczos iterates
are defined only on even-numbered steps. We denote the corresponding Lanczos and

-L and fM InMINRES iterates by -L and 2 and the corresponding residuals by rkXk
Lemmas 2 and 3 we use these quantities to define the BLanczos and SQMR iterates
(and residuals) for (1). In exact arithmetic, the kth Lanczos iterate is obtained by
solving

and forming

(39) 2 2 + W2k2’ where2-- ( 0
xo )"

In exact arithmetic, the kth MINRES iterate 2 is obtained by solving the least
squares problem

(40)

and forming

min P(e)2- pelll where -2k2k eTP2k+l 2k

(41) 2kM 2o + W2.
Lemmas 2 and 3 extract the corresponding BLanczos and SQMR iterates from

the above relationships.
LEMMA 2 (see [4]). If we apply the Lanczos method to (34), then all odd-numbered

components of in (38) are zero. Furthermore, if we specify the kth BLanczos iterate
-L then BL BLXk

BL to consist of the last N components of xk rk =_ b- Axk consists of the
-L and BLfirst N components of rk, xk xo + Vk2*, where denotes the even-numbered

components of 2, Vk =-- {vl,..., vk} and each vj consists of the last N components of
w2j. In addition, in exact arithmetic,

(42) XL X + 2(2k) vk and ]]rL] ]P2k+12(2k)[,

where 2(2k) (- 1) k+l fl=l fl2j-1/ j=lk P2j.
SQ The least 8quires problem in (40) can beNow consider the SQMR iterate8 x

801ved by successively applying Given8 transformation8 F(c s) to () to obtain2k

(43) F1) 0
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where R2k is 2k 2k and upper triangular. For each j, C2j--1 0 and s2j-1 1,
and we therefore use cj, sj to denote the cosine and sine which define F2j. If we set
5j =/2(j, j) and P2k W2k, then

(44) Pk [vk
where Pk is the N-vector consisting of the last N components of the 2kth column of
P2.

LEMMA 3. If we apply MINRES to (34), then all odd-numbered components of 2
s to consist ofin (40) are zero. Furtheore, if we specify the kth SQMR iterate xk

SQ b-AxQ consists of the first N componentsthe last N components of2, then rk
SQof, and xk xo + Pk2*, where denotes the even-numbered components of

Pk {P P} and pj consists of the last N components of2 In addition, in
exact arithmetic,

X _x

(45) [[rk_ mn [Tk_22 pe sj [r0,
=1

where cj, sj define the 2jth Givens transformations which were used in the factoriza-
()tion of 2

Proofs of Lemmas 2 nd 3 are in [4]. If we were defining only SQMR then there is

no pparent reason not to consider the m() However from Brown [3] we know, t2k-1"

least in exact arithmetic, that since T2k is singular, m() and m() would yield the2k-1 2k
sme SQMR iterate. In the tests presented in [4] there was no reorthogonMization of
any Lanczos vectors.

In 6 we consider the real symmetric Lnczos procedures, Lnczos nd MINRES,
in finite precision arithmetic nd demonstrate that a relationship analogous to (33)
exists for a certain class of symmetric problems. In 7 we then show that if a nonsym-
metric problem (1) is well conditioned, then the real symmetric problems generated
by the bidiagonalization algorithms defined in this section are in that class. Then,
using Lemmas 2 and 3, we obtain a relationship anMogous to (33) which is valid for
these bidiagonMization methods in finite precision rithmetic.

6. Finite precision arithmetic, Lanczos/MINRES. Quantities generated
by the Lanczos and the MINRES algorithms will be denoted with superscripts L and
M, respectively. Finite precision quantities will be denoted with tildes. In finite
precision computations, the matrix equations (19) and (24) are replaced by

(46) nk
For standard implementations of the real symmetric Lanczos algorithm it is shown in
[18] that the obenius norm of the roundoff matrix Fk satisfies

s c

where e is the machine precision and c is a moderate size constant. We will not use
this bound explicitly but will simply express error estimates in terms of Fk.

Suppose the computed Lanczos nd MINRES approximations satisfy

-L M(us) x0 + + x0 + +
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where is the exact solution to the tridiagonal system

and M is the exact solution to the least squares problem

(50) min 117()y -/el I].

If the tridiagonal matrix Tk is not too badly conditioned, then the error due to the
The

~L,M A ~L,M L,Mrk ro kYk
r(e)L,M F ~L,M L,M

r0 Vk+lt: st: kYk Agk
(e)L,M -L,M L,M(51) Vk+l(el --k k Fay Agk

In finite precision computations, the columns of Lanczos vectors Vk+ in (51)
frequently lose orthogonality. Yet numerical experiments in [4] suggest that relation
(33) holds to a close approximation, even after orthogonality of the Lanczos vectors is
lost. We now show why this is to be expected, assuming that the terms kYk
Ag2’M in (51) are small compared to ? and [?[.

It is shown in [12] that for any given K, the tridiagonal matrices generated by K
steps of a finite precision Lanczos recurrence with a real symmetric matrix A are the
same as those that would be generated by the exact Lanczos algorithm applied to a
larger real symmetric matrix whose eigenvalues all lie within tiny intervals about
the eigenvalues of A. The size of the intervals depends on the machine precision
and on an upper bound K for the number of steps that will be run. It is further
shown that components of the computed Lanczos vectors associated with a particular
eigenvector of A are related to the components of the corresponding exact Lanczos
vectors associated with the eigenvectors of whose eigenvalues lie in the interval
about this eigenvalue of A, in the following way:

(52) (k(i))2 (Vk(Q))2.

Here k(i) represents the component of the computed Lanczos vector k in the di-
rection of the ith eigenvector of A. If k is the corresponding exact Lanczos vector
obtained from the recurrence with A, then Vk(Q), g 1,... denotes the components of
Vk in the directions of the eigenvectors of A whose eigenvalues lie in the tiny interval
about the ith eigenvalue of A.

-i and denote the corresponding exact arithmetic residual vectors ob-Let rk
tained by applying the Lanczos and the MINRES algorithms to a linear system
A2 b, with an initial guess 20 such that
r0 and is parallel to the first Lanczos vector V. The following lemm relate the

-L and to the norms of the exact residualnorms of the computed residual vectors rk
-i and .vectors rk

-i be the residual vector obtained aer k-i satisfy (51) and let rkLEMMA 4. Let r
steps of the exact Lanczos algorithm applied to the linear system 2 , as descbed
above. Then

(53) ]2] ]] + h, where

inexact solution of the linear system or least squares problem will be small.
Lanczos and MINRES residuals for the computed quantities satisfy
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Proof. Since the exact Lanczos recurrence generates the same tridiagonal matrix

Tk and the same parameter tSk+l (since this is an element of Tk+l) as the finite
precision computation, the exact residual vector rk-L satisfies

-L T ~--1VkTl(ekTk el).rk --kq-1

It follows from (51) that

?kL --k+lk+l/(e[lel)- Fkl Ag,

since the quantity in parentheses in (51) has only its last component nonzero. Since

IlVk+lll I[+[I 1, the desired result (53) follows.
LEMMA 5. Let satisfy (51) and let +1 satisfy

(54) ( ()AVk+I- Vk+2 k+l " Fk+1"

Then AaM is given by

(55) AM +/k+ + k+2"+2 + Fk+12kM AFk(I A2gkM,--(e)M and the coe]ficients ")’k+l and k+2 depend only on thewhere kM [e k k

elements of the extended tridiagonal matrix (e)k+l"
-()Yll the remainder 5 elProof. Note that since 94 minimizes IIel k

() Note also that the extended tridiagonal(e)gkM is orthogonal to the columns of-
matrix (e)

-+1 can be written in the form

() k

"k+l 0... 0 k+l 5k+1
0 .0 0 tS+:

where the elements c)k+l and k+,/k+2 are those generated by the symmetric Lanczos
recurrence. Multiplying (54) by 5M on the right gives

(56) Ak+2M k+l’k+l -- Ok+2k+2 t- gk+l;kM,

where the coefficients

~M(k + 1)’)’k+l pk+2(k) + 5+skM(k + 1), "Yk+2 P+2Zk

are functions of the elements of the extended tridiagonal matrix () Using (51) tok+l’
substitute for +1, in (56) gives

A(M + FklkM + AgkM) k+l’k+l -}- OkT2")’k+2 -" Fkq-l,I,
from which the result (55) follows.

LEMMA 6. The exact arithmetic residual vector M satisfies

(57) kM k+lk+l -}- 9k+2k+2,

where k+l and "+2 are the same coefficients as in (55).
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Proof. Since the exact Lanczos vectors satisfy

()AVk+I Vk+2 k+l,

where (e) is the same tridiagonal matrix as in (54) the result follows by the samek+l
arguments as used in Lemma 5. [:]

We wish to show that I14 I1 II. To see this, it is necessary to translate into
bases in which A and fi are diagonal. That is, suppose A WAWT and fi, WAWT,
where A and A are diagonal and W and W are orthogonal matrices. Let (C)(i) denote
the ith component of a vector wT9 associated with the finite precision computation
for A and let (C)(Q) denote the Qth component of a vector IT(C) associated with the
exact calculation for A. The index i will range over all eigenvalues Ai of A that lie
in the interval about eigenvalue Ai of A. There is no loss in generality in making this
transformation. The arguments used need only the fact that the error term in (54) is
small and the size of that term is independent of the orthogonal matrix W.

Since the bound proved in [12] on the size of the intervals containing the eigen-
values of . appears to be a large overestimate of their actual size [13], it is not very
enlightening to include this bound in our estimates. Instead we will simply assume

(58) max Ai

The bound in [12] on the difference between the left- and right-hand sides in (52) is
also an overestimate. Therefore, we will simply assume

(59)

The following lemma establishes one more relation between the components WT)k
of the computed Lanczos vectors and the components vT)k of the exact Lanczos
vectors.

LEMMA 7. The following relation holds between components of the computed
Lanczos vectors for A and those of the exact Lanczos vectors for A"

k+l (i)(i) E+(i)(i)
1 [Pk+l j--1

(60)
k k

/ E / E ],
j=l j=l

where f maxi,j IFk(i,j)l and and are as defined in (58) and (59).
Proof. Writing the three-term Lanczos recurrences for the relevant components

we have

/k+lk-]-l(i) (hi (k))k(i) k)k-1 (i) Fk(i k),

k+l)k+l(ii) (XQ (k))k(ii) kk-l(ii).
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Multiplying the first of these equations by k(i) and multiplying the second by Vk(it)
and summing over gives

(61) k+lk+l (i)k(i) (Ai &k)((i))2 kk(i)- (i) F(i, k)k(i),

+ +(1(1 ( )(()) (i)_(i)

(1 +( 1((i)1.

Subtract (62) from (61) to obtain

(63) k+idk+,i ( 5k)Sk,i kdk,i Fk(i, k)k(i) k,i E(Vc(Q))2,

where we have defined

Clearly, 16j,il < 6 and Ij,il - for all and j. Applying formula (63) recursively gives

k [ ]/5+1d+1,i E(-1)k-j 5j,i()i 5) Fk(i,j)j(i) j,i E(Vj(Q))2

j=l g

Dividing by/Sk+, taking absolute values on each side, and bounding the quantities
I,1, IFk(i,j)l and Ij,il on the right-hand side gives the desired result (60). 13

LEMMA 8. The residual vectors M and M are related by

where

(64) Ihl_<llkMll 2--in N.6 + d + IAminl.[[/i + IAminl.] + O(A2),

where ,min i8 the eigenvalue of A of smallest absolute value, and are defined by
(59) and (58), is given by

and d satisfies

Fk_t_lM AFklffI A2M,

(65) _< ~’
1

i. 2(k + 1)NlAmax + " (k + 1)+ f" (k + 1)x/]d
Pk+2
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with /max the eigenvalue of A of largest absolute value. The term O(A2) denotes
higher-order terms in 5, , I111, and d.

Proof. Equation (55) can be written in component form as

(66) /ikM (i) "k+l)k+l (i) + ’k+2)k+2(i) + (i),

and equation (57) becomes

(67) ikM(Q) "k+lVk+l (Q) + +2Vk+2(Q).

Squaring both sides in (66) gives

2A((i))2 +1(k+1(i))2 + 7k+2(k+2(i))2 + 2k+1k+2Ok+1(i)k+2(i)
(s) + (i)()- (()),

and squaring both sides and summing over g in (67) gives

(7(i)) +1 (+(i)) + +: (+:(i))
(69) + 27+1+2 V+(Q)Vk+2(Q) + (Ai i)(Ai + i)((Q))2.

Finally, subtracting (69) from (68) gives

((i))2 (f(i))2 +lk+l,i + k+2 k+2,i + k+lk+2dk+2,i

(70) + 2i(i)(i) ((i)) (i k,i)(i + k,i) (f(Q)),

where k,i satisfies

(a x(a +x)(( (a ,(a +,((.
By the mean value theorem we have i- k,il . Divide each side of (70) by ,
sum over i, and use the bounds on ,il, Id,l, and Ii- ,il to obtain

1I111 -I11 I< (+1 +
min

(1) + lmnl I11 111 + lmnl 1111
Use the fact that and divide each+ ++ I111 and 1+1+1
side in (71) by I111 + I111 to obtain the desired result (64). The bound (6g)is
obtained by summing over in expression (60).

THEOREM 4. The compted anczos and MINRES residuals are related b

I (llll/ll_ ll) [1 (llll/ll_ ll)]/

+ k + o().
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Proof. The exact arithmetic residual vectors associated with A satisfy

so from Lemmas 4 and 8 we have

V/1 -((1111- hM)/(IIM-111- h//_1))2

Manipulating this expression gives the result (72). El
Note that Theorem 4 implies that relation (33) holds to a close approximation in

finite precision arithmetic, provided the roundoff terms h hM and h4_1k are much
smaller than FkMII and provided the reduction factor IIF/II/IIM_ll is not too close
to one.

7. Finite precision arithmetic, BLanczos/SQMR. If the tridiagonal ma-
trices generated by the Lanczos algorithm are well conditioned, then one can expect
the roundoff terms h and h in Theorem 4 to be small since the roundoff term Fk
in (46) is tiny and g and gk

M in (48) will be small if the tridiagonal systems are
solved accurately. In this section we show that the even-order tridiagonal matrices
generated by the BLanczos and SQMR algorithms described in 5 are essentially as
well conditioned as the original matrix A in (1).

For each tridiagonal matrix T generated by the BLanczos and SQMR algorithms,
let /), 1 _< _< k denote the eigenvalues of Tk. The proof that the even-order T2
are as well conditioned as A uses the interlacing property of eigenvalues of tridiagonal
matrices. (See, for example, [24, p. 46] or, later, [16].) This property says that if Tk
is any principal submatrix of a symmetric tridiagonal matrix T, then between each
pair of eigenvalues of Tk is at least one eigenvalue of T. Also, there is an eigenvalue of
T that is less than the smallest eigenvalue of T and an eigenvalue of T that is greater
than the largest eigenvalue of Tk. We also need the following lemma.

LEMMA 9 (see [4]). Each unreduced, even-ordered tridiagonal matrix T2k defined
by (37) is nonsingular and has eigenvalues that occur in i pairs. Each odd-order

T2k+l is singular and has a simple zero eigenvalue.
Using these properties and results from [12] relating the tridiagonal matrices

generated by a finite precision computation to those that would be generated by an
exact calculation for a certain larger matrix with nearby eigenvalues, we are able to
prove the following theorem.

THEOREM 5. Let A be any real nonsymmetric matrix with singular values 0 <
GN

_
GN-1

_ _
(71. Let T2k, k 1,2,...,K be the even-ordered tridiagonal

matrices generated by applying either BLanczos or SQMR to (1) in finite precision
arithmetic. Then for all 1 <_ j <_ K, the eigenvalues of T2j lie in the intervals

I-a1- ,--aN + ] U [aN- , G1 + ], where is a bound on the distance between the
eigenvalues of B in (34) and those of a corresponding exact arithmetic matrix B, as
described in the previous section.

Proof. Since bidiagonalization is an application of the real symmetric Lanczos
procedure, the results in [12] are applicable. Therefore, there exists a matrix/ whose
eigenvalues lie in tiny intervals about the eigenvalUes of B such that the exact Lanczos
algorithm applied to B generates tridiagonal matrices T2j identical to the tridiagonal
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matrices 2j, j 1,..., K generated by the finite precision bidiagonalization process
applied to B in (34). Let be a bound on the width of these intervals. Since
the Lanczos computation for / is exact, there exists some M _> 2K such that the
eigenvalues of M are the eigenvalues of /. It follows from the interlacing
theorem that between each pair of eigenvalues of 2j is an eigenvalue of and hence
of/. Additionally, all eigenvalues of 2j must lie between the smallest and largest
eigenvalues of B, [-al , al -- ]. From Lemma 9 the eigenvalues of T2j occur in +
pairs. Therefore, if for some j, T2j had an eigenvalue in the interval (--aN +, aN --),
then it would necessarily have a pair of eigenvalues in this interval and hence B would
have to have an eigenvalue in this interval. This is a contradiction, and therefore the
eigenvalues of each T2j inust be contained in the intervals given in the theorem. [:]

From Theorem 5 it follows that if the original matrix A in (1) is well conditioned,
then the error term in Theorem 4 will be small. Therefore, using Lemmas 2 and 3
we get that the BLanczos and the SQMR residual norms will satisfy an approximate
relationship of the form (72).

8. Conclusions. In exact arithmetic we have derived a precise relation between
the sizes of the Arnoldi and GMRES residuals at any iteration k and between the sizes
of the BCG residual and the QMR quasi-residual at any iteration k. This relation
implies roughly that if the Galerkin iterates are well defined and if one member of
either pair of algorithms converges very well, then the other member of the pair
will also converge very well, and if one member performs very poorly then the other
member will also perform poorly. While the residual (or a related quantity) in the
norm-minimizing method cannot grow, as it can in a Galerkin method, it is no more
useful to have a near constant residual norm than it is to have a growing one. If one
prefers to see a (weakly) monotonically decreasing convergence curve, one can always
plot the norm of the smallest residual obtained so far.

While those proofs assumed exact arithmetic, the relation between GMRES and
Arnoldi residual norms can be expected to hold to a close approximation in finite
precision arithmetic as well, since orthogonality of the Arnoldi vectors is maintained,
or can be maintained, with a sufficiently careful implementation of the algorithm [6].

For the QMR and BCG algorithms, precise details of the implementation and
use of look-ahead steps will determine whether or not the relation continues to hold
in finite precision arithmetic. If the BCG iterate produced at some step has a very
large norm, then future iterates updated from this one may never approach the true
solution [14]. This situation can be avoided through the use of look-ahead procedures
or by storing certain intermediate quantities and using these to generate the BCG
approximations. For example, the BCG iterates can be generated from the QMR
iterates [8]. There seems to be little if any reason, however, to choose the Galerkin
variant over the norm-minimizing variant when each can be generated with essentially
the same amount of work and storage. A possible exception may be the case of very
ill conditioned symmetric problems, where it was observed in [20] that the SYMMLQ
implementation of the Lanczos algorithm (the symmetric equivalent of BCG, but
implemented in such a way that large intermediate iterates are not used to generate
future iterates) sometimes attained a higher level of accuracy than the MINRES
algorithm (the symmetric equivalent of QMR).

For real symmetric problems with well-conditioned tridiagonal matrices we have
shown that, despite the loss of orthogonality of the Lanczos vectors, the relation
between the Lanczos and MINRES residuals holds to a close approximation in fi-
nite precision arithmetic. We then used this result to prove that if a nonsymmetric
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problem (1) is well conditioned, then the residuals generated by the nonsymmetric
bidiagonalization algorithms, BLanczos and SQMR, also satisfy these relationships to
a close approximation in finite precision arithmetic.
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COMPUTATION OF NUMERICAL PADI-HERMITE AND
SIMULTANEOUS PAD SYSTEMS I: NEAR INVERSION OF

GENERALIZED SYLVESTER MATRICES*

STAN CABAYt, ANTHONY R. JONES$, AND GEORGE LABAHN

Abstract. We present new formulae for the "near" inverses of striped Sylvester and mosaic
Sylvester matrices. The formulae assume computation over floating-point rather than exact arith-
metic domains. The near inverses are expressed in terms of numerical Pad-Hermite systems and
simultaneous Pad systems. These systems are approximants for the power series determined from
the coefficients of the Sylvester matrices. The inverse formulae provide good estimates for the condi-
tion numbers of these matrices and serve as primary tools in a companion paper for the development
of a fast, weakly stable algorithm for the computation of Pad-Hermite and simultaneous Pad
systems and, thereby, also for the numerical inversion of striped and mosaic Sylvester matrices.

Key words, striped Sylvester inverses, mosaic Sylvester inverses, Pad-Hermite approximants,
simultaneous Pad approximants, numerical stability

AMS subject classifications. 41A21, 65F05, 65G05

1. Introduction. Let n [n0,...,nk] be a vector of integers with nz _> 0,
0 _</ _< k. A striped Sylvester matrix of order Ilnll is given by

a(00) 40)

(1) A/In a(0) a(k)

a(oIlnll-1) a(oIIn]’ -no) a(k]lnl]-l)
where Ilnll no /... + nk and where the coefficients a() T, the field of real

numbers. Assume that a(0) - 0. In this paper, we present a formula for the inverse
of j4 expressed in terms of Pad-Hermite and simultaneous Pad systems.

Pad-Hermite and simultaneous Pad systems [6, 8] are approximants for the
vector At(z) [a0(z),...,aa(z)] of power series associated with the coefficients of
j4; namely,

az(z) E a() z’ with0<_/_<k.
=0

They provide necessary and sufficient conditions for A/i to be nonsingular and gen-
eralize the notions of Pad-Hermite and simultaneous Pad approximants. Pad(-

Hermite and simultaneous Padd approximants were introduced by Hermite in the last
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century and have been widely studied by several authors (for a bibliography, see, for
example [22, 1, 2, 3, 14]).

The inverse formula given here is intended to be applied in a numerical setting; it
accommodates errors that may have been made in the computation of Pad--Hermite
and simultaneous Pad systems. That is, the formula gives the "near" inverse for AAn
because it expresses the inverse in terms of Pad&-Hermite and simultaneous Pad
systems which are computed using floating-point arithmetic. There are other closed
formulae (cf. [11, 15, 17, 18, 19]) for AA1. The formula given here is different in that
it expresses the inverse directly in terms of numerical Pad-Hermite and simultaneous
Pad systems.

The near inverse formula depends on the computation of both Pad systems. It
is possible to determine a simultaneous Pad system from its "dual" Pad-Hermite
system via the adjoint operation [5, 14]. In a numerical setting, however, this does
not provide enough control over the resulting floating-point errors [13]. Instead, si-
multaneous Pad systems can be computed independently. Whereas a Pad6-Hermite
system can be obtained by solving a system of linear equations with A/n as the
coefficient matrix, a simultaneous Pad system can be similarly and independently
obtained with a coefficient matrix that is a specialized mosaic Sylvester matrix. This
specialized mosaic Sylvester matrix of order kllnll is defined to be

where S, are matrices of size (llnll- n) Ilnll, with

for 1 _</ _< k, and with the remaining q, 0. The matrix AJ, is closely related to
AAn. Indeed, in the special case when k 1, the matrix Jdn and the transpose of JM,
coincide up to a sign and a permutation of the rows and columns. Similarly, when
k _> 1 and Co(Z) 1, the matrix n and the transpose of A//, are both obtained by
a suitable block extension of the same matrix. In this paper, we also provide a "near"
inverse formula for the matrix A/* again in terms of numerical Pad-Hermite andn
simultaneous Pad systems.

The inverse formulae provide "good" estimates for the condition numbers of A/In
and AJ, and these enable the stable numerical computation of Pad-Hermite and
simultaneous Pad systems described in the companion paper [5]. In return, the ac-
curate computation of Pad-Hermite and simultaneous Pad systems by the algorithm
in [5] enables the effective inversion of generalized Sylvester matrices by the formulae
given in this paper, as well as the solution of linear systems of equations with these
as the coefficient matrices.
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This paper is organized as follows. Preliminary definitions and basic facts about
Pad-Hermite and simultaneous Pad systems are given in the next two sections. Sec-
tion 3 gives a near commutativity relationship between these two systems in floating-
point arithmetic, while 4 and 5 give the approximate inversion formulae for striped
and mosaic Sylvester matrices. The final section gives a summary and some conclu-
sions.

We conclude this section by defining some norms which are used in 4 and 5.
Let

a(z) E a() z E T [[z]],
=0

where [[z]] is the domain of power series with coefficients from , and define the
bounded power series

7[[z]] {a(z)
A norm for a(z) 7B [[z]] is

a(z) 7[[z]], E la(e)l <
--0

=0

B[[z]] includes the domain of polynomials [z]. So, for

o
() () z e n [z],,

--0

we use the norm

o

=0

For vectors and matrices over TcB[[z]], we use the 1-norm unless otherwise speci-
fied. So, for example, the norm for At(z) is

IIA(z)ll max {lla(z)ll}
0_<_<k

and the norm for S(z) 7(k+l)(k+l)[z] is

[IS(z)ll max IIS,()ll
0ssk

--0

It is easy to verify that various compatibility conditions are satisfied. For example,

liAr(z) S(z)ll IIA(z)ll IIS(z)ll

and

Ila(z) "b(z)ll Ila(z)ll" IIb(z)ll,
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where b(z) is also a bounded power series. In addition, for S*(z) E T(k+l)(k+l)[z]
and A*(z) T(k+)k

IIS*(z) A*(z)l <_ IIS*(z)ll IIA*(z)ll,

In the subsequent development, we also make use of the inequality

Ila(z) (mod zllnll+)l < Ila(z)ll,

where

a(z) (mod zIlnll+l) 2 a(t) zt + E
t-o t-Ilnll+l

o. e n’[[z]].

2. Multidimensional Pad systems. In this section, we introduce the notion
of Pad-Hermite and simultaneous Pad systems. Let n [no,..., ski and define
I]nll no +... + nk. Also let

At(z) [a0(z),..., ak(z)]

where

--0

fl 0,...,k,

with a(ff 7, the field of real numbers. Assume that a(0) 0, which means that

a(z) exists. Assume also that At(z) is scaled so that Ilaz(z)(rood zllnll+)l 1,
O<fl<k.

The (k / 1) x (k / 1) matrix of polynomials

(3)

p(). (z) ()
[ ZB(Z) U$(z) ] zql(z) Vl,l(Z) Vl,k(Z)

S(z) [ ]zQ()y(z)
q(z) ,() ,(z)

is a numerical Pad6-Hermite system (NPHS) [8] of type n for A(z) if the following
conditions are satisfied.

I (Degree conditions). For 1 _< a, fl _< k,

(4)

II (Order condition).

At(z)S(z) zllllTt(z) + STY(z),
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where Tt(z) [r(z),zWt(z)] with Wt(z) [wl(z),...,wk(z)] is the residual, and
where 5Tt(z) [z 5r(z),hWt(z)] is the residual error, with 5Wt(z) [hWl(Z),...,
5wk(z)] and with

g=o g=o

If 5Tt(z) 0, then S(z) is an exact, rather than a numerical, Pad-Hermite system.

III (Nonsingularity condition). The constant term of Y(z) is a diagonal matrix,

(6) V(0) diag [1,..., k],

and

k

(7) ")’ (a))-I H a O,
c---O

where 0 r(0).
Remark 1. The nonsingularity condition III is equivalent to the condition that

r(0) 0 and that Y(0) be a nonsingular diagonal matrix.

Remark 2. The NPHS is said to be normalized [8] if the nonsingularity condition
III is replaced by r(0) 1 and Y(0) Ik. This can be achieved by multiplying S(z)
on the right by F-, where

(8) F diag [0,..., k].

The NPHS is said to be scaled [13] if each column of S(z) has norm equal to 1 and
if, in addition, -Z > 0, 0 _</ _< k. Here, also, scaling an NPHS is accomplished by
multiplying it on the right by an appropriate diagonal matrix.

Remark 3. The nonsingularity condition III, namely / 0, refers to the non-
singularity of the associated striped Sylvester matrix A/n defined in (1); in [8] it is
shown that an exact NPHS exists iff J4 is nonsingular.

Remark 4. In [4, 5, 8], rather than S(z), the Pad-Hermite system is defined to
be S(z). diag[z, 1,..., 1]. The notation used here is consistent with that of [15] and
Simplifies the presentation of some of the results.

A Pad-Hermite system gives an approximation to a vector of formal power series
using matrix multiplication on the right. A simultaneous Pad system is a similar
approximation using matrix multiplication on the left and with degree constraints
that can be thought of as being "dual" to the degree constraints of a Pad-Hermite
system.
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Let

(9) A*(z)

ao(z)

be a (k + 1) k matrix of power series. The (k + 1) x (k + 1) matrix of polynomials

*(z)(10) S*(z) zQ*(z)
U*(z) tzP*(z)

zq(z)

q()

(z) (z)
,() z,(z)

z,(z) ,(z)
is a numerical simultaneous Pad4 system (NSPS) [6, 8] of type n for A*(z) if the
following conditions are satisfied.

I (Degree conditions). For 1 _< a, _< k,

(11) v*(z) y
=0

q;(z) q;()z,
=0

II (Order condition).

(12) S* (z)A* (z) zllnllT (z) + ST* (z),

where T*t(z) [z W*(z)lR*t(z)] with R*(z) a k k matrix is the residual, and where
5T*t(z) [hW*(z)lz 5R*t(z)] is the residual error, with 5R*(z) a k k matrix and

E
g=o g=o

III (Nongggglar conggog). The eongng germ of *(z) i digonM mgrix

(a) *(o) dg b,...,

and
k

(14) "* --(a(o))- H /g 0,
c--0

More generally,

a, (z) a} k (Z)

A*(z) C*(z),() *,()
with C*(0) nonsingular, but the restriction to (9), which algebraically is made without loss of gen-
erality, permits us to establish in 3 a duality relationship between Pad4-Hermite systems and
simultaneous Pad4 systems.
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where "),( v* (0).
Remark 5. The NSPS is said to be normalized [6] if the nonsingularity condition

IiI is replaced by v*(O) 1 and R*(O) Ik. This can be achieved by multiplying
S*(z) on the left by F*-1, where

(15) F* diag [,,..., ;].

The NSPS is said to be scaled when each row of S*(z) has norm equal to 1 and if,
in addition, > 0, 0 <_ a <_ k. Here, also, scaling a NSPS is accomplished by
multiplying it on the left by an appropriate diagonal matrix.

Remark 6. The nonsingularity condition III, namely ,* = 0, refers to the non-
singularity of the associated mosaic Sylvester matrix j defined in (2); in [6] it is
shown that an exact NSPS exists iff j4 is nonsingular.

Remark 7. In [4, 5, 8], rather than S*(z), the simultaneous Pad6 system is defined
to be diag[1, z,..., z]. S*(z). This is for notational convenience only.

3. Duality. Theorem 1 below gives a relationship between Pad6-Hermite and
simultaneous Pad6 systems which is crucial to the results of the subsequent sections.
It generalizes earlier results of Mahler and their extensions to block matrices [9, 14,
16, 20].

THEOREM 1. If S(z) is an NPHS of type n for A(z) and S*(z) is an NSPS of
type n for A* (z), then

(16) S*(z) S(z) zllnlI(a(o))-lr*p + Oi(z),

where

Oi(z) a-l(z) zQ*(z) STt(z) + T*(z) zQ(z) V(z) (mod zllll+l).

Proof. The theorem (in the case that 5T(z) 0 and 5T*(z) 0) follows from
[14]. The arguments used in the following proof, however, are considerably simpler.
Let

Bt(z) [al(z),...,ak(z)].

Then, using (5) and (12),
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But, from (4) and (11), the degrees of S*(z)S(z) are bounded componentwise by [In[[.
It then follows from (17) that

s*()s() z(a(o))- [ *(0)(0)0
1111 ((o))-r*r +

0 ]R*(0)V(0) + O,(z)

which is (16). E]

COROLLARY 2. If S(Z) i8 a normalized NPHS of type n for A(z) and S*(z) is a
normalized NSPS of type n for A*(z), then for sufficiently small2 T(z) and 5T*(z)

(18) s(). s*() llll(a(o))-+ +
where

o() S(z) O(z) [zll’ll(a(o))-+ + o(z)]- S*(z).

Proof. If Oi(z) is so small, that is, if 5T(z) and 5T*(z) are so small, that

zllnll(a(o))-lik+l + Oi(z)is nonsingular, then from (16),

s*-(z) S(z). [zll’ll(a(o))-+ + O(z)] -.

S(z)S*()

+
S(z) O(z)[zllll(a(o))-+l + Oi(zl] -1 S*(z). n

COROLLARY 3. The residuals T(z) for a normalized NPHS of type n .for A(z)
and T*(z) for a normalized NSPS of type n .for A*(z) satisfy

(19) Tt(z) S*(z) (a(o)) -1 At(z)/ otHi(z),

where

Oixi(z {At(z)OH(z) 6Tt(z)S*(z)} /z IlnlI.

Proof. From (5) and (18), it follows that

{zI1’11Tt(z) + 5Tt(z)} S*(z) At(z) S(z) S*(z)

At(z){z Ilnll (a(o))-lIk+ + Oil(Z)}
and so (19) is true. [:]

2It is adequate, for example, that condition (34) of Corollary 6 be satisfied.
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4. The inverse of a striped Sylvester matrix. In this section, a formula is
given for the inverse of A/In expressed in terms of both S(z) and S*(z). This enables
estimating the condition number of A4n without explicitly computing A/[1.

Associated with the NPHS S(z), define the order Ilnl[ matrices

p(0) p(no-1)

p(no-1) .."

0

0 0
(20)
and, for/ 1, 2,..., k,

u() u(no)
0

qlO

qnl-1) .."

0

q(n-)
0

(n-l)

k

0

0

_(n-)
/k

0

0

(1) v(nZ)
,/

v(n) ."
1,f

0

0 0

() v(n)

v(n) ."

0

0 0

where

Also, for any power series a(z) .)-0 a(t)zt, and any integer function f(i,j), i,j
1, 2,..., let [a(/(i,j))] denote a matrix of order Ilnll whose element in position (i, j) is
a(/(i,J)).

The main result of this section is Theorem 4 which gives the inverse of A4n in
terms of the NPHS S(z) and the NSPS S*(x) of types n for A(z).

THEOREM 4. in terms of the normalized NPHS S(z) and the normalized NSPS
S*(x) of types n for A(z), the inverse of A/In satisfies

Proof. The coefficient of zi+j-2, for i,j 1, 2,..., Ilnll, in the first component
of (5), namely,

k

co(z) p(z) + a,(z) q,(z) zllnll-r(z) + 5r(z),
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is

no k no --1

E a(oi+J-e-2)P(e) + E E a(:+J-e-2)q(ff)= r(-II=ll+i+J-1) +
g--O a=l =0

This is the (i, j)th component of

+ E al’ll+-)] [q(-11ll++-2)] + Ad pt.
c=l

Similarly, the coefficient of z+-, for i, j 1, 2,..., Ilnll, in the (+ 1)st component,
1,..., k, of (5), namely,

k

ao(z) uz(z) + E a,(z) v,,z(z) zll’l’+lw(z) + tiwz(z),

This is the (i, j)th component of

(24) [W([3-I’nll+i+j-2)] -t- [(W+j-l)] [a(oIlnll+i-j)] [2t-Ilnll+i+j-1)]
k

+ E alll+i-j)] [v2:Inll+i+-)] +n
Next, the coefficient of z-- for i,j 1,..., Ilnl, in the first row and first

column of (18) for a normalized NPHS and a normalized NSPS, namely,

k

p(z) v* (z) + u,(z)q(z) z Ilnll-1 (a))-1 + z-l(0u)o,0(z),
=1

no k no

E V*(i-J-t-1) p(l) nt EE q(i-J--l)u(ff (011) (i-j)O,O
t=0 --1 ----0

This is the (i, j)th component of

(25)
k

=1

[(Oil)(i-j)0,0

k

q.(z) *(z) + ..,(z)q*() -(o.)..o(z).
f=l

The coefficient of Zi-j-1 in the first column and the (a + 1)st row c 1,... ,k of
(18), namely,
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This is the (i, j)th component of

(26)

Also, the coefficient of zi-j, for i,j 1,..., Ilnl[ in the first component of (19)
for a normalized NPHS and NSPS, namely,

k

Z’(Z)V*(Z) -+- Z2 WS(z)q;(z (a(00)) -1 ao(z) + ({9Iii)o(Z)
5=1

is the (i,j)th component of

k

5=1

We are finally ready to prove the theorem. From (23)-(27),

{ 5=1

k

k

=1
k

c---

k

5=1

-k [Sr(i+j-2)] [V*(llnll
k

5=1
k
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The result (22) follows.
Corollary 5 drops the requirement in Theorem 4 that S(z) and S*(z) be nor-

malized. In particular, the corollary is valid in the case that S(z) and S*(z) are
scaled.

COROLLARY 5. In terms of the (unnormalized) NPHS S(z) of type n for A(z)
and the (unnormalized) NSPS S*(z) of type n for A*(z), the inverse of J4 is given
by

(28)

where

(29)

(3o)

(32)

Proof. The normalized NPHS is obtained from an unnormalized one by mul-
tiplying it on the right by the diagonal matrix diag[,-l,..., /-1]. Similarly, the
normalized NSPS is obtained from an unnormalized one by multiplying it on the left

*--1by the diagonal matrix diag[/-,..., 7k ]. The result now follows directly from
(ee).

Let

(33)
k

=0

In the corollary below, we give a bound for A/I in terms of .
COROLLARY 6. If the residual errors 5Tt(z) and 5T*(z) associated with the scaled

S(z) and the scaled S*(z) are not too large, so that

(34) [( + 1)(k + 2)[a(o)I(llal(z) (mod Z[[n[[+l)[ 4- 1)] 2

[(k + 2)l]hTt(z)ll + 115T*(z)ll] _< 1/8,
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then

(35) I1./1111 2" la(o)l ]lal(z) (mod zllll+l)l ].

Proof. We.. use Corollary 5 with S(z) and S*(z) scaled. We begin by find.!ng
a bound for 0Iy appearing in the inverse formula (28) for A/In. A bound for 0Iy
depends on bounds for i(z), /H(z), and Hi(z). From (16),

III(Z)]I I[a-l(z) (mod zllnll+l)l {(k - 1)llbTt(z)ll + ]lbT*(z)ll},
because IIS(z)ll 1 and IIS*(z)ll < k + 1. From (16) and (32), note that i(z) is a
matrix polynomial of at most degree Ilnll and so, using (34),

Ila(o)zllll,(z-1)(r*r)-lll- Ila(o)/(z)(r*r)-ll _< ,. la(o)l II/(z)ll < 1/2,

because II(r*r)-ll _< . So s in [21, p. 187], the inverse of (a(o))-Ik+l -ff-zIInllI(Z-1)
(F’F)- exists and

{ (a(oO))- lik+l+zll.llI(z-1)(F.F) -1 }--1 <
1-

_< 21a(o)l
To determine a bound for H(z) in (31), let N maxo_<_<k{n} and observe

from (18) that ii(z) is also a matrix polynomial, now of degree at most Ilnll + N.
Consequently,

(36) II/b(z)ll Ilzllnll/NII(Z-X)ll

-II (F’F) -1 {zl’nllOi(z-X)} (F’F) -1

<_ 2llzNS(z-1)l Ilzllnllz(z-e)ll Ilzll’llS*(z-1)ll

]{(aO))-lIk+l +z’[n[’Oi(z-1)(P*)-l}
-1

2). (z). ,(z)[[. ][*()[
2( + 1). a).

In addition, it now follows that bound for Iit(z) in (30) is given by

11S,(z)ll 2=(k + 1). la(o)l I1()11 + (k + 1). IITt(z)ll.

We are now ready to give a bound for IV appearing in the inverse formula (28).
But first observe that

It 111 -<
and that

II k

[a +-J)] [(OH)a,oE I11 (+J)]
o--0

k. II(-),o(z)ll II(-)(z)ll.
c--O
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Thus,

It then follows from (34) that

_< Ila3- (z) (rood zll’ll+l)l II/vIIx _< 1/2,

and so IIIn, + [a(oi-J)]-lIy is invertible. In addition,

{[a(oi-j) -Jr-iv}
-1

Ozvlll

2[[ [a(oi-J)]
-1

[[1

_< 2Ileal(z)(rood zll’ll+l)l I.

-1

Therefore, a bound for ./-1 in (28) is given

{ [a(i-J)l a()

}/=1

_< 2la(o)l. Ilaff(z)(rood zll’ll+l)l I. n

ltn [v*(l,nll-i-j+l)
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From (35), it follows that a bound for the 1-norm condition number of 2Y/n is

because it is assumed that each aft(z) is scaled.

5. The inverse of a mosaic Sylvester matrix. In this section, a formula is
given for the inverse of Ad expressed in terms of both S(z) and S* (z). This enables
estimating the condition number of JM without explicitly computing Ad-1.

Associated with the NPHS S(z) and the NSPS S*(z), for/ 1, 2,..., k, define
the Ilnll kllnll matrices

(o)
1,f

v(o)
1,

v(llll-1) (o)
k,

,(o)

q[0)
0

q O)

o)
qk
0

V.(1

v,(no) .."

0

U(1) U(r)

$(Vl) ."
1

0

0 0

u (i)

u(nk) .."

0

0 0

and

q;<O)

q*(no- .."

0

0 0

p.(O) _*(m-)
f,l

*(rl-1) ."
3,1

0

0 0

.(O) _.(vk-)
,k P,k

p,(n-l) ."
f,k

0

0 0

where ?Z Ilnll- nz. For/ 1, 2,..., k, also define the IlnlI x kllnll residual error
matrices

and
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where

wlnll-1)

iw(ff

6w(no

w(

sr(llnll-2)

ir(O) .."

r(no- 1)

r(o)

0

0

and 0n is an [Inll Ilnll- nz matrix of zeros Also, let

0o, 10,o 0,

where each 0,Z is an (llnll- (linll- n) matrix given by

with OH(z) the error appearing in (18). Finally, let [a(oi-j)] denote an order IIn[I, lower
triangular, matrix as in 4.

The main result of this section is Theorem 7 below which gives the inverse of A//,
in terms of the NPHS S(z) and the NSPS S*(z) of types n for A(z).

THEOREM 7. In terms of the normalized NPHS S(z) and the normalized NSPS
S*(x) of types n for A(z), the inverse of A/I satisfies

*--1 { (a(00)) -likllnll + Ov t a
k

* + EV [a(oi-j)] -’ ,
B=I

where

(38) O;v 0 ,R a
k

v* E
f=l

Proof. Let

p(llll-2)

p(O)
0

p(,o-)

p(O)

0

qO)
0

qni-1)

qO)
0

(n-l)

k

0
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Then, the order condition (5) for an NPHS implies that

(39)

To see this, note the (i, j)th component, 1 _< _< Ilnll- no, 1 < j < I[nll, of (39) is the
coefficient of zll,ll--J in

k

ao(z) p(z) + E as(z) q(z) zllnl’-lr(z) + 5r(z).
c--1

The remaining components of (39) are obvious identities.
Similarly, for 1 <_ < k, let

v(o)

(o
1,/3

v(o)

v(k)

(o)

Then, the coefficient of zllnll--J+, 1 <_ <_ Ilnll no, 1 < j < Ilnll, in the order
condition (5) for an NPHS, namely,

k

ao(z) u/3(z) + E as(z)

gives the (i,j)th component of

(40)

The remaining components of (40) are easy to verify.
Next, observe that Theorem 1 and Corollary 2 imply that

(41)
k

lt" V* "- Et ; (a(oO))-lZkllnll zr O.
/3=1

Combining (39), (40), and (41), we obtain the result (37). [:l

Corollary 8 drops the requirement in Theorem 7 that S(z) and S*(z) be nor-
malized. In particular, the results of the corollary apply when S(z) and S*(z) are
scaled.

COROLLARY 8. In terms of the NPHS S(z) (unnormalized) of type n for A(z)
and the NSPS S*(z) (unnormalized) of type n for A*(z), the inverse of3d is given
by

(42) j-I { (a(oO))-ikll,ll + OV }
k

(707)-1Q [a(oi-J)]-ll2"q- E(7/3,),)-112 [a(oi-j)]
/3=1

-1
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where

v - (’o/)) -15Rt [a(0i-j)] -1
k

E(’y3"/)-lSW [ai-J)] Q
3=1

and

with

Proof. The normalized NPHS is obtained from an unnormalized one by mul-
tiplying it on the right by the diagonal matrix diag[9’-l,..., 9’-1]. Similarly, the
normalized NSPS is obtained from an unnormalized one by multiplying it on the left
by the diagonal matrix diag[,-l,..., ’k The result now follows directly from
().

COROLLARY 9. If the conditions of Corollary 6 are satisfied, then3

(43) IIUIlI <_ 2. la(o)l IIa-l(z) (rood zllll+l)l I.
Proof. From (36),

II011o _< (k + 1) ll0iz(z)
_< 2(k + 1). la(0)l Ilab-l(z) (mod ZIIn[l+l)l {(k -- 1)llSTt(z)][ + ]laT*(z)ll}.

Thus,

3 The o-norm, rather than the 1-norm, is used here because it is more suitable for purposes in
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Therefore, using the assumption (34),

and so

k

+
/3-1

_< 2la) I[al(z) (mod zl]ll+l)! [.

6. Conclusions. In this paper we have presented new formulae for the "near"
inverses of striped and mosaic Sylvester matrices. The formulae are given in terms
of numerical Pad-Hermite and simultaneous Pad systems. They are important
for numerical computation because they incorporate errors caused by floating-point
arithmetic. In particular, the formulae can be used to determine good estimates for
the condition numbers of these matrices.

Our primary motivation for obtaining these formulae is the numerically stable
computation of Pad-Hermite and simultaneous Pad approximants, the subject of
the companion paper [5]. As such we have restricted our attention to a striped and a
specific mosaic Sylvester matrices. We conjecture that a similar approach can also be
used for determining near inverse formulae of other structured matrices, for example,
of mosaic Hankel, Toeplitz, or Sylvester matrices [12, 15]. Some preliminary work on
this topic has already been done in [7].

Together with the results of [5], we believe that the formulae given in this paper
can be used to stably invert striped and mosaic Sylvester matrices and to stably solve
systems of linear equations with these as coefficient matrices. This matter requires
formal verification, such as that reported in [10] for the case k 1 and ao(z) 1.

Acknowledgment. We are very grateful to a referee who contributed much in
terms of the correctness of results and the clarity of presentation.
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COMPUTATION OF NUMERICAL PADI-HERMITE AND
SIMULTANEOUS PAD] SYSTEMS II: A WEAKLY STABLE

ALGORITHM*

STAN CABAY, ANTHONY R. JONES$, AND GEORGE LABAHN

Abstract. For k + 1 power series ao(z),...,ak(z), we present a new iterative, look-ahead
algorithm for numerically computing Pad6-Hermite systems and simultaneous Pad systems along
a diagonal of the associated Pad tables. The algorithm computes the systems at all those points
along the diagonal at which the associated striped Sylvester and mosaic Sylvester matrices are well
conditioned. The operation and the stability of the algorithm is controlled by a single parameter
which serves as a threshold in deciding if the Sylvester matrices at a point are sufficiently well

conditioned. We show that the algorithm is weakly stable and provide bounds for the error in the
computed solutions as a function of T. Experimental results are given which show that the bounds
reflect the actual behavior of the error.

The algorithm requires (0(llnll 2 % s311nll) operations to compute Pad-Hermite and simultaneous
Pad systems of type n [no,..., nk], where Ilnll no +... + nk and s is the largest step-size taken
along the diagonal. An additional application of the algorithm is the stable inversion of striped and
mosaic Sylvester matrices.

Key words. Pad6-Hermite approximants, simultaneous Pad approximants, striped Sylvester
inverses, mosaic Sylvester inverses, numerical algorithm, numerical stability

AMS subject classifications. 41A21, 65F05, 65G05

1. Introduction. Let At(z) [ao(z),...,ak(z)], k >_ 1, be a vector of formal
power series over the real numbers with a0(0) 0 and let n In0,..., nk] be a vector
of integers with nz _> -1, 0

_ _
k, and with at least one n

_
0. A Padd-Hermite

approximant of type n for A(z) is a nontrivial vector [q0(z),..., qk(z)] of polynomials
qz(z) over the real numbers having degrees2 at most nz, 0 _</

_
k, such that

(1) ao(z)qo(z) +... + ak(z)qk(z) cllnll+kz Ilnll+k + Cllnll+k+lZllnll+k+l "- ",

with Ilnll no +... + nk.
The Padd-Hermite approximation problem was introduced in 1873 by Hermite

and has been widely studied by several authors (for a bibliography, see, for example,
[27, 2, 4, 5, 23]). Note that for At(z)= [-1, a(z)], (1) becomes

qo(z)

Thus, as a special case we have the classical Pad6 approximation problem for the
power series a(z). The Pad6-Hermite approximation problem also includes other
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The restriction to real numbers is made in order to simplify floating-point analysis. All of the
results given in this paper also hold with minor modifications for the field of complex numbers.

2 By convention, a polynomial of degree -1 is the zero polynomial.
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classical approximation problems such as the algebraic approximants where At(z)
[1, a(z), a(z)2,..., a(z) k] (see [25] for the special case k 2) and G3j approximants
where At(z) [1, a(z), a’(z)]. Additional examples can be found in [1].

Closely related to Pad-Hermite approximants are simultaneous Padd approxi-
mants. A simultaneous Pad approximant of type n for A(z) is a nontrivial vector
[q (z),..., q (z)] of polynomials q*(z) over the real numbers having degrees of at most

Ilnll- nz, 0 </3 _< k, such that

(2) c() ,llnll+l c() llnll+2qo(z)" a#(z) / q*(z), he(Z) i111+1 / 1111+2 /...

for 1,..., k. Simultaneous Pad approximants were also defined by Hermite and
were used in his famous proof of the transcendence of e. Again, for At(z) [-1, a(z)],
the simultaneous Pad approximation problem becomes the classical Pad approxi-
mation problem for a(z).

By equating coefficients in (1), the Pad-Hermite approximation problem can be
viewed as solving a system of linear equations of size Ilnll Ilnll. Thus, one can use
Gaussian elimination to solve this problem with a complexity of (.9(]lnl] 3) operations.
However, the coefficient matrix of the corresponding linear system has a structured
form, so it is not surprising that there are a number of fast [27, 14] O(llnll 2) and super-
fast [5, 12] O(llnll log2 Ilnll) algorithms for determining Pad-Hermite approximants.
All these algorithms have the property that they work for any input vector of power
series. In addition, these algorithms all make important use of exact arithmetic; in
particular, they all depend on knowing that certain quantities are known to be zero
or not. A similar statement Mso applies for the fast and superfast computation of
simultaneous Pad approximants.

In the special case of Pad approximants it has long been known that most fast
and superfast algorithms have problems with numerical stability for their computa-
tion. The first known numerically stable algorithm for fast Pad approximation was
presented by Cabay and Meleshko [15]. Alternate algorithms for fast Pad compu-
tation that also consider the issue of numerical stability include [6, 13, 18], and for
superfast computation [19]. Algorithms dealing with the closely associated problem
of stably computing fast rational interpolation include [8].

In this paper, we present a new algorithm for the computation of Pad-Hermite
and simultaneous Pad systems. These systems are matrix polynomials that contain
the desired multidimensional Pad approximant along with quantities that can be used
to recursively or iteratively compute the next approximant along a diagonal path in
the associated Pad tables. The algorithm works for all vectors of power series and
is fast in the sense that it computes a system in O(llnll 2) operations in the generic
case. In addition, we show that this algorithm is weakly stable in the sense that it
provides good answers to well-conditioned problems. The algorithm is a look-ahead
procedure that computes the systems of type n by computing all the Pad systems at
the well-conditioned locations along the diagonal path passing through the point n.
In the case of Pad approximation (k 1), the algorithm reduces to the Cabay and
Meleshko algorithm.

It is known (cf. [12] or [23]) that in exact arithmetic a Pad-Hermite system
(PHS) exists uniquely if and only if the striped Sylvester coefficient matrix of the
corresponding associated linear system is nonsingular. This is also true for a simulta-
neous Pad system (SPS) where the coefficient matrix of the associated linear system
is now a mosaic Sylvester rather than a striped Sylvester matrix. However, in the case
of floating-point arithmetic, determining that such coefficient matrices are nonsingu-
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lar is not good enough. Instead one must know, at least in a reasonably computable
way, that the linear systems are also well conditioned. Central to the stable operation
of our algorithm is the ability to estimate the condition numbers of the associated
striped Sylvester and mosaic Sylvester matrices. The estimates follow from some
"near" inverse formulae for these matrices that are derived in the companion paper
[11] and which are expressed in terms of both Pad-Hermite and simultaneous Pad
systems. This is the reason why our algorithm computes Pad-Hermite and simulta-
neous Pad systems in tandem; the inverse formulae, and consequently the estimates
for the condition numbers, require that both the Pad-Hermite and the simultaneous
Pad systems be available. The striped Sylvester and mosaic Sylvester matrices are
deemed to be well conditioned if the computed estimates of the condition numbers
are bounded by some specified "stability" tolerance -.

As a corollary to the results [11], there is a formula which gives the inverse of a
striped Sylvester matrix expressed in terms of the associated Pad-Hermite system
only. One attempt to use this formula to develop a stable algorithm for computing
Pad-Hermite systems (independent of simultaneous Pad systems) was only partly
successful [22]; bounds for the inverse of the associated striped Sylvester matrix (and
consequently bounds for its condition number) using the formula were often too pes-
simistic and impractical.

This paper is organized as follows. Preliminary definitions and basic facts about
Pad-Hermite and simultaneous Pad systems are given in the next two sections, and
the algorithm for computing these systems is given in 4. The remainder of the paper
is devoted to showing that the algorithm is weakly stable for the computation of either
system. To this end, 5 discusses the errors that result from the iterative steps of the
algorithm, while 6 gives the proof of stability. Section 7 provides results of some
numerical experiments that reflect the theoretic results of the previous sections. The
final section gives some conclusions and a discussion of further areas of research.

We conclude this section by defining some norms that are used in the analysis of
the errors made by the algorithm. Let

a(z) E a() z E 7 [[z]],
=0

where T[[z]] is the domain of power series with coefficients from T, and define the
bounded power series

7B[[z]] {a(z) a(z) T [[z]], E ]a()l <
-----0

A norm for a(z) e TtB [[z]] is

=0

74B[[z]] includes the domain of polynomials [z]. So, for

e n
--0
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we use the norm

o

For vectors and matrices over TB[[z]], we use the 1-norm unless otherwise speci-
fied. So, for example, the norm for At(z) is

max (llaz(z)ll)
o<<k

and the norm for S(z) E Ti(k+l)(k+l)[Z] is

It is easy to verify that various compatibility conditions are satisfied. For example,

liAr(z) S(z)ll <_ IIAt(z)lJ IIS(z)ll

and

where b(z) is also a bounded power series. In addition, for S*(z) Ti(k+)(k+l)[z]
and A*(z) e 7+)[[z11,

IIS*(z), A*(z)ll IIS*(z)ll, IIA*(z)ll,

IIS(z)" S*(z)ll _< IIS(z)ll"

In the subsequent development, we also make use of the inequality

Ila(z) (mod zllll+)ll Ila(z)ll,

where

a(z) (modzIIll+)=a()ze+ 0.zte
=o t=ll,ll/X

2. Pad-Hermite systems (PHS). In this section, we give the definition of
a PHS for a vector of formal power series. Let n [no,..., nk] and define Ilnll
no /." /nk. Let

(3) At(z) [ao(z),... ,ak(z)],

where

a(z)=Eat)z, f=O,...,k,
=0
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with a(ff E T, the field of real numbers. Assume that a(0) 0, which means that

al(z) exists. Assume also that At(z) is scaled so that liar(z) (mod zllnll+l)l 1,
0_<_<k.

The (k / 1) (k + 1) matrix of polynomials

(4)

is a PHS [14] of type n for A(z) if the following conditions are satisfied.
I (Degree conditions). For 1 _< a, fl _< k,

II (Order condition).

(6) At(z)S(z) zllnll+lTt(z),
where Tt(z) Jr(z), Wt(z)] with Wt(z) [wl(z),..., wk(z)] is the residual.

III (Nonsingularity condition). The constant term of V(z) is a diagonal matrix

V(0) diag [’)’1,...,

and

k

(8) "t’ (a(0)) -1 H ’a O,
--’0

where 70 r(0).
Remark 1. Only the first column of S(z) is a Pad6-Hermite approximant as de-

fined in 1, this being of type [no 1,..., nk 1]. The remaining columns of S(z) do
not quite satisfy the order condition (1) and are therefore not Pad6-Hermite approxi-
mants; these columns serve primarily to facilitate the computation of the first column
using the algorithm given later in 4. But there are other uses for these columns of
S(z), such as that of expressing the inverse of a striped Sylvester matrix [9, 11].

Remark 2. The nonsingularity condition III is equivalent to the condition that
r(0) 0 and that V(0) be a nonsingular diagonal matrix.

Remark 3. The PHS is said to be normalized [14] if the nonsingularity condition
III is replaced by r(0) 1 and V(0) I. This can be achieved by multiplying S(z)
on the right by F-, where

(9) r diag [7o,...,

The PHS is said to be scaled [22] if each column of S(z) has norm equal to 1 for
some norms and if, in addition, - > 0, 0 <: fl _< k. Here, also, scaling a PHS is
accomplished by multiplying it on the right by an appropriate diagonal matrix.
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Remark 4. The nonsingularity condition III, namely 9/ 0, refers to the non-
singularity of S(z); that is, S(z) is nonsingular iff 9/ 0 (in [9], it is shown that
det S(z) 9/" zllnll+l). Equivalently, the nonsingularity condition refers to the nonsin-
gularity of the associated striped Sylvester matrix J4, defined in (11) below; in [14]
it is shown that a PHS (with 9/ 0) exists iff AAn is nonsingular.

If the order condition (6) is not satisfied exactly, but rather

(0) At(z)S(z) zllnll+lTt(z) + 5Tt(z),

where 5Tt(z) [z2 5r(z), 5Wt(z)] with 5Wt(z) [Swl(z),..., 5wk(z)] is a relatively
"small" residual error, then S(z) is called a numerical Pad&-Hermite system (NPHS).
In (10), for 1 _</ _< k,

5r(z) r() z,
t--0

z
/--0

If 5Tt(z) 0, then S(z) is an exact (rather than a numerical) PHS. To distinguish it
from an NPHS S(z), an exact system is denoted by SE (z).

Associated with A(z), let AAn be the striped Sylvester matrix of order Ilnll,

(11) A/In

Then S(z) can be obtained by solving two sets of linear equations with A/In as the
coefficient matrix [14]. From (10),

k

(12) ao(z) p(z) + E aa(z) qa(z) z[[n[[--lr(z) + r(z),

which gives rise to

(13) X [0, ,0,

where

The solution A’ yields the first column 0,0(Z),’I,0(Z),... ,k,o(Z) of (Z). In (13),
we require that 70 r(0) # 0; 70 1 for a normalized NPHS. The existence of a
solution to (13) is assured if A/I, is nonsingular. The term 5r(z) in (12) represents
the residual error made in solving (13).
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Next, to compute Ut(z) and V(z) (i.e., the remaining columns of S(z)), again we
use (6); namely,

k

(1 0(1 (1 + (z) ,(1 llll+(z) + e(z), < < .
For a, f = 1,.. ,, k, set

(15)

This yields the constant terms Ut(O) and V(0) of Ut(z) and V(z), respectively. The
remaining components

u1) uno)

(6) y

can be obtained by solving

(17) AAn :))

v(i) V(nl)
1,1 1,1

vi) (nl)
,k Vl,k

&(1) v(nk)
k,1 k,1

VI),k k,k

a(o1) a(1)

a(oI’n’’): a(k’’n’’): [ Ut(O)’
"V’(O) ]

In (17), we require that Z 0, 1 _< f _< k; fZ 1 for a normalized NPHS. Again, the
existence of a solution to (17) is assured if fl4n is nonsingular. The terms 5wry(z), 1 <_
/ <_ k, in (14) represent the residual errors made when solving (15) and (17).

For the special case when n [no, 0,..., 0], the NPHS becomes

(18) S(z) [ u(z) ]. diag[-o,...,J
where Ut(z) -[a0(z)] -1. [al(z),...,ac(z)] (mod zn+l). For initialization pur-
poses in the algorithm given later in 4, we adopt (18) even in the cases no 0 and
no -1, despite the fact that it no longer strictly meets all the requirements of an
NPHS.

3. Simultaneous Pad systems (SPS). A PHS gives an approximation of a
vector of formal power series using matrix multiplication on the right. In this section
we give the definition of an SPS which corresponds to a similar approximation but
with matrix multiplication on the left and with degree constraints that can be thought
of as being "dual" to the degree constraints of a PHS. As in the previous section, an
SPS exists if and only if a particular matrix of Sylvester type is nonsingular; in this
case it is a mosaic Sylvester matrix.

Let

a;,l(Z a,k(z)
oi, (z)

a,l(z a:,k(z
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be a (k + 1) k matrix of power series with det(C*(0)) 0. The (k + 1) (k + 1)
matrix of polynomials

2z q (z)

 i(z)
(z)

2, 2,
Z Pk,I(Z) Z Pk,k(Z)

is an SPS [12, 14] of type n for A*(z) if the following conditions are satisfied.
I (Degree conditions). For 1 _< c,/3 _< k,

(2) v*(z)- E v*()z’
=0

q;(z) quiz
=0

=0

P,Z
=0

II (Order condition).

(22) S* (z)A* (z) zllnll+lT* (z),

where T*t(z) [W*(z)lR*t(z)] with R*(z) a k k matrix
III (Nonsingularity condition). The constant term of R*(z) is a diagonal matrix

(23) R*(0) diag [7,...,’y;]

k

(24) ")’* --(a(0))-I H 0,
c--0

where 3’ v* (0).
Remark 5. The SPS is said to be normalized [12] if the nonsingularity condition

III is replaced by v*(0) 1 and R*(0) Ik. This can be achieved by multiplying
S*(z) on the left by F*-1, where

(25) F* diag [7,...,

The SPS is said to be scaled when each row of S*(z) has a norm equal to 1 for
some norm and if, in addition, > 0, 0 _< a _< k. Here, also, scaling an SPS is
accomplished by multiplying it on the left by an appropriate diagonal matrix.

Remark 6. The nonsingularity condition III, namely ,* : 0, refers to the nonsin-
gularity of S*(z); that is, S*(z) is nonsingular iff 7" 0 (this follows from Theorem 1
and from an observation about det(S(z)) made in Remark 4). Equivalently, the non-
singularity condition refers to the nonsingularity of the associated mosaic Sylvester
matrix Ad defined in (27); in [12] it is shown that an SPS exists if[, is nonsingular.

As for the PHS, if the order condition (22) is not satisfied exactly, but rather

(26) S*(z)A*(z) zllnll+lT*(z) -t- (ST*(z),
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where T*t(z) [W*(z)lz2 R*t(z)] (with R*(z) a k k matrix) is a relatively
"small" residual error, then S*(z) is called a numerical simultaneous Pad system
(NSPS). In (26), for 1 _< c,/ _< k,

As with the NPHS S(z), an NSPS for which T*(z) 0 is denoted by S(z).
Associated with A*(z), let J4 be the mosaic Sylvester matrix of order

(27)

where, for 0 <: a _< k and 1 _</ _< k,

a*(n)

Also define the order k(llnll + 1) matrix

z;
c*(0)

(1) a,(llnll) ,(1) ,(llnll)
al,1 1,1 al,k al,k

(1) ,({{n{{) ,(1)
ak,1, ’’k,1 ak,k U’k,k

Then, as for the NPHS, S*(z) can be obtained by solving two sets of linear equations
with j and Af as the coefficient matrices (also see [12]).

To obtain S,l(Z),... ,S),k(z of S*(z), we use

(29)
k

v*(z) a,Z(z) + E u*(z)a*,z(z) z’InlI+lw*(Z) + W*(Z), 1 <_ <__ k,

which is the first row of (26). Matching coefficients of 1, z,..., z Ilnll in (29) gives

--V*(0) )l .(1). a.(I,n,])l .(1) .(I]n,,)](30) Zn
where

x*t [t(0),’" (0) IV*(1),’" V*(llnll--n)[*l(1),’’’,’ttl*(llnll-nl)
It(1),..., ?.t*k(lln’l--nk)].
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With v*() 7 = 0 specified ( 1 for a normalized NSPS), a unique solution
to (30) is assured if A/[ is nonsingular because by assumption det [C*(0)] 0. The
terms 5w*(z) in (29) represent the residual errors made in solving (30).

Next, to compute P*(z) and Q*(z) (i.e., the remaining rows of S*(z)), again we
use (26); namely,

(31)
k

q(z) a;,(z) + p,p(z) ap,Z(z) z IIn’l lra,f(Z -- (ra,f(Z), 1

_
a,

_
k.

p--1

Let

3]t q;(O) ",q;(’lnll-n-l)]P: ),’’’,Pa,1 ,laa,k ,’’’,’a,k

Then, (31) and the requirement that R*(0)= diag[,..., /;] yield

(32) :);t. A/t* 7Etll 1 < a < k,n nil,

where Etallnl, is the unit row vector of length kllll with a single 1 in position cllnll.
With diag[v,...,-),] specified (’ 1 for a normalized NSPS), a solution of (32)
exists uniquely if A/t*n. is nonsingular. The solution 3; provides the ath row of S*(z);
namely, S,o(Z z2 .q(z) and S,(z) z2 .p,* (z), 1 _</ _< k. The terms 5r,(z)
in (31) represent the residual errors made in solving (32).

In the remainder of the paper, without loss of generality, we make the simplifying
assumption that

(33) .A*(z)

--ak(z)
0

With A* (z) defined by (33), for the special case when n [no, 0,..., 0], the NSPS
becomes

(34) S*(z) diag[,...,7;l
0 [a)]-lzn+lXk

where U*t(z) [a0(z)] -1. [al(z),..., ak(z)] (mod Zn-F1). For initialization purposes
in the algorithm given in 4, we adopt (34) even in the case when no 0 and no -1,
despite the fact that it no longer strictly meets all the requirements of an NSPS.

In addition, with A*(z) defined by (33), there is an important commutativity
relationship between PHS and SPS, given in Theorem 1 below. This relationship is
used later in 5. But, in our presentation, the residual T*(z) continues to take the
more general form (19) rather than (33), because, for the computation of the NSPS
for T* (z), which is required by the algorithm given in 4, the conversion of T* (z) from
the form (19) to the form (33) by means of multiplication on the right by R*-(z)
introduces undesirable instabilities.

THEOREM 1. If S(z) is an NPHS of type n for A(z) and S*(z) is an NSPS of
type n for A* z then

(35) S*(Z) S(z) zllnll+l(a(o))-lF*F -F
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where

OI(Z) a-l(z) z2Q,(z / T*(z) z2Q(z) V(z) ]1 (mod ZD+I

with

I1 11 I1 11
Ilnll + 1 II ll + 1

Ilnll + 1 I1 11 + 1

and with the modulo operation applied componentwise.
Proof. See [9].
Thus, given an NPHS, an NSPS can be computed using (35). However, the

stability of such a computation is not known, and we choose instead to compute
NPHS and NSPS systems in tandem by the algorithm described in the next section.

4. The algorithm. To compute an NPHS of type n for A(z) and an NSPS of
type n for A*(z), the systems (13), (17), (30), and (32) can be solved using a method
such as Gaussian elimination. This method, while not restricting the input power
series, does not take advantage of the inherent structure of the coefficient matrices
A/In and A4. Alternatively, a variety of recurrence relations which do take advantage
of this structure have been described in the literature; see, e.g., [27, 4, 12, 14]. These
recurrence relations usually lead to much more efficient algorithms for algebraically
computing PHS and SPS. The recurrence relations given in [12] and [14] appear to
be the most easily adaptable to numerical computation and it is the detailed study
of the numerical behavior of these recurrences to which we devote the remainder of
this paper. We begin by briefly describing these recurrences in the algebraic case.

Let e0 [1,0,...,0] be a 1 k + 1 vector, set

M min{no, max {nz}} +1l,k

and define integer vectors n(i) (n(oi)
for/>0,

,..., n(i)) for 0 _< _< M by n() -eo and,

n max{0, nf M + i},

(i/1) n)Then the sequence {n(0}i=0,1,... lies on a piecewise linear path with n _> for
each i, and3 n(M) n. The sequence {n(i) } contains a subsequence {m() } called
the sequence of nonsingular points for A(z) and A*(z). This sequence is defined by
m() n(i), where

O, a O,
ia min{i > i_1 det(M()) 0}, a _> 1,

where det(A/[(o) is the determinant4 of A/[n(O. Corresponding to the sequence of

nonsingular points {m(a) } is the sequence {S(Ea) (z)} of PHS with residuals {T(Ea)t(z)}
3 We assume here with loss of generality that nf > 0, 0 _< f _< k, because if nf -1 for some f,

we can simply remove nf from n and aft(z) from At(z) and decrease k by 1.
4 By convention, the determinant of a null matrix is defined to be equal to 1.
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and the sequence {Sa)(z)} of SPS with residuals {T(a)(z)}.
{S()(z)} {S()(z)} Ik+l. We have that

At(z). S(E)(z) zl,,()l,+l T(E)t(z)

For a 0, set

S*E() (z) A*(z) zI1"()11+1T()(z).
The following theorem provides a relation of the (a / 1)th exact systems in terms of
the ath exact systems.

THEOREM 2. For a >_ 0 and > ia, let n(i) m() eo. Then, the
following statements are equivalent.

1. n() is a nonsingular point for A(z) and A*(z).
2. is a nonsingular point for T(E) (z).
3. is a nonsingular point for T() (z).

Furthermore, we have the recurrence relations

(36) S(Ea) T(a-91)(z). (z)

and

SE(Z) (z), (z) T(z),

where S’E(Z) is the PHS of type (m(+1) m() eo) for T(E) (z) with residual E(Z)
and S(z) is the SPS of type (m(+1) m(a) e0) for T*()E (z) with residualT(z).

Proof. The proof for the NPHS is given in [14] and for the NSPS in [12].
Theorem 2 reduces the problem of determining a PHS and an SPS of types m(+)

to two smaller problems: determine systems of type m(a) for the original power series
and then determine systems of type m(a+1) m(a) eo for the residual power
series. For the residual power series, the system SE(z) is obtained by solving the
linear equations (13) and (17), where in the following the associated matrix is now

denoted by AA rather than by JA.; and, the system S(z) is obtained by solving the
linear equations (30) and (32), where in the following the associated matrix is now

denoted by AA rather than by AA. The overhead cost of each step of this iterative
scheme is the cost of determining the residual power series and the cost of combining

(+) S(+)the solutions, i.e., the cost of computing ’E (z) and (z) in (36)and (37).
This overhead cost summed over all the steps, in general, is an order of magnitude
less than the cost of solving the linear systems (13), (17), (30), and (32) directly.

Numerically, the recurrences (36) and (37) perform badly if AAm() and
are ill conditioned at any point m(). Rather than moving from nonsingular point
to nonsingular point along the diagonal, what we would like to do is move from a
well-conditioned point to the next well-conditioned point. This is the motivation for
the algorithm PHS_SPS, where the points m(), a 0, 1,..., correspond to stable
points rather than to nonsingular points and we step over unstable blocks.

A quantitative measure of the stability of a point m() is provided by the stability
parameter

(38)
k

/=0
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It is shown in [9, 11] that 2(a)[a(0) [[a-l(z) (mod z[[n[[+l)[[ is an upper bound for
the condition numbers ][JP[,()[[. ]]j4n of J4,() and ][A/l*m(a)][oo" [[Jm()*-I ][ of
J4* For the parameter (38) as well as considerations of 5 and 6 it is assumedm()

that S()(z) and S*()(z) are both scaled and that Ila/(z)ll <_ 1, 0

_
_< k. The

norms used for the various scaling are defined in 1. In (38), it is also assumed that
the residual errors 5T(a)(z) and 5T*()(z) in the order equations

(39) At(z). S()(z) zll,()l[+l T()t(z) + 5T()t(z)

and

(40) S*() (z). A* (z) z I1"() [[+1 T,(a)(z) -- 6T*(a) (z)

at the point m() are relatively insignificant. We say that m(a) is a stable point (or a
well-conditioned point) if for some preassigned tolerance T, a(a) <_ T. In the algorithm
below, the user supplies the tolerance value T.

PHS_SPS(A(z), n, k,T)
a --0; m() --co; S(0) -- Ik+l; S*(0) -- Ik+l;
M *- min {no, maxl<f<k{n}} + 1
i - 0; stable -- true
While ((i < M) and stable)do- n- m(a) -eo

s -- 0; stable - false
While (s < M- i) and (not stable) do

s+-s+l
(Z8) - max{0, +i- M + s}, 0,...,k
Compute the residuals T(a)(z) and T*(a)(z) in (39) and (40)
Construct the matrices A/[(8) for T()(z) and j4(8) for T*()(z)
If A/[() is numerically nonsingular then

m(a+l) +-- m() + (8) + e0
Obtain S(z) by solving (13) and (17) by Gaussian elimination

S(a+l)(z) +-- S(a)(z)(z)
Scale S(+l)(z) and compute F(+1)

Obtain S*(z) by solving (30) and (32) by Gaussian elimination

Scale S*(+X)(z) and compute F*(a+x)

Using (38), compute a(+l)
stable +- (+1) < .

end If
end While
If stable then a - a + 1; i -- + s

end While
If stable then return (S(a)(z), S*()(z), a())else return (S(+l)(z), S*(+l)(z), a(a+l))

In the algorithm above, by the numerical nonsingularity of a matrix, we mean
that no zero pivot elements are encountered during the triangularization of the matrix
by the Gaussian elimination method with partial pivoting.
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5. Bounds on errors in the order conditions. In this section, we give bounds
for the errors in the order conditions for the NPHS and the NSPS computed by the
algorithm PHS_SPS. Some of the details of the derivations are omitted and can be
found in [9]; in particular, for the NSPS the final result only (without proof) is given.

We begin by giving some standard results from the field of floating-point error
analysis. Let # denote the unit floating-point error and assume that the degrees of all
polynomials and the orders of all matrices are bounded by some N, where N# _< 0.01
(this restriction comes from Forsythe and Moler [16]). Indeed, as an assumption for
all the lemmas and theorems below, we require that (llnll + k + 1)# _< 0.01. After
Wilkinson [28], we denote a floating-point operation by fl[.]. In the following results,
it is assumed that the operands consist of floating-point numbers.

LEMMA 3. If O# <_ 0.01, then

fl ukvk ukv(1 + 5k),
k--1 k--1

where ISkl <_ 1.010#.
LEMMA 4. /f S(z) is an NPHS of type n for A(z), then

where

fl[At(z) S(z)] At(z) S(z) + t(z),

IIt(z)ll <_ 1.01#(llnll + k + 1)llAt(z)ll

Proof. Using Lemma 3, for 0 _</ _< k,

a=O t=O =0 j=O ’J
=0 a=O j=O

where la,Z,i,tl 1.01 (n. + k + 1)p. So,

g=o a=o j=o

and

0<<k

0_<_<k
=0 a=0j=0

}_< 1.01# o<f<kmax a=O j=o t=O

<_ 1.01# 0<<k(maxn + k +
0<<k

1.0,(lnll + k
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We begin the analysis of the error in the order condition in the NSPS by first
examining the floating-point errors introduced by one iteration of the algorithm. At
the ath iteration, the NPHS S()(z) of type m() for At(z) is available and satisfies

At(z) S()(z) tiT(a)’ (z) + O(zll’()ll+l).
The algorithm proceeds to compute S(+l)(z) of type m(+1).

An iterative step consists of three parts. In the first part, the first I1()11 + 1
terms of T()(z) are computed; a bound for the floating-point errors introduced in

this part is given in Lemma 5 below. In the second part, the NPHS ()(z) of type
() for T()(z) is computed; an error analysis is given in Lemma 6. In the third
part, Lemma 7 provides bounds for the floating-point errors introduced in computing
S(+)(z) S()(z) ()(z). At this point in the algorithm, S(+)(z) is scaled so
that the norm of each column is 1. We assume for the sake of simplicity that this
scaling introduces no additional errors. This is a reasonable assumption because errors
due to scaling are comparatively insignificant.5

LEMMA 5. The computed residual T(a)(z) satisfies

where

zll’()’l+T() (z) At(z) S()(z) 5T() (z) + z’l’()ll+0) (z),

llO7)*(z)ll _< .Ol(llm(’)ll / k / 1) p,.

Proof. The result is an immediate consequence of Lemma 4 because At(z) and
S()(z) are both scaled. For details, see [9]. []

LEMMA 6. If() is nonsingular and ()(z) is obtained by solving (13) and
(17), then

where

,a(,:,) O(zll,(") I1+1T() (z). ()(z) ,. (z)+ ),

() ()I1..., ()11 -< (811’ : p , / o()) II.")(z)ll
Proof. First we obtain bounds for the first component of ()’’III (Z). The first column

of ()(z) corresponds to the solution 2 of (13) obtained by Gaussian elimination.
The vector A" is the exact solution of

where6

II,EII1

_
81l’(’)11:" po IIJ,(,,)II1 " + 0()

5 Note also that (a)(z) can be determined a posteriori with appropriate values of (a) so that
S(a+l)(z) is already scaled. None of the subsequent error bounds would change, and so in reality
this assumption is made without loss of generality.

6 The results in [17] use the oo-norm, but it is easy to show that they are also valid using the
1-norm. With partial pivoting, pa is of order unity in practice. Examples can be constructed,
however, where the growth factor p grows exponentially if partial pivoting is used, but in practice
pa is usually comparable to the modest growth that results when complete pivoting is used (which
is approximately 10 in practice) [17, p. 69]. Further discussion and new results regarding the growth
factor pa can be found in [21] and [26].
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and pa is the growth factor associated with the LU-decomposition of A//() [17, p. 67].
But, from Lemma 4,

lIT()(z)[[ _< 1 + 1.01. ([[m()ll + k + 1).#,

because A(z) and S(")(z) are both scaled. So,

[{J() [[l T(a) (z)[[ 1 + 0(#).

Thus,

where

A similar analysis can be done for solving (17) to obtain y. But k’ yields the first
column of ()(z) with residual error g. 2 and : yields the remaining columns of
()(z) with a corresponding residual error. Thus,

t(a) ()T()(). ()() ,. (z)+ O(zll I1+),
where

{s[l,(,)(z)ll < "p,’,+ o(,)}" II (z)ll.I’Iii

LEMMA 7. If q(a+l)(z)--fl(S()(z) ()(z)), then

()s(+l(z) s((l (() +
where

() S() (),v (z)ll _< 1.01(11,,, / k / 1). (z)ll. ()11,.

Proof. For 1 _< oz,/ _< k the (oz,/)-component of S(+I)(z) is
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where ]5,Z,j,s,p _< 1.01. (u() + k + 1).#. Here, we have used Lemma 3 with the
assumption that (llu()ll + k + 1)# _< 0.01. So,

Thus,

{ k}IIq.(z)ll" I1%( )11 + II  , (z)ll
p-l

An equivalent result holds for a -/ 0. The lemma now follows.
The use of the results of the three lemmas above enables us to express the residual

error 5T(+l)(z) in the order condition at the (a + 1)th iteration in terms of the
residual error 5T()t (z) at the ath iteration plus the floating-point errors introduced
"locally" by the ath iteration.

LEMMA 8.

(41) 6T(a+l)t (z) 6T(a)t (z) (a)(z) + _.(a)t (z),

where

C(,)(z {At(z) t(’),,Iv(Z)

L.SSs (z) (z)- (z) (mod zllm(<’+l) II+l).

Proof. The result is an immediate consequence of Lemmas 5, 6, and 7. E]

Thus, the residual error 5T(+1) (z) is composed of the local error (a)t (z) intro-

duced by the ath iteration plus the residual error 5T() (z) from the previous iteration

propagated by (a)(z). Applying (41) recursively, we obtain the following.
THEOREM 9. The residual error satisfies

(42) 5T(a+l)t (z) E (j)< (z)-G!a) (z)
j=0

where

(J-kl)(z)" (JT2)(Z)""" ((r)(Z), 0

__
j < (7,(43) 6’)(z)- Ik+l, j=a.

Proof. The result follows by induction from Lemma 8. D
From (42), we see that the residual error 5T(+l)t (z) is composed of the local

errors .(J) (z) propagated by !) Lemmas 5, 6, and 7 provide bounds for () (z).
To obtain a bound for (T(a+l)t (z), it remains to determine bounds for the propagation

!)3 will cause !)3 to growmatrices G!) The concern is that the (J)(z) making up
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exponentially with a. The next lemma and theorem show that this is not the case; a
bound is obtained for 6!) which is independent of a. Hence, the local error (J) (z)
introduced at iteration j and propagated to iteration a / 1 by 6!a) does not grow with

a. Thus, in this sense, the error grows dditively; that is, 5T(+) (z) is bounded by
the sum of the bounds of the locM errors at each iteration j.

LEMMA 10. If p is so small and ST()(z) and ST*()(z) are not too large so that

+ 1 01(k + 1)(11.()11 + k + 1). ,} <
2

then

II(’)(z)ll _< 2,(). (h + 1). I(o)1.

Proof. From (38),

II(r*("). r(")) -1. s*(")(). S(+l) (z) < II(r*("). r("))-lll IIS*(")(z)ll. Ils(+l)(z)ll

< (’). (k + 1).

But, using Lemma 7 and Theorem 1 (adjusted to apply at the point m() rather than
at n)

II(r*(). r(a)) -1. S*(a)(z) S(a+l)(z)[[
-I1(,,. F(a)) -1" *(a)(z)" {(a)(z)" (a)(z)Jr-

p(a)) -1 {zllm()ll+l. (a(o)) -1 F*(a). p(a) _+_ O(Ia)(z)}. (a)(z)

>_ ]a(o)[ -1 II()(z)ll
II(r*().r())-lll. Ila;-(z) (mod zllll/l)]]

[( / )lleT()*(z)ll / 115T*()(z)ll]. II()(z)ll

II(r*(). r())-lll. {1.Ol.
>_ II()(z)l {]a)]-1- ()][al(z) (mod zllll+l)[[

[(k + 1)lleT()(z)ll + IleT*()(;)ll] 1.01 (). (11()11 +

la>l-i.
The result now follows. El

THEOREM 11. If it is so small and 5T(j)t(z) and 5T*(J)(z) are not too large so
that

(a). la(oO)l, {llal(z) (mod z{’nl{+l)l [(k--1)llST(j)t(z)ll +
+ 1.01(k + 1)(11.()11 + k + 1). it}
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then

IIG_)l(Z)ll _< 2a(j). (k + 1). la(o)l + O(#), j _< a.

Proof. From (43) and Lemma 7

S(a-t-1) (Z)--- s(J)(z) }I)1(z) + E "Iv(Z)"D() a) (Z).
=j

We proceed by induction. Assume the theorem is true for G(I (z), G(2(z),...,GJ) (z)
(the initiM case, j a- 1, is proved in Lemma 10 because G,(z) (a)(z)). om

II(F*(j)" r(J))-l*(J)(z), s(aT1)(z)ll g(J)( + 1).

But, using Lemma 7, Theorem 1, and the inductive hypothesis,

I](F*(). F()) -1. S*()(z). S(+l)(z)II
> [ (F*(). F())-1. S*() (z). S() (z) ()

j--1 (Z)

() .)+(F*(j). F(J)) -1. s*(J)(z) wv(Z) (z)_
l(,(j). (j))-I. {Zllm(ll+l(a0))-l,(j). (j)+ Oj)(Z)} j_l(Z)lI()

II    (z)ll (j)ll(z) (mod zllll+l)l

[(k + I)]IT(j)t (z)l + IT*(J)(z)ll]}

In the above theorem, we have taken the liberty of replacing a summation involv-
ing terms linear in with an O() expression. We could have left the summation in
explicitly, but, as we shall see, this summation becomes quadratic in when it is used
to obtain a bound on T() (z).

inally, we can give the bound on the residual error.
OM 12. If is so small aed T() (z) nd T*()(z) are not too large so

that

and

(llnll + k + 1)# _< 0.01

t(j)" la(0)l {lla-l(z) (rood zl’nl’+l)l [(k Zr-1)llST(J)t(z)ll +

} 1
+ 1.01(k+l)([[()ll+k+l).# <_ , j_<a,
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then

a-1

(44) 116T(a+)* (z)ll <_ Fa + 2(k + 1). la(o)l Z a(d+)Fd’
j=o

where

(45) Fd 4a() (k + 1). la(o)l #

{(llm(J)ll + k + 1) + 4pll(J)ll 3 + (ll(J)ll + k + 1)}
and pj is the growth factor associated with the L U-decomposition of/[() by Gaussian
elimination.

Proof. To simplify the analysis, we now split the local error g() (z) into three
parts and analyze the propagation of each part separately. Let

.).() f 0. =0.(46)
-zI1(’)11+ Oai)*(z)()(z)(mod zllm(+)ll+), a >_ 1,

(47) z:)’(z)= z"’()ll+(")’
"zzI (z) mod z ), O,

),() f o, =0,
(48) At(z)n() (+)+),v(Z) mod z 1,

and define

(49) +)(z) d)*(z). G)(z), i 1,2,3.
j=O

Then, according to Lemma 8 and Theorem 9,

3

6T(+l)’(z) Z+l)*(z)
i-1

We now bound $a+)(z), 1 _< i _< 3.
From (46), (49), Lemmas 5 and 10, and Theorem 11,

(5o)
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+ s( + ). la(o)l

+ o().

a--1

"#E a(J)" to(J+1)" (llm(i)ll + k + 1)
j=0

From (47), (49), Lemmas 6 and 10, and Theorem 11,

II+l)’(z)ll

(5)

j=O

a()< I1,.., (z)ll + ...z (z)ll (z)ll
j=O

{8ll()ll3. p
--1

j=O

(8()]a p . + O(.)) (2-()(k + 1)a)}
a--1

+ (8()]3 Pj ’ + 0(.2)) (2a(J)(k + 1)a))
j=O

16. (). (k
--1

+a( +
j=O

+o(..

From (48), (49), Lemmas 7 and 10, and Theorem 11,

p(z+l)11-’3 (z)ll

(52)

j=O

a-1

< liAr(z) ()(z)l[ + IIAt"zv (z). zv(z)ll" (z)ll
j=0

< 1.o1(11()11 / k + 1
--1

+E { 1"01(](i)] +k + 1)..}. ]]()(z)]].
j=0

{1.01. (lu()] +k+ 1). }. {2()(k + 1)la)l}
--1

+E {1"01(]()]’ +k + 1)..}. {2a()(k + 1)]a)}
j=0
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_< 4a(0.). (k + 1). ([[(0.)[[ + k + 1). [a(0) .#
o"--1

+8(k + 1)2. la(0)12 # I’(J)l’(J+l)(lll](J)[I-- + 11
j=O

The result follows by summing (50), (51), and (52). fl

In Theorem 12, the bound for iT(0.+1) (z) involves the products a(J)a(J+). These
result from inequalities involving the expression I[(J)(z)l] IIG0.)(z)ll However, it is

seen that (J)(z). G!O.)3 (z) -)l(Z), so it is felt that the inequalities are crude and
the bounds should just involve a single a(J). Experimental results [10] support this
conjecture.

This completes the analysis of the error in the order condition for computing
an NPHS. Proceeding in an analogous manner we can obtain the following theorem
which gives bounds for the error in the order condition for the NSPS computed by
PHS_SPS.

THEOREM 13. If the conditions of Theorem 12 are satisfied, then

(53) 115T*(a+)(z)ll _< F* + 2(k + 1). la(0) a(J+)F,
j=o

where

(54) F* 8a(J)(k + 1)2.

{(l[m(J)ll + 1) + 4(k + 1)hp;ll(J)ll 3 + (ll(J)ll + k + 1)}
and p is the growth factor associated with the L U-decomposition ofAJ*(j) by Gaussian
elimination.

Proof. See [9].
Theorems 12 and 13 assure us that if 11ST(a)t (z)[ and 5T*(0.)(z) are small and

a() is not too large, then IlhT(+)(z)l and 5T*(o.+)(z) will also be small. Thus,
IlhT(o.)(z)ll and 5T*(a)(z) will remain small for all a as long as, at every iteration
j, a step (J) is chosen (stepping over unstable blocks) so that a(J) is not too large.
Consequently, the assumptions of Theorems 12 and 13 are satisfied in practice.

6. Stability. In this section, bounds for the errors 5S(z)--S(z)- SE(Z) and
5S*(z) S*(z) S(z) are obtained. Because S(z) and S*(z) are scaled, these same
bounds serve also as bounds for the relative errors in S(z) and S*(z). To make the
comparisons meaningful in the above, we insist that SE(Z) and S(z) are such that

VE(O) V(0)

and

(0)v (0) v*

n(0) n*(0) diag[,...,
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We begin by first finding bounds for 6S(z). From (6) and (10)

A’(z) S(z) 6T’(z) + O(zI1’11+1).

So, the constant terms7 6u() and ova,#
(0) for 0 < a, fl < k of S(z) are zero. It then

follows that the remaining components of 6S(z) satisfy

(55) n4. 2 [r,..., rllll-],
where

(56) M,. y

where

OVl,k

From (55) and (56), it follows that

6v(nl)
1,1

U’Ul,-k

(1)
Vk,1

1
Vk,k

6v(’,)
k,1

Vk,k

(57)

Thus, to obtain a bound for 6S(z), we need only to obtain bounds for A4 and
6Tt(z). This is done formally in Theorem 15. But first, in a similar fashion, we show
that bounds for 6S*(z) can be expressed in terms of bounds for A45-1 and 6T*(z).

From (22) and (26),

S*(z)A*(z) 6T*(z) + O(zllll+l).
As for the NSPS, for the sake of simplicity, here again we ignore that the constant
term errors 6w*() for 1 _</3 _< k. This is done with no great loss of generality because

these are the comparatively small errors made in computing 6u*() (z) from

+ o

with v*() 7. It then follows, in a fashion similar to solving (30) nd (32), that the
remaining components of 6S*(z) satisfy

, ,({{n{{) W(1) ,({{n{{)](8) x*’. [() ., I. ,...,
7 fact, the computations in (15) may yield errors resulting in nonzero values of 6u()In for

1

_
3 _< k. But, these errors, each resulting from two floating-point operations, are comparatively

small and are ignored in order to simplify the analysis.
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where

and, for 1 _< a _< k,

(59)

where

From (58) and (59), we get

(60)

We are now ready to give the main results of this paper in the two theorems to
follow; the first theorem shows that the algorithm PHS_SPS is weakly stable, whereas
the second provides bounds for the errors 5S(z) and 5S*(z). But, first note some
notational details. Let 5Tt(z) and 5T*(z) denote the residual errors corresponding,
respectively, to the NPHS and NSPS computed by the algorithm PHS_SPS in a + 1
steps. So, n rn(+) and a bound for [[5Tt(z)[[ is given by Theorem 12 in which

5T(+l)t(z) 5Tt(z) and a bound for [15T*(z)l[ is given by Theorem 13 in which
5T*(a+l)(z) 5T*(z). At the point rn(+), we drop the superscript a + 1 so that

g(+l), S(z) S(a+l)(z), S*(z) S*(+)(z), and so on. The point rn() is
the last stable point (i.e., a() _< T) prior to the point n along the diagonal passing
through n. The point n itself need not be stable.

THEOREM 14. The algorithm PHS_SPS for computing S(z) and S*(z) is weakly
stable.

Proof. From (44), (53), (57), and (60), it follows that, if the problem is well
conditioned (i.e., if the condition number a associated with the matrices AA and

AA is not too large), then the computed solution S(z) is close to the exact solution
SE(Z) and S*(z) is close to the exact solution S(z). The algorithm is therefore
weakly stable [7].

Note that the bounds (44) and (53) for the residual errors Tt(z) and T*(z)
(and therefore also the weak stability of PHS_SPS) do not depend on a(z). So a(Y)
defined by (38) (i.e., excluding the term [lal(z) (mod zllnll+l)[] that appears in the
bounds forj and j4-1 [11]) is an appropriate choice for a stability parameter.
Bounds for the errors 5S(z) and S*(z) in the solutions, given in Theorem 15 do,
however, depend on a- (z).

THEOREM 15. If is not too large and 5Tt(z) and T*(z) are sufficiently small,s

8 In addition to satisfying the assumptions of Theorem 12 at all the stable points m(J), 1 _< j _< a,
at the final point n m(+1), we require 5Tt(z) and 5T*(z) to be sufficiently small so that

( + 1)(k + 2)[a(o)[([[al(z) (mod z]ln]l+l)[[ + 1) [(k + 2)[[bTt(z)[[ + [[bT*(z)[[] (_ 1/8.

This assumption at the last point n is used in [11] in obtaining bounds for A/[ and 4-. All
these assumptions are easily satisfied if all the points, including the last one, are reasonably stable.
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then

II6S(z)ll < 2t. la(0)[ Ila-l(z)

where

and

where

(mod Zllnll+l)l ff’a -- 2T(g -- 1)" la(00)l E/J
j=0

/j 47(k + 1). la(0)l # {(llm(J)ll + k + 1) + 4pillu(Y)]13 + (llu(i)ll + k + 1)}

1lSS*(z)l[ _< 2(k + 1)2. la(0)l ]]a-l(z) (mod z]In]]+l)l

/* 87.(k + 1) 2. la(0)l
{(llm(J)ll + 1) + 4(k + 1)5p;ll(J)ll 3 + (11()1] + k + 1)}.

Proof. For m not too large and 5Tt(z) and 5T*(z) sufficiently small, bounds for
and A/[- are derived in [11] to be

The results of the theorem follow from (57) and (60) using (44) and (53).
7. Experimental results. Numerical experiments have been performed to com-

pare the analysis of the algorithm with its practice. A summary of the conclusions is
presented here; details appear in [10].

The algorithm PHS_SPS was implemented using Sun Fortran 1.3.1. All calcula-
tions were performed in double precision. The linear systems (13), (17), (30), and
(32) arising at intermediate steps of the algorithm were solved using the LINPACK
routines SGEFA and SGESL. The results were then compared with the exact answers,
obtained via the Maple computer algebra system.

Tables A1 and A2 give the results of a small but typical experiment for which
n (18, 19, 19) and At(z)= [ao(z),al(z),a2(z)] with ao(z) 1 and with coefficients
of al (z), a2(z) randomly and uniformly distributed between -1 and 1 and then scaled.
The tables give results at all intermediate points along the diagonal through n. In
these tables, the errors (represented in scientific notation with two digits of accuracy
and the exponent enclosed in parentheses) in the computed S(J)(z) and S*0) and in
the order conditions are given for two values of the stability parameter T. The value
7- 104 in Table A1 indicates a willingness to accept only those striped Sylvester
trices -m(J) and mosaic Sylvester matrices 4(j) with condition numbers less than

104, approximately (i.e., those for which () _< 104). Striped and mosaic Sylvester
matrices not satisfying this criterion are assumed to lie in an unstable block and
are skipped over. An unstable point is identified by the value "-" in the column
labeled "j". In Table A2, the value T 109 permits a much greater tolerance for ill
conditioning and results in an expected .deterioration in the accuracy.
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TABLE A
ao(z) 1. Errors at intermediate steps: T 104.

a(J)

"1 1.2(2)
2 1.8(2)
’3 1.6(2)
"4 9.5(2)
5 6’6(2)

4,1(7)
6 1.1(3)

)11115T(j)t(z)ll lidS(J) (z)ll IIST*(Y) (z)ll as*(a)(z
IIs ()11 IIS(j) ()11

1.7(-18) 1.4(-16) 2.2(-18) 7,0(-17)
1.0(-17) 6.5(-16) 2.0(-17) 6.5(-16)
.7(,) 9.8(-16) 3.3(-) .s(-15)
.6(-1) s.(-6) 6.6(-1) e.o(-15)
2.0(-17) 1.7(-15) 9’0(’17) 29(’15)
2.3(-17) 1.2(-5) s.7(-) 2,1(5)
3.3(-) 2.(-5) .3(,6) a.s(-15)

.e(-5) .2(-6) 6.6(-5)
i.8(-5). .9(-6) a,a(’5)
4.9(-5) .2(-1.6) 3(-4)
.3(-5) 3.9(-6) .e(-a)
5.6(-15) 5.7(-16) 4.6(-14)
s.(-15) 5.6(-16) 1.a(-a)
7.4(-15) 4’5(-16) 18(14)
.9.5(-5).. 6.s(-6) 2.e(-a)
.0(-4) .5(-f6) 23(1)
2.4(-14) 8.2(-16) 2.9(-14)
.(-4) s.9(-6)

7 1.5(3) 3.6(--17)
s .1(,) .(:-7). .() s.(-)

10 2.9(3) 1.2(-16)
3.2(6) 7.7(-17)

11 2’0(3) 2.8(-16)
1.6(4) 2.8(’16)

12 2.9(3) 2.9(-16)
4.1(4) 2.5(-16)
6.3(4) 2.7(-15)
1.1(4) 2.3(,16)
1.1(5) 2.5(--16) 8.0(--1,6)

3.3(--14)
!..4(.L 1.3)

TABLE A2
ao(z) 1. Errors at intermediate steps: T 109.

()

1

6 4.1(7)
7 1’1(3)
8 .5(3)
9 9.1(3)
10 3.7(3)
11 2’9(3)
12 3.2(6)
13 2.0(3)
i4 1.6(4)
15 2.9(3)
16 4.1(4)
1 a13(4)
lS 1.1(4)
1 1.1()

1.4(--16) 2.2(--18) 7.0(’17)
6.5(--16) 2.0(--17)

1.2(2) 1.7(--18)
1.8(2) 1.0(--17)
1.6(2) 1.7(--17)
9’5(2) 1.6(--17)
6.6(2) 2.0(--17)

9.8(--16) 3.3(--17)
6.5(--16)
1.8(--15)

8.3(--16) 6.6(--17) 2.0(,-15)
1.7(--15) 9.0(--17) 2.9(--15)

2.3(-17) 1.2(--15) 8.7(--17) 2.1(-:15)
6.9(-13) 3.4(--11) 3.2(-12) 1.2(--10)
6.8(--13) 1.9(--11) 3.7(--12) 1.5(--10)
1.1(-12) 3.7(--11) 6.6(-12) 5.6(--10)
1.6(-12) 9.5(--11) 6.4.(--1.2) 3..7(...-- !...0
1.1(--12) 7.3(--11) 9.5(--12) 3.5(--10)
1.2(-12) 1.7(--10) 1.2(--11) 1.9(--9)
5.0(--12) 1.3(--10) 8.6(--12) 2.2(--10)
4.9(--12) 1.4(-10) 8.3(--12) 1.9(--10)
3.3(--12) 1.1(--10) 1.5(--11) 3.5(--10)
3.6(--12) 1.1(--10) 9.8(--12), 3.5(--10)
2.4(--12) 1.5(--10) 1.3(--11) 6.5(=1’0)
2.8(--12) 1.8(--10) 1.1(--11) 4.4(--10).
3.7(--12) 2.2.(--10). 1.3(-11) ....8.." 1 (..-- !.0)

Tables B1 and B2 give the results of a similar experiment but for which a0(z),
al(z), and a2(z) were all first randomly generated (except that a) is initially set to
1) and then modified so as to introduce some pronounced instabilities. To introduce
an instability at m(j+l), the coefficients of al(z) and a2(z) were changed to make
almost dependent the columns of coefficient matrix AA. corresponding to the residual
T(j), (z) at the point m(j). The power series were then scaled. For this particular
experiment, ]la-l(z) (mod zllnll/l)] 2.3 102, approximately.
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J

1
2
3
4

5

6

7

8

9

TABLE B
Random ao(z). Errors at intermediate steps: T 105.

a.(0)
3.9(3)
3.7(3)
7.7(3)

.(a)

.8()

.(),
1.3(la)
3.9(a)
3.8(8)
.9(9)
.()
.3()
e.l()
3.0(a)
.a(3)

e.a()

0.0 9.8(’17)
1,5(-17) 7.1(-17)
3.6(-17)

IIS*U)()ll115T*()(z)ll iisu()l
6.9(-18) 7.6(17)
1.7(-17) 4.7(16)

2.5(-17) 2.9(15)

4.6(--13)

TABLE B2
Random ao(z). Errors at intermediate steps: T 109.

1
2
3
4

5

7

8
9

1.3(14)
3.9(4)

!,.9(9)
1.1(15)
i.3(9)

o 2.(5)
11 3.0(4)
.- 1:4(13)
12 6:4(4)
13 2.3(5)

IIS*(i ()1l

IIS() (z)ll

7.6(’17)
4.7(’16),
2.9(-15)
2.7(-15)
3.6(--10)
8.4(=15).
2.0(-14)
i".1(-13)

1.1(-16) 1.1(-14) 6.7(-15) 7.7(-9)
2.5(-16) 1.1(-14) 4.8(-15) 2.3(-13)
1.7(-16) 1.6(-10) 6.0(-15) 4.1(’9)
1:6(--16) 2.9(--10) 8.9(--15) 1.6(--8)
1.1(--16) 1.0(,9) 8.2(--15) 4.1(,8)
1.3(-16) 1.6(-10) 6.9(-15) 1.3(--8)
1.3(-12) 1.9(--10) 2.2(-13) 2.1(--10)
1.9(’11) 2.3(-9) 8.3(.--13) 2.8(’10)
7.2(--12) 1.1(-9) 1.6(-12) 1.4(-6)
1.7(--11) 1.3(--9) 3.8(--12) 1.0(--9)
3.4(--11) 1.1(--9) 2.1(--11) 3.7(--9)

It was observed that the large powers of k that occur in the bounds derived
above are not manifested in the experiments. Also, IlbTt(z)ll and IlbT*(z)ll appear to
depend on a(J) and not a(j)a(j+l) and the overall error is proportional to the largest
a(J) encountered. Thus, the bounds are crude, but they do appear to reflect the
behavior of the error. As Wilkinson points out [29, p. 567], "The main object of
such an analysis is to expose the potential instabilities, if any, of an algorithm so that
hopefully from the insight thus obtained one might be led to improved algorithms.
Usually the bound itself is weaker than it might have been because of the necessity
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of restricting the mass of detail to a reasonable level and because of the limitations
imposed by expressing the errors in terms of matrix norms."

From these and other experiments [I0], operational bounds on the errors in the
order conditions (as for the case k 1 reported in [15]) appear to be

and

115T,(z)ll<_C(k+l)2#((j)pjllm(j)[12)j=o +

where C is a moderate constant. In addition, for the errors in the solutions, opera-
tional bounds appear to be

1[SS(z)l <_ Cg(k + 1)# (=0 g()PJllm(J)ll + o(#

and

IlSS*(z)ll <_ C(k + 1)3# (j=o () +

8. Conclusions. In this paper we have presented a new, fast, weakly stable
algorithm for the computation of PHS and SPS. The algorithm requires O(llnll 2

s311nll) operations to compute a PHS and an SPS of type n [n0,...,nk], where

Ilnll no +’..+nk and s is the largest distance from one well-conditioned subproblem
to the next. The algorithm can also be used for fast stable inversion of striped or
mosaic Sylvester matrices (see [20] for the case k 1 and ao(z) 1). The algorithm
relies on the ability to specify when a given subproblem is well conditioned. The
stability estimates come as a result of "near" inversion formulae for striped and mosaic
Sylvester matrices given in [11]. In addition to a complete stability analysis, we have
also provided some numerical experiments that verify that the algorithm performs as
the theoretic results imply.

There is a number of open research problems that result from this work. The
algorithm that has been presented is fast rather than superfast as is possible in the
case of exact arithmetic [12]. It is possible to modify the algorithm so that it takes
steps in a quadratic fashion as done in [12]. However, while this approach will work in
the generic case, it is possible to find examples where not all the required subproblems
are well conditioned. In these cases the algorithm might not be numerically stable.
It would be of interest to find a superfast algorithm that works in all cases and in
addition is numerically stable.

In cases where the largest step-size is small the algorithm has complexity
However, there are cases where the algorithm may require a very large step-size and
then have a higher cost than Gaussian elimination. This will happen if there is a very
large unstable block, or if the stability parameter T is chosen to be too low. It would
be of interest to find a fast, stable algorithm that has complexity O(llnll 2) in all cases.
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Our algorithm proceeds along a diagonal path in the corresponding Pad tables of
our approximants. It would be of interest to find fast, stable algorithms that proceed
along alternate paths in the Pad tables. An example of this in the Pad case is found
in [18] where the computation proceeds along straight-line paths. In the context
of matrix solvers this is the difference between giving a Toeplitz solver instead of a
Hankel solver as is done in [15].

The M-Padd approximation problem is a generalization of the Pad-Hermite ap-
proximation problem which requires that the residual in (1) vanishes at a given set of
knots zo, zl,... ,zg-, counting multiplicities [2, 3, 4, 24]. The case where all the zi
are equal to 0 is just the Pad-Hermite problem. In this case the coefficient matrix
for the associated linear system is the matrix of divided differences. It would be of
interest to determine stability parameters for such matrices, with a view to developing
fast, stable algorithms for computing this approximation problem. Along these lines,
some experiments for the case k 1 are reported in [8].
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ON TWO-SIDED BOUNDS RELATED TO WEAKLY DIAGONALLY
DOMINANT M-MATRICES WITH APPLICATION TO DIGITAL

CIRCUIT DYNAMICS*

P. N. SHIVAKUMARt, JOSEPH J. WILLIAMS*, QIANG YE, AND

CORNELIU A. MARINOV

Abstract. Let A be a real weakly diagonally dominant M-matrix. We establish upper and
lower bounds for the minimal eigenvalue of A, for its corresponding eigenvector, and for the entries
of the inverse of A. Our results are applied to find meaningful two-sided bounds for both the l-
norm and the weighted Perron-norm of the solution x(t) to the linear differential system -Ax,
x(0) x0 > 0. These systems occur in a number of applications, including compartmental analysis
and RC electrical circuits. A detailed analysis of a model for the transient behaviour of digital
circuits is given to illustrate the theory.

Key words, weakly diagonally dominant matrix, M-matrix, bounds, digital circuit dynamics

AMS subject classifications. 15A42, 15A45, 15A48, 94C30

1. Introduction. A strictly diagonally dominant matrix is invertible and more-
over its inverse can be bounded. Results of this type are well known with the bounds
depending on the minimal diagonal dominance [11], [16], and they have applications
in problems such as estimating the condition number of a matrix. If the matrix is
weakly diagonally dominant with at least one row being strictly diagonally dominant,
there are conditions that guarantee invertibility, e.g., its irreducibility [17, p. 23] or,
more generally, a chain condition [14]. However, the known results do not give a finite
bound for the inverse. In this paper, we derive an upper bound for the infinity norm
of the inverse of a weakly diagonally dominant M-matrix and a lower bound for the
entries of its inverse. We also apply these results to bound the Perron root of the
inverse of A and the components of the corresponding normalized eigenvector.

Our interest in these bounds is motivated by a problem related to a system of
ordinary differential equations that arises from the study of the dynamics of digital
circuits. The system is given by

dx
(1) d--[ -A x(t), x(0) x0 > 0,

where x(t),xo E and A is a constant real n n weakly diagonally dominant M-
matrix. Using the Perron-Frobenius theorem, we establish upper and lower bounds
on the gl-norm of the solution, x(t). In fact, we prove in 5 that
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1 _a IIx(0lll
--e < < R e-q*(2) R -Ilxoll,-

where q q(A) 1/p(A-1), p(A-1) is the spectral radius of A-1, and R max{z,/zj"
i,j 1, 2,..., n}, where z (zi)T is the positive eigenvector of AT, the transpose
of A, that corresponds to q(A) q(AT). When the matrix A is strongly diagonally
dominant, there are earlier results giving upper bounds on ]lx(t)lll that exhibit ex-
ponential decay in t (see [7], for example). However, if at least one row is weakly
diagonally dominant, then these bounds do not exhibit decay.

The paper is organized as follows. In 2, we present notation and some preliminary
results. In 3, we derive upper and lower bounds on A-1. In 4, we obtain upper and
lower bounds on q(A) and {zi" i= 1,..., n} for irreducible A, for use in (2). In 5,
we will establish (2) and then in 6 apply all of our results to study the dynamics and
design of some digital circuits.

2. Preliminaries and notation. We begin by listing all conditions on the ma-
trix A that will be assumed at some point of the paper. In particular, we will always
assume (A1), (A2), and either (A3) or (A6). Let N {1,2,...,n}, and let A be an
n n matrix.

(Ae)
(Aa)
(Aa)
(As)
(A6)

For all i, j E N with i j, aj <_ 0 and a > 0.
For all/e N, laiil >_ ’j# laijl and J(A) {i
A is irreducible.
For all N with > 2, there exists a j N such that j < i and aiy 0.
For all i, j N, a 0 implies aji O.
Definition: A is w.c.d.d.(weakly chained diagonally dominant) if A satisfies
(A), and for all i E N, i J(A), there exist indices il, iu,..., i in N with

a,.,,.+ 0, 0 < r <_ k- 1, where i0 i and ik J(A). (We call the above
sequence of nonzero entries a chain from i to k.)

Remarks. A matrix A satisfying (A) is called an L-matrix. (A2) is the definition
of a weakly diagonally dominant matrix. If (A2) holds with J(A) N then we say
that A is strictly diagonally dominant. A is irreducible (A3) if and only if for all
i, j N there is a chain (as in (A6)) starting with and ending with j [17, p. 20].

(A2) and (A3) state that A is irreducibly diagonally dominant, which implies that
A is invertible [17, p. 23]. (A3) implies that (Aa) is true with a suitable permutation
of the indices (see Lemma 2.5 below). (Ah) states that the pattern of nonzero entries
of A is symmetric. (A6) w.c.d.d, has been called J-d.d. or A-d.d. in [3] and [15].

A matrix satisfying (A) and (A6) is said to be of generalized positive type with
respect to (1, 1,..., 1)T (see [1] or [18]). We note that if A is strictly diagonally
dominant or if A is irreducibly diagonally dominant, then clearly A is w.c.d.d.

LEMMA 2.1. A w.c.d.d, matrix (A6) is nonsingular [14].
0For example, the matrix [1 1] is w.c.d.d, but is neither strictly diagonally

dominant nor irreducible.
DEFINITION. An n n matrix A is an M-matrix if A is an L-matrix (A1),

nonsingular, and A-1 > 0 (i. e., each entry of A-1 is nonnegative) [17].
LEMMA 2.2. A w.c.d.d. L-matrix ((A1), (A6)) is an M-matrix.

[14, Cor. 4] or [lS].
We will denote A(nl,n) as the principal submatrix of A formed from all rows and

all columns with indices between nl and n2 inclusively; e.g., A(2’n) is the submatrix
of A obtained by deleting the first row and the first column of A.
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For convenience, we will let the entries of any submatrix of A retain the same
indices as they had in A (e.g., the top row of A(2’n) will be indexed as row two).

LEMMA 2.3. Let A be an n x n w.c.d.d. M-matrix ((A1), (A6)). Then B A(2’n)

is an (n- 1) (n- 1) w.c.d.d. M-matrix (i.e., B- (j) exists and./j >_ O,
i,j=2,3,...,n).

Proof. Let J(B) be the J-set for B relating to (A2). We show J(B) . The
only difficulty is the case where J(A) {1}. In this case, using (A6), there is some
k with 2 _< k _< n and akl 0; then, using (A2) and ak 0, lakkl > jn=2,jk
and k e J(B) . Thus, conditions (A) and (A2) hold for B. To show (A6) for B,
let e {2,. ,n},i J(B). Then aii :. j=2,ji laiJl and hi1 0 (using (A2) for
A). Thus, J(A), and there exists a chain of nonzero entries ail, a1,2,...,
with i E J(A). If all ir - 1, then the above gives a chain in B from i to i J(B).
If some ir 1, then ai_, 0, and using (A2) for A, row number m i-1 in B
is strictly diagonally dominant and aii,ai,i.,... ,ai_.,i_ gives a chain from i to
m J(B). So, B is w.c.d.d. From Lemma 2.2, B is nonsingular and

Remarks. The above lemma is false if we replace the w.c.d.d, condition with the
irreducible condition (A3). For example,

2 -1 0]A 0 1 1 satisfies (A1)-(A3);
-1 0 1

B
0 1

is reducible ((A2) and (A3) fail);

however, B is w.c.d.d. It is primarily for this reason as well as for greater generality
that we prefer to use w.c.d.d, rather than irreducible matrices (as much as possible).
We next give some properties of irreducible matrices.

LEMMA 2.4. An invertible matrix A is irreducible if and only if A-1 is irre-
ducible.

Proof. A is reducible if and only if there exists a permutation matrix P such that

(3) B=PApT=[ BIO B12]B22
where BI xk and B22 (n-k)x(n-k). Since B-x has the same structure as B
and B-1 P A- pT, A is reducible if and only if A-1 is reducible.

LEMMA 2.5. (a) Let A be an irreducible matrix. Then there exists a permutation
matrix P such that B PA pT satisfies condition (A4) and 1 J(B).

(b) If A is irreducible and satisfies (A5), then so does B, and for each k N,
B(1,k) is irreducible.

Proof. (a) is equivalent to finding a permutation (il,i2,...,in) of (1,2,...,n)
such that for each j 2, 3,..., n, there exists a k with 1 _< k < j and a,k 0. Then
P is formed by applying the above permutation to the rows of I.

Let i J(A). Let i2 N- {il} such that a, - 0 (this exists since A
is irreducible). For the same reason, there exist i3 N- {i,i2} and j {i,i2}
such that a,j : 0. Note that j ik with k < 3. We repeat this process to find
i4, i5,...,in-1. The remaining index is in. By irreducibility, there exists a j with
1 _< j _< n, j in such that a,j 0; then j ik for some k < n.
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(b) follows easily by induction on k. B(z’l) and B(1,2) have all nonzero entries
and thus are irreducible. The third row and column of B(1’3) each has a nonzero
entry besides b33, and thus, there exists a connection from 3 to 1 or 2 and back. Thus
B(1’3) is irreducible (similarly for B(1,4),..., B(1,n)). (A connection from to j means

DESCRIPTION OF q(A) AND Z. Assume that A is a w.c.d.d. M-matrix ((Az), (A)).
Since A-z >_ 0, by an extension of the Perron-Frobenius theorem [17, Thm. 2.7], the
spectral radius of A-z, p(A-1) max{IA A is an eigenvalue of A-I } is an eigen-
value of A-1. Since A u Au if and only if A-lu- A-lu, it follows that

1
q(A)

p(A-1)
is the minimal eigenvalue of A: q(A) is an eigenvalue of A, and for any eigenvalue A
of A, I1 >_ q(A). If, in addition, A is irreducible, then by Lemma 2.4, so is A-1. So
the Perron-Frobeuius theorem [17] tells us that q(AT) is a simple eigenvalue of AT
corresponding to a positive eigenvector, z (zl, z2,..., zn)T > 0, which is unique if
we assume that IIZII1 EiEN IZil 1. Note that z > 0 means that zi > 0 for all
iEN.

By the Gerschgorin theorem, q(A) <_ for any real eigenvalue . Our results in

4 include finding a positive lower bound for q(A), which will be an improvement over
the Gerschgorin theorem which gives only q(A) >_ O. Since AT and A have the same
eigenvalues, q(AT) q(A).

We now introduce some notation related to the diagonal dominant condition. We
define the relative row and column sums:

1
n

1
n

]aij], Xj layyl i21,iCj
the partial left and right row sums:

i-1 n

ri [aii[
j=.

and the partial upper and lower column sums"

n

dy
lajyl

layl.
i--j+l

Clearly, pi (li + ri) and X (uj + dj).
IfA is aw.c.d.d. M-matrix, then for eachi E N, 0 _< pi _< 1, J(A) {i

N" pi < 1} # , -]jEg,j#iaij --aiipi, YjeNaij aii(1- pi), and -eN laijl
aii (1 + pi).

LEMMA 2.6. If A is a w.c.d.d, matrix (A6) and A-1 (aij), then for i j,

and if e J(A),
1 1

lal(1 + p) la.l(1 p)"

This result was proved by Ostrowski [11, Eqs. (13) and (14)] for a strictly diag-
onally dominant matrix (i.e., pi < 1), but the same proof is valid for the case here.
This can also be obtained through a perturbation argument.
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3. Upper and lower bounds for A-1. In this section, we derive upper and
lower bounds for the inverse of a w.c.d.d. M-matrix (i.e., a matrix satisfying (A1)
and (A6); see Lemma 2.2). Let B A(2,n). We require expressions for the entries of
A-1 in terms of those of B-1.

LEMMA 3.1. Let A be a w.c.d.d. M-matrix ((A1), (A6)), B A(2’n), A-1

(Oij)inj=l, and B-1 (i2)i,j=2"’" n Then, for i, j 2,.. n,

1
(4) 11--

1
(5)

k-2
n

(6) Olj - E kj(--alk),
k--2

and
n

(7) + ..
k=2

where

(8) /k all E alk kiail >_ a11(1 Pl)
k=2 i=2

and A > O.
Proof.

partition

and let

By Lemmas 2.2 and 2.3, A and B are nonsingular and j _> 0. We

all xT ]y B

A_l= (cj)__ [ c117 TIF
where we have split off the first row and first column of A and A-1

AA-1 I, it can be verified that c11A 1, where

(9) A all xTB-ly.

By expanding

A all E alk kiail
k=2 i--2

--all- E alk ki aij E aij
k--2 i--2 j--1 j--2

all E lk kigii(1 Pi) kiaij
k--2 i--2 j--2 i--2

Thus, A : 0 and all A-1. Furthermore, r/ -A-1B-ly, which gives (5).
Similarly, we have F B-I(I yT) and T _A-lxTB-1, which give (6) and (7).

Now, expanding (9), we obtain
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was defined in 2. Hence, for k, j >_ 2,

{l if k=j,

i=2kiaiJ (B-1B)kj 0 if k j.

Thus,

all kiaii(1 pi) 1
k=2 i=2

k=l k=-2 i=2

k--1

alk ali(1- pl) k0,

where the last inequality follows from Lemma 2.3 and the conditions on A. Since
A#0, A>0.

By interchanging rows and corresponding columns (i.e., a permutation of the
indices), we may assume that the first row of A is strictly diagonally dominant, i.e.,
1 e J(A).

LEMMA 3.2. Let A and B A(2’n) be as in Lemma 3.1, and assume that 1 E
J(A), i.e., pl < 1. Then

a11(1 Pl) 1 Pl

nProof. Let si Ek=l aik, M1 IIA-lloo, and M2 IIB-lloo. Then M1
max{si 1 <_ i _< n} and M2 max {--2 ik’ 2 _< i _< n}. Using Lemma 3.1,

81 011 -}- E Olk
k--2

1 +
k=2 p=2

p=2 k=2
n

x+xl1
p=2

1
(1

Leg 2 N N n. hen, using Lemma 2.6,

(11) 1 g C11.

Usin his in () nd () gives E-- fl(-’) < 1, nd hus, rom (’), wih 2 < j <_

(12) aij (_ ij "or" alj.
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Thus, for i _> 2,

n

Si 0il -}" E Oik
k=2
n

_< + +
k--2

_< S + M,

where we have used (11) and (12). Thus, M1 _< sl + M2. Using (10), the result now
follows.

If the matrix B A(2,n) is strictly diagonally dominant, then the known results
[11], [16] can be used to give a bound on lIB-Ilia. Thus, the lemma immediately
gives a bound on

Note that Pl rl. It follows from Lemma 2.3 and the comments just prior to
Lemma 3.2 that we can permute the indices so that the resulting matrix, which we
still call A, has the property that for k 1,..., n- 1, the matrix A(k,n) has its first
row strictly diagonally dominant (within A(k’n)), i.e., rk < 1. Note that r, 0.

THEOREM 3.3. Let A be an n n w.c.d.d. M-matrix ((A), (A6)) such that

rk < 1 for all k e N. Then, ilA-111 <_ Ein__[aii 1-I:1(1 ry)] -1, i.e.,

llA_lllo < 1 1 1

1(1 1) + .(1 ,)(1 .) +"" + ann(1 -rl)’-’(1

Proof. Apply induction with respect to k to A(k,n), using Lemma 3.2. E]

LEMMA 3.4. Let A and B be as in Lemma 3.1. Let m min{ nEj=I aij, i

1,. ,n}, m2 min{ nEj=2 iJ, 2,..., n}, and let Pl al + m2Pl. Then

Also,

ml:>min{pl’m2(l+pl2<_k<_nmin ]akll)}.

(13) ml > | max i(1
\l<i<n

--1

Proof. Let si Ejn__l Oij. Then, as in the proof of Lemma 3.2,

1 1
n n

x +
k=2 p=2

1 1
n

K - m2 E(--alk)
k=2

1 1

" + -m2alPl.
From Lemma 3.1, A <_ all. Thus,

(14)
1

S >_ + m2p p.
all
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Let i- 2,...,n. Then

(5)
k--2

m2.

Using Lemma 3.1 and (15),

Since ml min{si i 1,... ,n}, the first result now follows from (14) and the
above. The second inequality, (13), follows from Lemma 2.6 since

n
1

aii(1 +
j-l

Remark. Let A be an n n w.c.d.d. M-matrix such that rk < 1 for all k E N.
Then the result of Lemma 3.4 can be used inductively, starting with mn ann-1,
then using Lemma 3.4 applied to A(n-l’n) to find a lower bound for ran-l, and so
forth. The final result would have to be compared with (13).

We now consider lower bounds on the elements of A-1. Recall that d, r were
defined in 2.

THEOREM 3.5. Let A be a w.c.d.d. M-matrix ((A1), (A6)) and let A
Then

1
n--1

min ajk > H min{d, r}.
j,k ann

i--1

Proof. Let / miny,k ajk and 72 minj,k jk, where B A(2,n) and B-(j),j=2. From Lemma 2.6, al > a, and for i > 2, by Lemma 3.1,

n

k--2
n

k2

where A < all by Lemma 3.1. On the other hand, for j _> 2,

1
n

k--2
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and for 2 _< i, j

_
n,

Thus, we obtain

(16) /1 _> "2 min{dl, rl},

where dl,r _< 1. Note that B satisfies (A1) and (A6), by Lemma 2.3; then Theorem
-1 l,]3.5 follows by repeatedly applying (16) until we reach "n an.

Note that if the matrix A is reducible, then A- necessarily contains a zero entry
and thus, minj,k ajk 0. In this case, the above bound is trivial. We have, however,
stated the result in terms of w.c.d.d, matrices (including reducible matrices) for
convenience, since each principal submatrix A(i,k) is a w.c.d.d, matrix in the proof.

If some di or ri is zero but the matrix is irreducible, our lower bound is zero. Note
that the lower bound for the row sums obtained from Lemma 3.4 is still nontrivial. For
the application problem in which we are interested, assumptions (A4) and (A5) hold.
Then the above theorem yields a nontrivial lower bound in the following corollary.

COROLLARY 3.6. Let A be a matrix that satisfies assumptions (A1)- (A5). Then

minaj>
1

min{u, l} > 0.
j,k all .=

Proof. The first part follows from applying Theorem 3.5 to the permutation of A
given by (n,n- 1,..., 1). Now, from (A4), li > 0 and from (A5), ui > 0. Thus, the
lower bound is strictly positive.

4. Upper and lower bounds for q(A) and z. We continue to consider a
w.c.d.d. M-matrix. We recall that q(A) = 1/p(A-1) is the minimal eigenvalue of A.

THEOREM 4.1. Let A be an n x n w.c.d.d. M-matrix, let A- (ai), and let
q = q(A). Then

(17)

(18)

(19)

and

q _< min{aii i E N},

q<max{aii(1-pi) "iEN}--max{.aijjEN "iN},
q>min(aii(1-pi) "iN}--min{aijjEN "iN},

(20)

where

1 1--<q<--,
M- -m

M max cij A- I1iN
jN

m min
iN

jN
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Moreover, since q(A) q(AT), each of the above bounds remains valid when A and
A-1 are replaced with their respective transposes; thus, row sums become column
8urns.

Proof. By replacing aij with aij for i = j and aii with aii + n, > 0, and
then taking e --, 0+, we may assume that A is irreducible. Then, let z > 0 be an
eigenvector of A corresponding to q, i.e., A z qz. For each E N, EjEN aijzj qzi

and

(21) (aii- q)zi E(-aii)zy >_ O.

Since zi > 0, q _< aii, and (17) follows. Let Zm min{zj j E N}; then, from (21),

q)z >_
jm

Since Zm > O, q <_ amr + Yj, amj EeNar, and (18) follows. (19) follows
similarly from considering ZM max{zj j N} (or the Gershgorin theorem [17,
p. 16]). (20) can be proved similarly using A-lz p(A-)z and is due to Frobenius
[10, Thm. 1.1, p. 24].

Remark. If A is not strictly diagonally dominant, then (19) gives only q _> 0;
however, (20) together with Theorem 3.3 always gives a positive lower bound for q.
In (20), Theorems 3.3 and 3.5 and Lemma 3.4 can be used to give bounds for q in
terms of the (aij); when using Theorem 3.3, we first must permute the indices of A
(or AT) so that rk < 1 for all k N. On the other hand, since [[A-1][

_
1/q from

(20) the above upper bounds for q will give lower bounds for [[A-I[[.
Finding bounds on p(A) or q(A) is a subject of interest on its own and various

refined bounds can be found in Chapter 2 of [10]. However, (20) is the only one that
is applicable here.

We now give upper and lower bounds for the components of the eigenvector z
for an irreducible matrix, which will be used in the next section in our application to
systems of linear ordinary differential equations.

THEOREM 4.2. Let A satisfy (A1)-(A3), A- (aiy), and let z (z,z2,. ,Zn)T
be the positive eigenvector of A corresponding to q(A) with IIZ[ll 1. Then

q(A) min ajk <_ zi <_ q(A) max
j,k j,k

Furthermore,

Zi Okk
max- ( max-

Proof. From the assumptions, A-1 exists and is strictly positive. From A-1 z
q(A)-z and z > 0, we obtain

n

zi q(A) E aikzk <_ q(A) max cuk
j,k

k--1

nwhere Ek=l Zk 1. The lower bound for zi is proved similarly.
Also, by [10, Thin. 3.1, p. 41],

Zi Oik
max- < max-
i,j Zj i,j,k Ojk
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By Lemma 2.6, aik _< ck. Thus,

Oik Okk
max max--. [3

Note that we also have zi

_
i. The bounds given here are in terms of the inverse

elements of A. Note that from Theorem 3.3 and Corollary 3.6, we can bound z in
terms of the elements of A without computing the inverse.

5. Systems of differential equations. In this section we deal with a system
of linear differential equations on ]n governed by a matrix A.

THEOREM 5.1. Let A satisfy (Ai)-(A3) and let

(22)
dx

-A x(t) x(O) xo.dt

Then, for all t >_ O,

n n

z x (t) z xo, ,
i--1 i--1

where q q(A) and z (Zl,... Zn)T is the positive eigenvector of AT corresponding
to q.

Proof. After multiplication by zT, (22) becomes

d
ZTx --ZTAx -qzTx.d-

Integrating gives zTx Ce-qt, from which we obtain the result.
Let us now assume x0 _> 0. Then (A1) implies that x(t) >_ 0 for all t _> 0 [19] and

E zixi(t) Ilxllz is a weighted norm for x(t), which we call the z-norm. In particular,
(23) means that

(24) IIx(t)llz e-qtllxollz, t >_ O.

This implies a global stability property and asymptotic convergence of the solution
with a rate determined by q, so that

(25) lim x(t) O.

Of course, this is valid for those initial vectors with x0 > 0 only.
Furthermore, if we have upper and lower bounds for q, namely 0 < q, <_ q <_ qM,

then we have bounds for the z-norm of the solution:

(26)

or, for the tl-norm:

Zmax Zmin

where Zmin

_
Zi

_
Zmax for all 1,..., n.

These results are of the same type as the classcial results of Wazewski for the
g2-norm [5] and of [4], [13] for the gl- and t-norms. See also [3], [7], [9].
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input

VDD

FIG. 1. AMOS inverter with T3, T4, and T5 loads.

6. Application to electrical circuits. Computational digital systems are made
of interconnected transistors which are switched between two stages in accordance
with specific tasks. Figure 6.1 represents a simple MOS inverter, a basic and specific
component of a digital circuit. It consists of transistors T1 and T2 and it drives the
"gates" T3, T4, and T5 through interconnection lines.

The structure is implemented on a semiconductor wafer. In Fig. 6.2 we show
a linear RC model for this circuit after transistor T1 was switched off by the input
signal.

C1 U25c
c

FIG. 2. A model for the circuit in Fig. 6.1.

Keeping in mind this example, we can consider a general RC network with n
nodes, in which the ith node is capacitively grounded by Ci > 0 and eventually
resistively grounded by a conductance Gio _> 0. Also, each node is connected by
a conductance Gij _> 0 with the node j. The circuit is a "conex" one, in the sense
that for a node there exists at least one node j connected to it by Gij > 0. Note
that Giy Gyi. A possible nonzero constant source between node i and "ground" is
denoted by Ji. Then, if we denote by v [vl(t), v2(t),..., Vn(t)]T the vector of node
voltages, it can be easily shown that the transient evolution of this circuit is described
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by the equation

dv
(28) C- -G v + J,

where C diag(C1, C2, Cn), J [J, J2, Jn]T, and G is a matrix of conduc-
tances with the elements

n

Gii=Gi0+ E iJ and Gij=--ij, ij.
j=l,ji

If v E ]1n is the stationary regime voltage vector, i.e., 0 -G v + J, and if
we denote x(t) v(t) v, we can see from (28) that

(29)
dx _C_G x.
dt

It can be easily verified that the matrix A C-1G satisfies (A1)-(Ah), which we
listed in 2. In fact, (A) and the first half of (n2) are clear, while the second half of
(A2) means that at least one node is resistively grounded. This is the case for at least
the source node (node 1 in Fig. 6.2). The irreducibility (A3) of A is assured by the
connectivity of the circuit. The fact that Gj Gj implies (Ah). Finally, assumption
(A4) is fulfilled by the connectivity of the circuit, which always allows a suitablenode
labeling (see Lemma 2.5).

The crucial performance of the above digital circuit is the high operating speed
[6] that is measured by the delay time for which the signal will reach a point which is
times its initial value after constant inputs are applied, where 0 < < 1; i.e.,

(30) T(e) sup {t IIx(t)ll }iix011
It is standard in engineering practice to take 0.1.

Providing an appropriate value of T(e) by an optimal choice of circuit parameters
is one of the primary goals of the VLSI design process. In order to speed up the
initial stages of this process (where repeated simulations are done), it appeared ideal
to include in CAD tools simple computable formulae for T (or its bounds). There
have been a large number of contributions in this area during the past decade (see
[2], [6], [8], [12], for example) and [9] contains a fairly complete list up to 1991.

Coming back to the bound of T defined in (30), we observe that the norm chosen
must be independent of circuit parameters in the set where we search for their optimal
value. The largest possible set is, of course, + for all entries of C and G. Then, in
(30) we can choose the l-norm, IlXlll E IXil, and denote this delay by Tl(e). From
(27) we obtain

eZmin--qMT1 < IIx(TI())II1 < Zmaxe_q.T
Zmax IIX0 II1 Zmin

(31)
1

In Zmin < T1 (ty) < 1
In Zmax

qM eZmax qm Zmin

Note that we always have T1 (e) > 0.
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It is also possible and useful to restrict our parameter search to circuits for which
G cG__ and C C, i.e., all conductances are the same multiple of some basic
conductances, and similarly for capacitances. Obviously, in this class of circuits the
eigenvector z of AT G C-1 is invariant, and [1" I[z is a suitable norm for (30). For
this class of circuits we obtain the following from (26)"

(32) ln(1/e) _< T(e)_< ln(1/e)

Let us consider the circuit example from Fig. 6.2. If we take (for calculation
simplicity) all conductances and capacitances with value 1, then we obtain C
diag(1, 1, 1, 1, 1) and the elements of A (and of (7 at the same time) are all 2, a12
a21 --1 a22 4, a23 a32 a24 a42 a25 a52 --1, a33 a44 a55 1
with the others being 0. Now, we can compute rl 1/2, r2 43-, r3 r4 r5 0,
and 12 1/4, 13 14 15 1. Thus, Theorem 3.3 gives us

while Corollary 3.6 implies

1
m=minajk>-

j,k 8"

Using Theorem 4.1, we obtain

1 1< <q<minaii=l,
27- M-

and from Theorem 4.2 we obtain

z Mmax--< <216.
,j zj m

For e 0.1, from (31) and (32), we obtain 0 _< T1 _< 207.3 and 2.303 E Tz _< 62.17;
for e 0.001, we obtain 1.532 <_ T <_ 331.6 and 6.908 <_ Tz <_ 186.5.

It is apparent from this example that the Tz delay time bounds provided by (32)
are reasonably tight, and because they are simple to calculate, they are useful for
large-scale circuit design. If we search for optimal parameters in the largest possible
set of values, then (31) will provide useful information.
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PERTURBATION ANALYSIS OF THE POLE ASSIGNMENT
PROBLEM*

JI-GUANG SUN
Abstract. Condition numbers of the state feedback pole assignment problem having no repeated

closed-loop eigenvalues are derived by using the implicit function theorem and its generalization.
The absolute condition numbers are then used to derive the first-order perturbation bounds for the
solution to the pole assignment problem. Moreover, the conditioning of the state feedback and the
conditioning of the resulting closed-loop eigenvalues are discussed.

Key words, controllable system, state feedback, pole assignment, eigenvalues, condition num-
ber, perturbation bounds

AMS subject classifications. 15A18, 65F35, 93B55

1. Introduction and basic results. Let (A, B) denote a system

(1.1) k Ax + Bu,

where A E 7nn B E 7n " x T/n, and u Tm The symbol mXn denotes the
set of real m x n matrices and Tn 7nl.

The state feedback pole assignment problem for the system (1.1), as a special
additive inverse eigenvalue problem [4], may be formulated as follows [11], [18], [28].

PROBLEM PA. Given A 7nn, B 7n’, and a set of n complex numbers,
{/1,/2,- An}, closed under complex conjugation, find an F E Tnm such that

the eigenvalues of A + BFT are Aj, j 1, 2,..., n.
The following result is known [11], [28].
THEOREM 1.1. A solution F Tnm to Problem PA exists for every set of

self-conjugate complex numbers if and only if (A, B) is controllable, that is, if and
only if

{yTA #yT and yTB O} c== yT o.

Moreover, in the single-input case (i.e., m 1), if Problem PA has a solution, then
the solution is unique.

It is worthwhile to point out that although many approaches have been developed
for solving Problem PA (see [1], [3], [5], [6], [15], [16], [18], [19], [25], and the refer-
ences contained therein), relatively little attention has been paid to the perturbation
analysis of the problem [1], [12], [13].

Suppose that a controllable system (A, B) and a set of n self-conjugate complex
numbers are slightly perturbed to another controllable system and another set of n
self-conjugate complex numbers. Then, by Theorem 1.1, there is a solution to Problem
PA for the perturbed data. Generally speaking, the solution F changes when the
data (A, B) and : are subject to a perturbation. Hence, there is a question: which
quantities can be used to measure the sensitivity of the solution to small changes in
the data? The object of this paper is to describe a technique, developed by Hald [9]
and the author [23], to give an answer to this question for the case of Ai Aj, i - j.
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Van Dooren May 21, 1995. This work was supported by Swedish Natural Science Research Council
contract F-FU 6952-300 and the Department of Computing Science, Ume University.
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Observe that in the single-input case the solution to Problem PA is unique if it
exists, but in the multi-input case Problem PA is essentially underdetermined [11].
Hence, in this paper we shall study perturbation analysis for the two different cases
separately.

Throughout this paper we shall use the following notational conventions, cmn
denotes the set of complex m x n matrices and Cn CTM. AT, AH, and A denote
the transpose, the conjugate transpose, and the Moore-Penrose inverse of a matrix
A, respectively. I is the identity matrix, I is the identity matrix of order n, and 0
is the null matrix. For A (al,a2,... ,an) (aij) E 7"xn (or Cmn), the symbol

T)T.vec(A) denotes an ran-dimensional vector defined by vec(A) (aT, a2T,..., an 112
denotes the Euclidean vector norm and the spectral norm, and IIF the Frobenius
norm.

Suppose that the function

7) C n m (or 79 C Cn ---+ cm),

with

((X) (el(X),..., Cm(X))T

is defined on an open subset T of 7n (or Cn), and that its component functions
i, 1,..., m, have continuous first derivatives on :D. Then we define the Jacobian
matrix by

01(x) 01(x)
(X OXn

Ox Ox

and in the case of m n, we define the Jacobian -x (or more precisely, o(1 Cn))0(1, .,xn)
by

The implicit function theorem [2, p. 39] and the following two known results are
basic tools in our analysis.

THEOREM 1.2 (a generalization of the implicit function theorem). Suppose that
the complex-valued functions

are analytic functions of k + complex variables in some neighborhood B of the origin
of Ck+t, where m < k. Let

f (f, f,..., fro)T Cm, x (1, 2, k)T Y-- (/1,?2,...,?/)T

If fj(O;O) -----0, j 1,....,m, and if

rank(f)x=o,y=o m,
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then the equations

have infinite many solutions

j gj(r/1, r/t), j=l,...,k,

vanishing for r/1 r/l 0 and analytic in some neighborhood By of the origin of
C

Theorem 1.2 can be proved by the implicit function theorem [21].
THEOREM 1.3 (see [22]). Let z (zl,... ,zk)T E Ck, and let A(z) Cnn be an

analytic function of z in some neighborhood of the origin of Ck. Suppose that is a
simple eigenvalue of A(O) and x,yl are associated eigenvectors satisfying

A(O)Xl ,1Xl, yTI A(O) ,lyT1, yTl Xl 1.

Then
(1) there exists a simple eigenvalue A(z) of A(z) which is an analytic function

of z in some neighborhood Bo c C of the origin, and (0)
(2) the right and left eigenvectors Xl(Z) and yl(z) corresponding to (z) may be

defined to be analytic functions of z e 13o, and x(0) xl,yl(0) y;
(3) there are formulae

O)l (Z) yTI
Ozj ] z=O

x, j 1,..., k.
Oz =o

The rest of this paper is organized as follows. In 2 we derive condition numbers
and the first-order perturbation bounds for the solution to Problem PA for the single-
input case, and discuss the conditioning of the state feedback and the conditioning
of the resulting closed-loop eigenvMues. In 3 we touch upon the multi-input cse.
FinMly, in 4 we present some results of numericM tests.

Our numerical tests show that there is, presumably, some intrinsic relation be-
tween the conditioning of the state feedback (i.e., the conditioning of the pole assign-
ment problem) and the distance of the given controllable system from the nearest
uncontrollable system.

2. The single-input case.

2.1. Absolute condition numbers. Given a single-input controllable system
(A,b) with A n,b n, and given aset ofn complex numbers, {A1, A2,... ,A},
closed under complex conjugation and A Aj for j. Let

(2.1) h diag(A1, A2,..., A).

By Theorem 1.1, there is a unique f (f,f2,..., f)T with nonsingular
X (xj) Cn, whose columns are the right eigenvectors x,x2,... ,Xn of A +bfT
corresponding to the eigenvalues A1, A2,..., A, such that

(2.2) A + bfT XAX-.
Let

(2.3) Y X-T [Yl,Y2,...,Yn].
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Then (2.2) is equivalent to

(2.4) yT(A + bfT) AYT,
and the columns of Y are the left eigenvectors of A + bfT:
(2.5) yf(A + bIT Ajyy, j l, 2, n.

By Theorem 1.1, the relations (2.5) imply that

(2.6) yb = 0, j 1,2,...,n.

Let (,) be a controllable system, and let {,2,...,} be a set of
self-conjugate complex numbers. Moreover, let

, (,1, ,2,..., )n)T, (,1, ,2,..., n)T,

A(t) A + t(ft A), b(t) b + t( b),

,’(t) -]- t(, ) ("l(t), 2(t),...,/n(t))T, t e [--1, 1].

We assume that (/1, ) is sufficiently near (A, b) and is sufficiently near A, such that
the system (A(t),b(t)) is controllable and the set {Al(t),A2(t),...,An(t)} is closed
under complex conjugation for any t E [-1, 1]. Then by Theorem 1.1, there is a

unique vector f(t) Tn such that the eigenvalues of A(t)+ b(t)f(t)T are Aj(t) for all
t[-1,1],j-1,2,...,n.

For investigating the problem of how the vector f(t) f is dependent on A(t)
A,b(t)- b and A(t)- A when t - 0, we now embed A,A(t) in Cnn, and embed
b, b(t), , (t), f, f(t) in Cn. Let

A=A+E, -b+e, ]-f+g,

where E C, and e, g, C’. Assume that the elements of E, e, g, are suffi-.
ciently small in magnitude such that all the eigenvalues of + ]T are simple. Then
by Theorem 1.3,

(i) the eigenvalues are analytic functions of the elements of (,, ]) in some

neighborhood B C C’ (R) Cn (R) n of the point (A, b, f);
(ii) the associated right and left eigenvectors may be defined to be analytic func-

tions of (,/, ]) in B; and

(iii) the eigenvalues and associated eigenvectors of +[]T become Aj, xj, yj when

(, , ]) (A, b, f).
Let #( + ]T) denote a vector in C whose jth element is the eigenvalue of

+/]T nearest to Aj, j- 1, 2,..., n. Then obviously #(A + biT) ).

Let a vec(A),- vec(A), and let

(]; + (];
Applying Theorem 1.3 (3) and using simple calculations, from (2.8) we get the ex-

atf=f,&=a,=b,-pression of the Jacobian matrix wf

(2.9)
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By (2.6), y]b = 0 for all j. Thus, the relation (2.9) implies that

(2.10) det( ])]=f,a=a,b=b,= 7 O.

Consequently, by the implicit function theorem [2, p. 39], the equation w(]; 5, , ) 0
has a unique analytic solution f ](, D, J) in some neighborhood 1 c C’ (R)Cn (R)Cn

of the point (a, b, A), and ](a, b, ,k) f.
Now we restrict

a(t) =_ vec(A(t)), / b(t), A(t),

where A(t), b(t), A(t) for t e [-e, e] are defined by (2.7) and e is a sufficiently small
positive scalar such that (a(t), b(t), A(t)) E when t E I-e, el. Then we have proved
that the equation

w(f a(t), b(t), A(t)) 0

has a unique analytic solution

f f(a(t), b(t), A(t)) f(t), t e [-e,

satisfying f(0) f. This means that we have the relation

(2.11) w(](a(t), b(t), A(t)); a(t), b(t), A(t)) O, t e I-e, ],

where a(t), b(t), A(t), ](a(t), b(t), A(t)) and w(](a(t), b(t), A(t)); a(t), b(t), A(t)) defined
by

(2.12) w(](a(t), b(t), A(t)); a(t), b(t), ),(t))
(](a(t), b(t), A(t)); a(t), b(t)) A(t)

are analytic functions of t e I-e, el, and a(0) a, b(0) b, A(0) A, f(0) f.
Differentiating (2.11), we get

wdf(t) + wda(t) + wdb(t) + wdA(t) O, t I-e,

Notably at t 0, i.e., at ] f, a, D b,- A, we have

(2.13) Wfdf + Wada + Wbdb + WdA 0,

where Wy is defined by (2.9), and

(.dWa )f__f,__a,b__b,__ik, Wb @d)f__f,&__a,__b,__ik,

(2.14) df

da (da(t))t=o, db (db(t))t=o, d, (d,k(t))t=o.

By (2.10), the matrix WI is nonsingular. Consequently, from (2.13),

(2.15) df -w-lWada w-lWbdb Wf-lW,xd.
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Let

(2.16) Z W
Then from (2.9)and (2.3),

(2.17)
1 1 1)Z=Ydiag ylTb, y2Tb’’’’’ynTb

Applying Theorem 1.3 (3) and using simple calculations, from (2.8) we get the
at ] f, a,/expressions of Wa, Wb, WA, the Jacobian matrices wa,wb,wA

b, , (i.e., at t 0)"

’ [D(X)X-1 (X)X-1 DWa a)]=I,a=a,,=b D2 (X)X ]

(2.18) Wb ()]=I,a=a,$=b diag(fTxl, fTx2’’ fTxn)X-l’

where

(2.19) D(X) diag(xl,X2,...,xn), 1,2,...,n.

Substituting (2.16)-(2.19) into (2.15), we get the differential relation

(2.20) df Oda + db + ZdA,

where

(2.21)

i 1 1 ) cnxnZ -Wf-1WA Ydiag
yTlb, yb’"" yTb

e

g2 -wf-lWa -Z [DI(X)X-1,D2(X)X-I,...,Dn(X)X-1] e CnXn2

q -W-IW -Zdiag(fTxl, fTx2, fTxn)X-1 E ,.
Thus, we have proved the following theorem.
THEOREM 2.1. Let a controllable system (A, b) and a set of self-conjugate complex

numbers A1, A2,..., ’n be given, where A Aj, j. Let A diag(,\l, A2,..., An),, (A1, "2,..., An)T, a- vec(A). Assume that f e n and X e C satisfy (2.2).
Then there is a differential relation (2.20), where Z, , q are expressed by (2.21).

Remark 2.2. For any consistent norm II, the relation (2.20) gives

Consequently, the group of scalars A(f), b(f), (f) defined by

(2.22) t A(f)- [lOll, t%(f)= I[[I, A(f)= IIzI]

is the group of absolute condition numbers of the state feedback f with respect to
A, b, and ,. Moreover, the scalar n(f) defined by

(2.23) n(f) V/[mA(/)]2 + [b(f)] 2 + [nA(f)] 2
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can be called the absolute condition number of f.
Remark 2.3. Observe that the matrices O, , and Z expressed by (2.21) are

independent of the column scaling of X. Hence, there is an important fact: the
absolute condition numbers A(f), b(f), (f) are independent of the norms of the
right eigenvectors xl,x2,. ,xn of A + bfT.

Remark 2.4. We now define the absolute condition numbers A(f),tb(f), and
(f) by using the norm 112 in (2.22). If the matrix X (xl,x2,... ,xn) of (2.2)
satisfies Ilxjll2 1 for all j, then from (2.21)-(2.22),

A(:)- 11112 IIZII211X-1112,

b(f) 11112 Ilfl1211zII211X-l12,

where the first inequality is deduced from the fact that

[D (X), D2(X),..., Dn(X)] [DI(X), D2(X),..., D,(X)]T I,.

The following result, as a corollary of Theorem 2.1, gives the first-order pertur-
bation bounds for the solution to Problem PA.

COlOLLnlY 2.5. Let a controllable system (A,b) and a set of self-conjugate
complex numbers )1,/2,... ,,n be given, where iki Aj, i j. Suppose that (A,b)
is~ slightly perturbed to a controllable system (A, b) and isslightly perturbed to a set

of self-conjugate complex numbers 1, ik2,..., ik. Let f, f E Tn be the solutions to
Problem PA with the data A, b, and A, b, , respectively, and let

a vec(A), vec(fi.), A (/1, ,2,... )n)T, , (,1, ,2,. n)T.

Then for any consistent norm [I II, , have

(2.24)

<- + o( I
where

5.f II,:I:,(- a)+ (- b)+ Z(,- )11,

z I11111 all + I11111Y, bll + IIZII II 11,

and Z, , qt are defined in (2.21).
2.2. Relative condition numbers. By Rice [20], there are two kinds of con-

dition numbers: absolute and relative. As above, from the differential relation (2.20)
we have derived the absolute condition numbers nA(f), nb(f), (f), and e;(f) of the
state feedback f. In this subsection, we derive relative condition numbers of f.
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From the relation (2.20) we get

IIf(A,b, A) -fl12 < hA(f)" [Ibll It/- bll+ ab(f) llfil’2: lib[12

II;Xll=. I1--+-9’(/) Ilftl2

(()2+O lift-- AII
IIAIIF

(ll’-bll2 + IIX-xll2+ Ilbll2 11112

where f f(A,b,A); aA(f_),ab(f), and a(f) are defined by (2.22) with the norm

I]2; and I1. AI]F 0, lib- bl12 0, I1 All2 0. The relation (2.26) shows that

the scalar a(Ar) (f) defined by

a(Ar)(f) aA(f) IIAIIF

is the relative condition number of f with respect to A.

ar) (f), air) (f) defined by
Similarly, the scalars

Ilblla)(f) ’(f) Ilfll a()(f) ax(f)
Ilfll

are the relative condition numbers of f with respect to b and A, respectively. Moreover,
the scalar a(r)(f) defined by

(2.29) a(r) (f) V/[a(Ar) (f)]2 + [a) (f)]2 + [a() (f)]2

can be called the relative condition number of f. In other words, a()(f) can be called
the relative condition number of the pole assignment problem.

It is known that a relative condition number can be used to distinguish the condi-
tioning of a problem. Therefore, we will call a pole assignment problem ill conditioned
if the relative condition number a(r)(f) is large.

2.3. Conditioning of the closed-loop eigenvalues. Let A, b, and A be as in
Theorem 2.1 and let f f(A, b, ) be the unique solution to Problem PA with the
data A, B, A. In 2.2 we discussed the conditioning of the solution f to Problem PA,
i.e., the conditioning of the pole assignment problem. In this subsection we discuss a
related question: how do we distinguish the conditioning of the resulting closed-loop
eigenvalues A1, )n?

Let A + bfT be decomposed by (2.2). We now rewrite it as

(2.30) yT(A + bfT)x A,

where X [Xl,... ,Xn], g [Yl,-.., Yn], and A diag(A1,... ,An) with Ai # Aj for
i # j. The relation (2.30) shows that xj and yj are the right and left eigenvectors of
A + bfT belonging to Ay for j 1,...,n. By Wilkinson [27, Chap. 2], the scalars
c(Ai) defined by

(2.31) c(A.)- IlxjllllYjll.
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are the absolute condition numbers of the closed-loop eigenvalues Aj. Moreover, by
Geurts [8, p. 90], the scalars c(r) (j) defined by

(2.32) [IA + bfTll .

are the relative condition numbers of the nonzero closed-loop eigenvalues
Assume that Aj 0 for all j. Then the scalar c(r)(A) defined by

(:.ca)
j--1

can be regarded as the relative condition number of the resulting closed-loop eigen-
values A1,..., An. Therefore, we will call the resulting closed-loop eigenvalues ill
conditioned if the relative condition number c()(A) is large.

It is worth pointing out that the conditioning of the feedback and the conditioning
of the resulting closed-loop eigenvalues are two entirely different things. This fact will
be illustrated by Example 4.3 of 4.

3. The multi-input case. Given a multi.input controllable system (A, B) with
A E 7’,B E ’(m > 1), and given a set of n complex numbers,
{1, 2,..., }, closed under complex conjugation and Ai :/: Aj for i : j. By Theorem
1.1, there is an g (fl, f2,..., f,) 7"’ with a nonsingular X (xi) C,
whose columns are the right eigenvectors Xl, x,..., x of A + BFT corresponding to
the eigenvalues A1, A,..., A, such that

(3.1) A + BFT XAX-1,

where A diag(A1, 2,.. An). As before, let

Y X-T [Yl,Y2,...,Y].

Then Yl,Y2,...,Y are the left eigenvectors of A + BFT belonging to/l,A2,...,An,
respectively, and T

yj xj 1 for all j.

Let (,/) be a controllable system and let {1,2,...,} be a set of
seJf-conjugate complex numbers. Moreover, let A (AI,A2,...,An)T and let
(A1, A2,..., )T. After the manner of (2.7) we define A(t),B(t),A(t) for t e [-1, 1].
Assume that (.A,/) is sufficiently near (A, B) and is sufficiently near A, such that
the system (A(t),B(t)) is controllable and the set {Al(t),A2(t),...,An(t)} is closed
under complex conjugation for any t [-1, 1]. Then by Theorem 1.1, Problem PA
with the data A(t),B(t), and A(t) is solvable for each t e [-1, 1]. But observe that
there exist extra degrees of freedom in Problem PA for the multi-input case, i.e.,
Problem PA is essentially underdetermined for the multi-input case [11]. Hence, in
general, there are various F(t) 7’ such that the eigenvalues of A(t)+ B(t)F(t)T
are A(t),j 1,2,...,n.

As we have done in 2, we now embed A, A(t), B, B(t), A, A(t), F, F(t) in complex
linear spaces. Let

fI=A+EA, [=B+EB, =F+G,
where EA C,nxn, EB, G Cnxm, and Cn, and the elements of EA, EB, G, are
sufficiently small in magnitude such that all the eigenvalues of +/)/r are simple.
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Let #( +//T) denote a vector in Cn whose jth element is the eigenvalue of
//T nearest to flj, j 1, 2,..., n. Then obviously #(A + BFT) A.
Define a vec(A), b vec(B), f vec(F), and define a, ,/similarly. Let

(3.2)

Applying Theorem 1.3 (3) and using simple calculations, from (3.2) we get the ex-
at]=f,=a,D=b,=pression of the Jacobian matrix w:

(3.3)
[S xT, S, x =- we C x

where

(3.4) Sj diag(ylTbj T T,y2bj,...,ynbj), j=l,2,...,m.

Since diag(XT, xT,..., XT) is nonsingular, the relation (3.3) implies that

rank(Wf) rank([S1, $2,..., Sm]).

By Theorem 1.1, yB # 0 for all j, i.e., there are indices 1’, 2’,..., n’ e {1, 2,..., m}
such that

ybj, 7 0, j 1,2,...,n.

Therefore, rank([S1,S2,... ,Sm])= n. Thus, we have rank(Wf) n. Consequently,
by Theorem 1.2, the equation w(]; , D,) 0 has infinite analytic solutions f
](, D, ) in some neighborhood c Cn @ Cm (R) C of the point (a, b, ), and
](a, b, ) f

Now we restrict

a a(t) vec(A(t)), b(t) =: vec(B(t)), =/(t).

Then there is a sufficiently small e > 0 such that (a(t), b(t), iX(t)) E 1 when t E I-e, el.
Thus, we have proved that the equation

(3.5) w(]; a(t), b(t), A(t)) 0

has various analytic solutions

(3.6) ] ](a(t), b(t), A(t)) =_ f(t), t e [-e, e]

satisfying f(0)= f.
Let f(t) be any of the solutions to the equation (3.5). Differentiating (3.5) at

t 0, i.e., at ] f, a, b, =/k, we get

(3.7) Wfdf + Wada + Wbdb + WadA 0,

where Wf is defined by (3.3), and Wa, Wb, W, dr, da, db, d, have the same definitions
as in the single-input case (see (2.14)).
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Applying Theorem 1.3 (3) and using simple calculations, we get

Wa [D1 (X)X-1, D2(X)X-I,..., Dn(X)X-] E Cnxn2

Wb diag(TZ-l, T2X-, TmX-l) Cnrnn,

where

(3.9)
D(X) diag(xl,Xi2,...,xin), 1,2,...,n,

Tj =diag(fTxl,fTx2,...,fTxn), j l, 2, m.

It has been pointed out that the equation (3.5) has various analytic solutions f(t)
satisfying f(0) 0. Consequently, there are various df satisfying (3.7). We now take
a special solution f(t) such that its differentiation at t 0 is expressed by

Then we have proved the following theorem.
THEOREM 3.1. Let a controllable system (A, B) and a set of self-conjugate complex

numbers A1,A2,...,An be given, where A 7nxn, B 7nx’ (m > 1), and Ai
Aj, j. Let A diag(A1, A2,..., An), A (A1, A2,..., An)T, a vec(A), b vec(B).
Assume that F nXm and X Cnxn satisfy (3.1), and let f vec(F). Then there
is a differential relation

df Oda + q2db + Zd,

where Z, (, are defined by

(3.11) Z Wf e Cmnn -ZWa e Crann2 V -ZWb Crnnmn

and Wf, Wa, Wb are expressed by (3.3)-(3.4) and (3.8)-(3.9).
Remark 3.2. Observe that there are various analytic solutions f(t) vec(F(t))

to the equation (3.5) satisfying f(0) f =- vec(F), where F is a solution to Problem
PA with the data A, B, A. Hence, the solution F may have various groups of absolute
condition numbers that reflect the different sensitivities of F with respect to A, B, A.
From (3.10) we see that the group of scalars hA, tCB, and n defined by

is one of the groups of absolute condition numbers of F. Moreover, the scalar n(F)
defined by

(3.13) .(F) + +

can be regarded as an absolute condition number of F.
Remark 3.3. It is easy to verify that the matrices (I), , and Z defined by (3.11)

are independent of the column scaling of X. Consequently, the condition num-
bers aA(F),aB(F),a(F) are independent of the norms of the right eigenvectors
x,x2,...,xn of A + BFT.
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Remark 3.4. We now define the absolute condition numbers nA(F),nB(F), and
n(F) by using the norm 112 in (3.12). If the matrix X (xl,x2,... ,x,) of (3.1)
satisfies [Ixjll2 1 for all j, then from (3.3)-(3.4), (3.8)-(3.9), and (3.11)-(3.12),

B(F)- I111 maXlNj_<n IIll,llZllllx-lll,

From Theorem 3.1 we get the following corollary.
COROLLARY 3.5. Let a controllable system (A, B) and a set of self-conjugate

complex numbers ,l,,k2,...,An be given, where ii ,j, j. Suppose that (A,B)
is slightly perturbed to a controllable sy__ste_m ft, _) and . is slightly perturbed to a set

of self-conjugate complex numbers hi, i2,... ,in. Let F E Tnxm be a solution to
Problem PA with the data A, B, . Then there is a solution to Problem PA with the
data ft, #, , such that for any consistent norm II, we have

(3.14)

<_Sg+O b

_AF+O

where

a vec(A), 5 vec(), b vec(B), vec(/),

(3.15)
5 II,(a a) + (b b) + Z( A)}I,

zx I11111-all + I11111,-bll + IIZIIIIX- )’11,

and Z, , are defined by (3.11).
Remark 3.6. Let (A,B),A be as in Theorem 3.1, and let F be a solution to

Problem PA with the data A, B, ,k. In a similar manner as described in 2.2 we can

define the relative condition numbers n(Ar) (F), ,;)(F), n(r)(F), and (r)(F) of F by

(3.16) ar)(F) aA(F). IIAII )(F) ,(F). [IBII )(F) (F). IIFIIFIIFIIF’ IIFIIF’
and

(3.17) a()(F) [ar)(F)]2 + [a)(F)]u + [a)(F)]u,
where cA(F), as(F), and ax(F) are defined by (3.12) with the norm II=. Moreover,
rewrite (3.1) as

yT(A + BFT)X A,
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where X Ix1,... ,xn], Y [yl,..., Yn], and A diag(A1,..., An) with Ai Aj for
j. Then in the same way as described in 2.3 we can define the relative condition

numbers c(")(Aj) and c(r)(A) of the closed-loop eigenvalues by

(3.18) c( Xj). IIA + BFTII . if Aj 0

and

n

(3.19) c(r)(A) E[c()(),j)] 2 if Aj - 0 Vj,
j--1

where c(Aj) Ilxyll211yjll2 for j 1,... ,n.
Remark 3.7. Let (A,B), A,... ,An, and F be as in Theorem 3.1, and let

A + BFT UTUH

be the Schur decomposition of A +BFT, where U is a unitary matrix and T A/M
is an upper triangular matrix with a diagonal matrix A (Ai) and a strictly upper
triangular matrix M. Moreover, let A, B, and A be perturbed to A + AA, B + AB,
and A+AA, and let U and F be perturbed to U+AU and F+AF. By using
a first-order perturbation equation for U and F (the unknowns of the equation are
AU and AF), Konstantinov and Petkov [13] derived upper bounds for I[AUI]F and
IIAF]IF, as well as the absolute condition numbers of the pole assignment problem
with respect to A, B, and A. Note that there are several differences between [13] and
this paper:

(i) the paper [13] does not restrict all the eigenvalues A,..., An to be simple;
(ii) the techniques for deriving condition numbers and perturbation bounds are

different; and
(iii) the coefficient matrix Wf of the equation (3.7) is an n mn matrix, but

the coefficient matrix of an analogous equation in [13] is an n(n2+l) (n(n2-1) / ran)
matrix.

Consequently, the amount of work in computing the condition numbers and per-
turbation bounds by (3.12) and (3.14) is less than that of [13]. Besides, the condition
numbers A(F) and tc(F) defined by (3.12) are, in general, different, but in [13], the
condition numbers of the problem with respect to A and A are equal. Note that the
paper [13] studies the condition numbers not only of the pole assignment problem,
but also of the general feedback synthesis problem.

4. Numerical examples. Now we present some results of numerical tests.
The first three examples are for the single-input case. It is known that (i) for each

controllable system (A, b) there exists a unique system Hessenberg decomposition

A= QHQT, b= Qh,

where Q is orthogonal and

hll hn hi0
o

(4.1) H h21 "’- h

0 0 hn,n-1 hnn
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with hi,j-1 > 0 for all j [14]; (ii) a preliminary stage of the current pole assignment
algorithms is to transform the pair (A, b) into the system Hessenberg form (4.1) via an
orthogonal similarity transformation [15], [19]. Therefore, for simplicity, we assume
that the system (A, b) of Examples 4.1-4.2 is in system Hessenberg form.

Example 4.1 (see [14]). Consider the system (A, b) with

-4 0 0 0 0 #
oa -3 0 0 0

(4.2) A= 0 a -2 0 0 b= 0
0 0 a -1 0 0
0 0 0 a 0 0

where a and # are small positive numbers. Let

f (3.12,-1.67, 7.45,-2.98, 0.37)T

be the solution to Problem PA with data A,b, and A (A1,,2, A3, A4,/5)T E C5,
where the set {AI, A2, A3, A4, A5 } is closed under complex conjugation.

Taking the spectral norm [[2, by (2.27)-(2.29) we can compute the relative con-

dition numbers g(Ar) (f), gr)(f), gr)(f), and (r)(f). Some numerical results obtained
by using MATLAB are listed in Table 1, where

-2.980127e + 00 + il.796999e + 00
-2.980127e + 00 il.796999e + 00
-4.955320e 01 + i4.276059e 01
-4.955320e 01 i4.276059e 01
7.131756e 02

(4.4) A(2)

-2.872401e + 00
-2.082527e + 00
-9.625392e 01 + i9.227306e 03
-0.625392e 01 i9.227306e 03
6.675582e 06

2.991735e + 00
-2.000678e + 00

A(3) -8.876000e 01 A(4)

-9.999867e 01
6.964499e- 10

-2.999208e + 00
-8.807849e 01
-2.000007e + 00
-1.000000e + 00
7.003156e- 14

and c(A, b), the condition number of the system Hessenberg form of the system (A, b),
is defined as follows [24]. Letn denote the set of real n x n strictly lower triangular
matrices. For Y (yij) 6 ]nn, define the operator low 7nxn --, xn by

 ow(Y)
YO if i > j,

0 ifi<_j.

Further, define the operator L ,xn x, by

(4.5) LXL low(Xa(h,H(l:n- 1)) H(O, XL(I:n- 1))), XL e x,,
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TABLE
(take i3 1.00e -F 00).

a 1.OOe-I-O0 1.00e-01 1.00e-02 l’00e-03
A A(1) A(2) A(3) ’’A(4)

,(r) () 1.1109e-F01 3.4957eH-04 3.3155eH-08 3.2969eH-12A

(r)b (f) 7.1558eH-00 1.0247eH-04 1.0118eH-OS 1.0117eH-12

(Ar) (f) 5.1808eH-00 2.4116eH-04 2.3240e-F08 2.3134eH-12
(r) (f) 1.4194eH-01 4.3686eH-04 4.1734eH-08 4.1527e-F12

c(A b) 3.4910eH-01 2.4839eH-04 2.4740eH-07 2.4739e-F10

where H, h are expressed by (4.1), and H(1 "n- I) denotes the matrix that consists
of the first n 1 columns of H. Then c(A, b) is defined by

(4.6) c(A, b)

in which is the operator norm induced from the Frobenius matrix norm.
The author’s numerical tests show that the relative sensitivity of the solution f

to Problem PA is increasing along with the increases of c(A, b), the condition number
of the system Hessenberg form of the controllable system (A, b) [24]. Observe the fact
that the system Hessenberg form (H, h) of the system (A, b) is ill conditioned if the
system (A, b) is very near to an uncontrollable one [14], [24]. Hence, presumably there
is some intrinsic relation between the conditioning of the solution f to Problem PA
and the distance of (A, b) from the nearest uncontrollable system [17]. For instance,
perhaps the condition number n(r)(f) is inversely proportional to the distance of (A, b)
from the nearest uncontrollable system [7].

Example 4.2. Let A, b be expressed by (4.2), where a 0.1,/ 1, and let
A A(2) be the vector expressed by (4.4). It is known that the vector f expressed by
(4.3) is the solution to Problem PA with the data A, b, A. Let ] be the solution to
Problem PA with the data , , :

fi=A+E, =b+e,

where

(4.7)

0.182 -0.378 0.394 0.223 -0.556
-0.481 0.274 0.683 -0.911 0.025

E0 0.284 -0.179 0.932 0.573 -0.447
0.116 -0.523 0.379 -0.432 0.332

-0.765 0.337 -0.184 -0.367 0.386

e0=(1, -2, 0.3, -4, -1)T, 0--(l+i, l-i, 3, -2, 1)T,

and e is a very small positive scalar.
Taking the norm 112 and different values of e, by (2.25) we can compute approxi-

mate upper bounds 51 and Af for IIf-fl12. Some numerical results obtained by using
MATLAB and the file SEVAS are listed in Table 2. Note that SEVAS and MEVAS
(used in Example 4.4) are computer programs written by G. S. Miminis, Department
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TABLE 2

1.00e-04
5.2352e+00

1.00e-06

2.8292e-01

1.00e-08

1.8205e-03

1.00e-10

1.8144e-05

5 1.9661e+01 1.9661e-01 1.9661e-03 1.9661e-05

AS 8.0117e+01 8.0117e-01 8.0117e-03 8.0i17e-05

of Computer Science, Memorial University of Newfoundland, Canada. The programs
are implementations of an algorithm for pole assignment by Miminis and Paige [16].

The results of Table 2 show that, by using the estimates (2.25), the computed
approximate upper bounds 5f and Af of IIf- fl12 are satisfactory.

Example 4.3 (see [10, Ex. 1]). Let

(4.8) A diag(0.1, 0.2, 0.3, 0.4, 0.5, 0.6), b (1, 2, 3, 4, 5, 6)T.

Suppose that we wish to assign the eigenvalues -6, -5, -4, -3, -1.1, -1. Varga [26]
has pointed out that the computed feedback by any of the stable algorithms has a
very high relative accuracy (about 10-9), but the resulting closed-loop eigenvalues
have only about two correct digits. This means that the solution to the pole assign-
ment problem is well conditioned but the closed-loop eigenvalues are extremely ill
conditioned. Note that this fact can be clarified by our analysis in 2. Let

(4.9) (-6, -5,-4,-3,-1.1,-1)T.

By using MATLAB and the file SEVAS, from A, b, and A we get the computed feedback
and then by the formulae (2.27)-(2.29) and (2.31)-(2.33) we get the relative condition
numbers of the feedback and those of the resulting closed-loop eigenvalues as follows:

(4.10)
a(Ar) (f) 2.0439e + 01, nr) (f) 1.9456e + 00, n()(f) 1.0535e + 01,

a() (f) 2.3077e + 01,

(4.11)
c()() 2.3956e + 15, c()(A2) 6.6419e + 15, c(r)(A3) 6.4221e + 15,

c(r)(4) --2.3411e + 15, c()(A5) 4.5093e + 14, c(r)(A6) 3.2512e + 14,

c()(A) 9.8431e + 15.

From (4.10) and (4.11) we can understand why the computed feedback by any of
the stable algorithms has a very high relative accuracy but the resulting closed-loop
eigenvalues have only about two correct digits.

Let A, b, A be expressed by (4.8)-(4.9), and let Aa cA, where a is a positive
number. Moreover, let fs be the solution to Problem PA with the data As, b, , and let
c(As, b) be the condition number of the system Hessenberg form of the controllable
system (As, b) defined by (4.5)-(4.6). From the results listed in Table 3 we see a
similar phenomenon as shown by the results in Table 1: the relative sensitivity of fs
is increasing along with the increases of c(As, b).
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TABLE 3

c 1.00e+00 1.00e-01
a(r) (fa) 2.3077e+01 1.6510e+03
c(Aa b) 2.1956e+01 2.1948e+02

1.00e-02 1.00e-3

1.6308e+04 1.6313e+05
2.1948e+03 2.1948e+04

Example 4.4 (see [19]). Consider the system (A, B) with

-0.10940 0.06280 0.00000 0.00000 0..00000
1.30600 -2.13200 0.98070 0.00000 0.00000
0.00000 1.59500 -3.14900 1.54700 0.00000
0.00000 0.03550 2.63200 -4.25700 1.85500
0.00000 0.00227 0.00000 0.16360 -0.16250

and let

B / 0.0000 0.0632 0.0838 0.1004 0.0063 )
T

0.00000.0000-0.1396-0.2060-0.0128

A (-1 + i, -1 i, -0.5, -0.2, -1)T.
By using MATLAB and the file MEVAS, we obtain a solution F to Problem PA with
the data A, B, "

2.269923501498446e / 01 4.328501909623649e + 00
-5.312109137216190e / 01 1.066982012066820e + 01

.F 5.597202515142414e + 01 -7.995243974279445e / 01
-6.697515863715235e / 01 6.098543501544316e + 01
-6.435235435440497e + 01 -8.502047279072825e + 01

By using MATLAB and by (3.16)-(3.17) we get a group of relative condition
numbers of the feedback F as follows:

a(Ar) (F) 3.9150e + 00, a)(F) 4.7480e + 00, g(r)(F) 3.9134e 01,

a() (F) 9.5921e / 00.

Moreover, by (3.18)-(3.19) we get the relative condition number c()(A) of A" c()(A)
2.1926e + 04.

Let the data A, B, be perturbed to .,/}, :
=A+EA. =B+E.. =A+,.

where EA eEo, EB eEl, e0, in which E0 and 0 are expressed by (4.7), e is
a very small positive scalar, and

El:( 1.0 -2.0 0.3 -4.0 -1.0)
T

-1.03.02.01.00.6

For each group of data .,/, i, we obtain a solution/ to Problem PA by using MAT-
LAB and the file MEVAS. On the other hand, by (3.15) we can compute approximate
upper bounds (F and AF. Some numerical results are listed in Table 4.

The results of Table 4 show that, by using the estimates (3.15), the computed
approximate upper bounds (F and AF are satisfactory.
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TABLE 4

e 1.00e-04 1.00e-06 1.00e-08 1.00e-10

I1- FIlE 1.6593e+00 1.6432e-02 1.6431e-04 1.6431e-06
5F 1.6810e+00 1.6810e-02 1.6810e-04 1.6810e-06

AF 3.3854e+00 3.3854e-02 3.3854e-04 3.3854e-06
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A SUBSPACE MODEL IDENTIFICATION SOLUTION TO THE
IDENTIFICATION OF MIXED CAUSAL ANTI-CAUSAL LTI

SYSTEMS*

MICHEL VERHAEGENt

Abstract. This paper describes the modification of the family of MOESP subspace algorithms
when identifying mixed causal and anti-causal systems. It is assumed that these class of systems
have a regular pencil zE- A, where E is possibly singular. The key numerical problem in solving
this identification problem is the separation of the extended observability matrix of the causal part
from that of the anti-causal part when a mixture of both is determined from the input-output data.
For the general mixed causal, anti-causal case, this requires a partial calculation of the Kronecker
canonical form of the pencil zE- A, where the pair [A E] has been determined from the recorded
input-output data. For the descriptor case, that is, when E is nilpotent, this problem is solved
without computing the Kronecker canonical form.

All existing members of the MOESP family applicable to causal, linear, time-invariant systems
are generalized. This allows a broad scope of identification problems for mixed causal, anti-causal
systems to be addressed.

Key words, linear systems, descriptor systems, subspace identification, causal, anti-causal
systems

AMS subject classifications. 15A18, 65F20

1. Introduction. Let us consider the discrete time-generalized state-space model
[1],
(1) EXk+I Axk + Buk,
(2) Yk Xk + Duk,
where uk C m, Yk @ , and X e ’ and/, .,/, , and D are constant matrices
of appropriate dimensions.

If E is invertible, the system is a causal (strictly proper) system. In that case we
can write (1) as

:+ =/-1: +/-/u.
When the pencil z/- fi is regular, i.e., the det(z/- .)?0, the so-called Kronecker
canonical form has the following specific structure:

(,0)z
0 E 0 I

Correspondingly, the generalized state-space description is transformed into the fol-
lowing mixed causal, anti-causal form:

x Ax / BCu (causal part)k--I
ac x- Bau (anti-causal part),(3) Exk+ k

yk--( C Ca ( xx ) + Duk.

Received by the editors January 26, 1994; accepted for publication (in revised form) by P. Van
Dooren May 21, 1995. This research was supported by a senior research fellowship from the Royal
Dutch Academy of Arts and Sciences.

Department of Electrical Engineering, Network Theory Section, P. O. Box 5031, NL-2600 GA
Delft, The Netherlands (m.verhaegen@et.tudelft.nl).

The acronym MOESP stands for multivariable output error state-space model identification
schemes and was introduced in [8].
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Here x E R ,c,xkac E noc, n nc + na, and the eigenvalues of A, denoted by
A(A), satisfy IA(A)I _< 1, while those of E satisfy IA(E)I < 1. The particular class
of systems that have the above generalized state-space form in combination with the
fact that the matrix E is nilpotent, i.e., En =_ 0, is sometimes indicated by the class
of descriptor systems [6].

Mixed causal, anti-causal, or descriptor systems frequently occur in a system
analysis of practical problems. Examples are the biomedical application of identifying
the human joint dynamics [7], the inversion of causal systems [6], and the description
of electrical networks and economical systems [5]. Despite their importance, only
a very limited number of solutions are available to directly identify mixed causal,
anti-causal systems in the state-space form given in (3) from recorded input-output
sequences.

One class of algorithms first estimates the impulse response of the system (3)
from input-output data and then realizes a state-space representation for this impulse
response. Examples in this class are [7], [3], and [14]. As outlined for causal systems
in [8] and for descriptor systems in [4], a better alternative is to identify the state-
space model directly from input-output data without having to estimate the impulse
response first.

Within this second class of so-called subspace model identification algorithms
we present a number of algorithms belonging to the MOESP family that allow one
to tackle very general identification problems for mixed causal, anti-causal systems.
These algorithms differ from that presented in [4] in the following ways.

(1) They do not introduce unobservable modes as done in [4] when the matrix E
in (3) is singular. This is because in [4], the observable part of the following
modified system

Xk+l
ac 0Xk_l

C CaCE

Xcac + _Bac Uk,
Xk

x +(D- )u

is identified instead of identifying (3) directly. As remarked in [4], the anti-
causal part of the above modified system is unobservable when the matrix E
is singular. This is so even when the original anti-causal part was observable.

(2) The MOESP approach allows one to identify descriptor systems without the
need to calculate the Kronecker canonical form. This is explicitly outlined in
Theorem 3 in 3.3.

(3) We extend all members of the MOESP family that are applicable to time-
invariant linear and finite-dimensional systems to the generalized class of
systems treated in this paper. This leads to a number of algorithms that
allow the solution of a wide variety of identification problems in a statistically
consistent manner.

In this paper, we subsequently treat the following topics. In 2, we state the
identification problems analyzed throughout the paper and in 3 we extend the ba-
sic member of the MOESP family to mixed causal, anti-causal systems, namely, the
ordinary MOESP scheme. Here we also give special attention to the solvability of the
set of equations that arise in calculating the different system matrices of the state-
space representation in (3) (up to a similarity transformation). In the final section,
we present the extension to the other members of the MOESP family.
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2. Formulation of the identification problem for mixed causal, anti-
causal systems. First, we state the deterministic form, that is, when the input-
output records are noise free.

The deterministic identification problem for mixed causal, anti-causal systems.
Let the data sequences [uj, uj+l,..., UN+j-I] and [yj, yj+,..., YN+j-] denote an
input-output pair for the system (3). Then the problem is to determine a similarly
equivalent generalized state-space model having the following explicit mixed causal,
anti-causal form:

(4)

c AT k + (TC)-?k+l (TC) -1 c c
ul :-- ATr]k + Buk,

(TO)-.o-o (TO-’k+l -" Bacuk :--ET?I --BCuk,

+ Duk := Cr Cc ):( CT CT ) + Duk

from the given input-output data sequences. Here := denotes the definition of the
quantities on the right of the assignment.

The real identification problem that will be considered in this paper is the de-
termination of statistically consistent estimates of the similarly equivalent matrices
AT, ET,... when the output sequence is perturbed by additive, unmeasurable errors.
Three types of errors will be considered: (1) zero-mean white noise errors, (2) ar-
bitrary colored errors including a deterministic bias which is independent from the
input sequence uk, and (3) zero-mean errors in the following innovation type of model
structure:

X_}_ Ax + Buk + Kwk,
ac ac KaC(5) ExC+l x

yk=( C cac ( xx ) + Duk+vk,

where w and vk are zero-mean, discrete white noise sequences.

3. Description of the extension of the ordinary MOESP algorithm.

3.1. Data equation and definitions of observability and persistency of
excitation. om the input sequence {u} construct the following Hankel matrix:

uj Uj+l UNTj-1

Uj,s
Uj+l uj+2 UNTj..

UjTs--1 Uj+s UNTjTs-2

Similarly construct the Hankel matrix, from the output data. Let the state vector
sequences x and x be stored in the matrices X] and X], respectively, as

z;= Ix; x;+ x+_l ], z?- x7 X$$l x%_1 ].
Then, when defining the extended observability matrix Fs and the near Toeplitz
matrix H as

C
CA CE-

r= := rlr ],
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D + CaCBac CaCEBaC CCES-2Bac 0
CCBc D + CaCBc CCES-3Bc 0

H8 o

CCA-2Bc CCA-3B CB D

we can relate the data Hankel matrices U,s and Y,

(6) yl,=F[ X + HU,.

om [16] we state the following definition of observability of the generalized
state-space system (3).

DEFINITION 1. The linear time-invariant generalized state-space system (3) is
observable if and only if

p F n, p F% n, and p[F]=n,

where p(.) denotes the rank of the matrix (.) and s no, s2 nac, and s n.
om [8] we recall the following definition of persistency of excitation.
DEFINITION 2. The input u} is persistently exciting to the linear time-invariant

generalized state-space system (3) if

p Xf =ms +n.
X

It should be remarked that this definition requires the underlying system to be
controllable. For a proper definition of controllability for the generalized systems (3)
we refer to [16].

3.2. Calculating the extended observability matrix Fs. The key step in
the algorithms belonging to the MOESP family, described in [8], [9], [10], [11], [12], and
[13], is the calculation of the column space of the extended observability matrix

Because the data equation (6) is exactly the same that obtained for causal
time-invariant systems analyzed in the above series of papers, we state without proof
the following theorem.

THEOREM 1. Let the linear time-invariant descriptor system (3) be observable
and let the input be persistently exciting over the time interval [1, N]. In addition, let

1. s n and g sg + (s-1)m + (s-1),
2. the following RQ factorization be given:

(Z) g, 1
a. ed the followin9 SVD of the mtriR be 9iven:

with S R x

Then S > O, S 0, nd T Rx with T nonsin9lr, sch that

r r.
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3.3. Calculating the matrices AT, ET, and C,Cc. Because of the special
structure of F8 and the relationship (9), the following holds:

0 I =U(g+l"sg")T- I 0
0 E

Therefore, by solving the following overdetermined set of equations for AT nd ET,

AT.(0) s(. (- )e, :)I-s(e / . e, :) .. 0,

0 A 0the pencil zET AT is similarly equivalent to the pencil z[ E] [0 i]" As a

consequence, we can compute AT nd ET by reducing the pencil zET AT into the
Kronecker canonical form.

To determine the additional system mtrices C nd C and later on Mso B,
Bc, and D, we look for n invertible n n transformation matrix P such that

(11) UP F FC [ Tc 0 -]
where both T and Tac are square, nonsingular matrices. For that purpose, we first
reduce the matrix pencil zET AT into the following similarly equivalent form:

() (’)-(-Z)’= 0 0

where the eigenvalues of Ar and E coincide with those of A and E, respectively.
or computational details we refer to .g.

In the nex theorem, we show that for P P, (11) indeed holds.
TOaM 2. et the matriz pencil zEr Ar, with A aed Er compted b

solvi9 (10) for s > n, be reduced b the pair 4 iveible matrices (P’, Q’) into the
structured fo as iedicated ie (12), with the spectrum of the matrices Ar nd Er
equal to that of the matrices A and E in (a), respectively. Thee the relatioeship (11)
holds for P P.

Pro@ Suppose that ghe transformation P computed in (12) yields

UP’= F F [ T T .]T T
Using the special form of the transformed pencil on the right of (12), (10) can be
denoted s

U(I’(s-1),:)P’[ AT 0 =U(+1"s .)p, [ I 0 ]0 I 0 ET
Hence,

0]ET
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which is denoted more compactly as

ac T TiET
The matrices A and E satisfy the equations

F(I)A r(), E()E

Using these two relationships, (13) leads to the following two equations:

AT’ ) (ET A 
F(c1) (T2 AT2ET) F(2c (TcET ETc

Since s > n, we have that p F(c1)
above equations only hold if

F(2)a) p(Fs-1) n. As a consequence, the

TAT AT O,

T’a E ET’a O,
ETIAT T O,
T2 AT2ET O.

In the last two Sylvestor equations, the matrices AT and A (respectively, E and
ET) have a spectrum located inside or on the unit circle (respectively, inside the
unit circle). Therefore, both Sylvestor equations have the zero solution as a unique
solution. Hence,

T =0, Te =0

and the proof is completed.
If we define the quantity

(14) U UnP’,

then the matrices AT and ET satisfy

(5) U(l"(s- 1)g, I n)AT U(g + 1" sg, l nc),

(16) U(l’(s- 1)g,n + l’n) U(g + 1" sg, n + I n)ET,

and C,,Cc,

(17) C. Un(l’g, l’nc), C.c Un((s- 1)g’st,n + l’n).

When the underlying system is a descriptor system, it is possible to "split" the
column space of Un into one part related only to the causal part and one related
only to the anti-causal part of the underlying system without needing to compute the
Kronecker canonical form. This is outlined in the following theorem.

THEOREM 3. When the system given in (3) is a descriptor system such that
Enac =- 0 and the conditions of Theorem 1 are satisfied for s >_ max(2na, 2n) and s
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even, then

CaCEi-1

*
CaCE

T22

cac

for P, Tll, T22 nonsingular and, is a matrix in gt n.
Proof. First note that since >_ nac, Fs has the following form:

F8
0

CA-1
’CCAi ’1CaCE’l

CAS- cac

By Theorem 1, we have that

Un=FsT=[ 9/1]2 with 3’1E I xn"

8 _> this shows that P(’)’I) nc. ThereforeSince T is nonsingular and g n,

P gt n xn, p nonsingular ,IP I 0

with I tx having the same column space as ’1. This transformation P yields
the desired result. For

gnP-- "1 0 ] [ Pll 0 I Tll r12 ]2 3 r21 F22 T21 T22

which shows that

(18) 1 FIITll,
(19) 0 FIIT12,
(20) V3 F21T12 + F22T22.

Since _> nc we have that p(rll) nc, and (19) yields T12 0 and the matrices TII
and T22 have to be nonsingular. Furthermore, (20) reduces to
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and the proof is completed. []

The result of this theorem enables the calculation of AT, ET, C, and Cc and
from those matrices we construct the matrix Un as

c
CA

CAS-1

CaCE-I

cac
3.4. Calculating the matrices Br,B, and D. Substituting relationships

obtained in the RQ factorization (7) into the data equation (6) yields, under the
conditions of Theorem 1,

(21) (u)TR21R-I (u)THs.
When we know the column space of the causal part and the anti-causal part of the
extended observability matrix F, as given by those of the matrices U(:, 1 n) and
U(:,nc + 1 n), respectively, we can rewrite (21) into a set of equations which is
linear in the unknowns B,B, and D. If we denote the left-hand side of (21) by the
matrix .=., we can write the first rn columns of (21) as

:(:, 1 m) (Un)T [ I
L 0

0 D + "-T -’T
Un(1" (s- 1)e, l’n) B.

where I denotes the identity matrix of order t. The second to last block of m-columns
can be denoted as

Z(’, (s- 2)rn + l’(s- 1)rn)
U(e+l’(s-1)e,n+l’n) 0 0 B

mac li:?ac(UnA)T 0 I 0 D + "T -T
0 0 Un(1 e, 1 nc) B

By now padding the matrix (u)T with zeros on the left or on the right, we can denote
the above equations and those obtained from intermediate columns of the matrix E
in the following unified way:

m
-n ..(:, 1 m)
-n ..(:, m + 1:2rn)

-’ ..(’, m(s- 2)- 1: rn(s- 1))

Os--nX(s--2) (Un)T
Os--nX(s--3) (gnU)T Og.s--n

(gnU’)T Os_n(s--2)

(22)

Un( + l’(s- l),nc + l’n) 0 0
0 I 0
0 0 Utn(l"(s-1),l’nc)
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D --}- K’.aclztac
T "’T

Here Opq denotes the zero matrix of dimensions p q.
The last m-columns of (21) become

(23) U((s 1) + 1 "ts, .)T D E(’, m(s 1) / 1 "ms).

The set of equations (22) and (23) can be solved in least-squares sense if the under-
braced matrices have full column rank. We now investigate when this is satisfied and
start with the matrix in (23). The key here is summarized in the following theorem.

THEOREM 4. Let the quantities U, F8 be defined as in Theorem 1, let p(U(g(s-
1) + 1" ts, .)T):= p(U_) < , and let

_ - p(U_). Then

C2 R [Xt_ Ot(s--1)xt_ ]
C2 J

Cspancol(Fsac) and p([ C2 U_ ])-g.

Proof. Denote the matrix UIUn in (7) as

Un gn
g21 U_

Then since p(U_) < t, Q E N (se-n)x(se-n),r E N exe, QQT I,T I, and
U_QT R R_ [0 with R_ N exo(u_). Let us define ’= diag(,...,)
N (-)x(-). Then

gll UI2QT ] [ U11 UI2QT ]g21 U_QT g21 R_ 0

Since p(U_) < g and R_ x;(u-), Q2 Rex Q2R- [+] with R+
;(u_)xp(u_). Hence, defining 2 from Q2 as was defined from yields

R+ 0QU Q R_ 0 QruI o o

The left and right transformations performed to the matrix U U preserve the
orthonormality of that matrix. Hence, Q3 N x:

[ 2UI1Q 2U12QT . [ 2gl O(s.1)x- 2U12QT ]Q2U21Q R+ 0 0 R+ 0
oo o h_ oo

Now we restore the fact that the first n-columns of this matrix span the column space
of F. This yields the matrix

[ gl O(s-l)x- U12QT "] [c u_o UnlU O

This relationship concludes the proof of the theorem, since

0 QT ])
([ 0

=P h_ 0 0
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0] can be con-The modes that correspond to the column space of the matrix [c.
sidered as pure D-action. In order to see this, such modes can be represented by the
following descriptor state-space model:

ac Xtkac B aCUk;k+l
y’ Cx’a +

which is indeed equivalent to

Yk (D’ + C2B’ ac) ?.tk"

D

The above analysis shows that when p (Un(.(s 1) + 1" stY, :)T) < t, we can always
reduce the descriptor part of the system such that p (U(.(s- 1)+ 1" stY, :)T)
where n’ < n. Therefore, to calculate the matrix D, (23) can always be made solvable
in least-squares sense.

Now we analyze the full rank condition of the underbraced term in (22). A
necessary condition here is that the second matrix in this product have full column
rank. When the matrix E in (3) is singular, this necessary condition is not satisfied.
In that case, we first solve the matrix D from (23) and then we use this solution to
transform (22) into

..(:,m + 1: 2m) Os-nx(s-3) (Unl)T Os-n

0
(:, m(s- 2) % 1: m(s- 1)) (Un)T O.s-n(s-2)

(24)

O.s-nx(s_2). (Vnl)T
o_(_) (v)T o_

(VnA’)T O.s_n(s_2).

U’n(. 4- 1 si, nc 4- 1 n)
0

0
U’n(1 (s- 1)t, 1 no)

Here the second matrix in the underbraced term has full column rank when s > n,
even for the case when the matrix E is singular.

Suppose that we can solve (22) for the matrices Bc, B, and (D + CCBr).
Then the matrix D is computed by solving the equation

(25) [ Un(g(s- 1)ie+ l"gs, :)T S(:,m(s--1)+l:ms) ](D +CB) ’Tlac l:ac"T

Therefore, in order to show the solvability of (22), we may assume that the second
matrix in the underbraced term of this equation has full column rank. When this is not
the case, we treat the solvability of (24). Here the second matrix in the underbraced
term fulfills the full rank condition when s > n. Similar to the analysis of the related
question for identifying causal systems within the MOESP framework, as given in [8],
[9], we state the following result.

s Ak 0 andTHEOREM 5. Let there exist an even s such that for k >_ 1,
Ek --- O, and the second matrix in the underbraced term in either (22) or (24) has full
column rank. Then we can solve both equations in least-squares sense.
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Proof. With the s defined in the theorem, the matrix Un U has the follow-
ing structure:

r_ 0 I0 Ol*
0 0 lie 0l,
0 0 O Il,
0 Fc_llO

where are irrelevant matrices and where it is implicitly assumed that the columns
of F_ and Fac

3-1 are orthogonal. With this structure the underbraced terms in (22)
and (24) can be denoted as

I 0
02X (s--2) 02X(--1) 0 I 02X(--1)

ire o
02x (s--3) 02x (--1) 0 I 02x

I 0
02x(-1) 0 Y 02x (s-2) 02x(-1)

Clearly this product has full column rank.
The above theorem shows that the set of equations (22) or (24) can be made

solvable by increasing the s parameter when both the causal and anti-causal parts
are asymptotically stable. This conclusion is completely similar to that drawn in the
same context for pure causal systems analyzed in [8] and [9].

3.5. Summary of the algorithm (the algorithm ACC_OM (ordinary MOESP

scheme for mixed anti-causal, causal systems)).
Given:

An estimate of the underlying system order n n + na. The detection
of the order proceeds in exactly the same way as outlined for the "causal"
variants of the MOESP family of algorithms. It is based on partitioning the
singular values of the matrix R22 in (8) into "noise" and "signal" singular
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values. For a more elaborate discussion on order detection we refer to [12],
[10].
A dimension parameter s satisfying

8>n.

The input and output data sequences

[Ul, it2,..., ItN+s-1] and [Yl, Y2,..., YN+s-1]

with N >> m.s.
Do the following:

Step 1: Construct the Hankel matrices U1,8 and Y1,8 defined in (6).
Step 2: Achieve a data compression via an RQ factorization, of which the
R-factor is partitioned as in (7) of Theorem 1.
Step 3: Compute the SVD of the matrix R22 as given in (8) of Theorem 1.
From this SVD we can read off the column span of the extended observability
matrix Fs.
Step 3t: Split the column span of F8 into causal and anit-causal parts. This
is done by the following sequence of computations.

Solve the set of equations (10); for example, by using the singular value
decomposition we can do that in total least-squares sense.
Determine orthogonal matrices P1, Q1, such that

] Ell El2 ]All A12 and P1ETQ1PIATQ 0 A2. 0 E2

with AI,E E [R’cnc and A2,E2 [ nacnac, and such that
]A(AllE-)I < 1 and IA(A2E22)I < 1.
Solve the set of Sylvestor equations [15]:

AR- LA22 -At2,
EllR LE22 -E2.

Then Pt of Theorem 2 becomes

p,=p. [ Io L

and defines the matrix U’ as in (14).
Calculate AT, ET from the set of equations 15-16 and read off the
matrices C, C}c as indicated in (17).

Step 4: Calculate the system matrices AT, ET via solving (15) and (16),
respectively, reading off the system matrices C}, C}c as indicated in (17),
and calculating the matrices B}, B}, and D by solving (22), (25) or (24),
(23).

We remark that Step 3’ can be considered as an extra step in the ordinary MOESP
algorithm that makes the scheme applicable to the identification of mixed causal,
anti-causal systems. In fact, in the next section we will highlight that when squeezing
this additional step in all the members of the MOESP family, we make them applicable
to the class of generalized state-space systems analyzed in this paper. When the
underlying system is a descriptor system, we can use the results of Theorem 3 to split
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the column space of F8 into causal and anti-causal parts without (partially) computing
the Kronecker canonical form. The matrix P in this theorem can simply be computed
by using a QR factorization with column pivoting of the matrix 71 defined in the
proof of Theorem 3.

4. Tackling various identification problems.

4.1. Statistical consistency of the ACC_OM algorithm. The reason that the
main part of the algorithmic structure of the ordinary MOESP scheme is preserved by
the ACC_OM algorithm, namely Steps 1-3, is that the data equation (6) has exactly
the same structure as that obtained for pure causal systems. More precisely, Steps 1-3
remain valid when the matrices F8 and H in (6) are arbitrary. The only assumption
made on these matrices is that p(Fs) n.

The same is true in the analysis of the statistical consistency of Steps 1-3 of the
ordinary MOESP scheme; see [10] for causal systems. Therefore, based on Theorem 1
of [10], we can state that under the assumptions in Theorem 1 of this paper and for
the case where the output Yk in (3) is perturbed by zero-mean white noise errors,

T E $ n,T nonsingular lim Un,N FT,

lim (u)TNR(R)-1 (U+/-T H
N--*cx n N s O

where the additional index N of the different quantities now represents the depen-
dency of these quantities on the number of columns of the Hankel matrices UI,, YI,
processed by the algorithm ACC_OM.

4.2. Extension of the PI scheme. In this subsection, we consider the case
where the output yk is perturbed by an additive error k. The latter is assumed to
be zero-mean, having arbitrary coloring and possibly containing a deterministic term
which is independent from the input uk. For this perturbation, the data equation (6)
transforms into

where V,8 is a Hankel matrix constructed from the perturbations . Again, because
of the fact that the structure of the matrices F and H is of no importance in Steps
1-3 of the PI scheme, derived in [10], the latter three steps will produce a consistent
estimate of the column space of F and will yield a consistent estimate of the equation
similar to (21), denoted as

+/- Tlim .=.N (U )NH 0

when the underlying system is mixed causal, anti-causal. As a consequence, we can
determine consistent estimates of the system matrices in (4) when using the calculated
column space of Fs and the above equation in Step 3. Therefore, the PI scheme for
mixed causal, anti-causal systems, denoted by ACC_PI, is the same as the original PI
scheme of [I0] with Step 4 replaced by Step 3 and Step 4 of the ACC_OM algorithm.
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4.3. Extension of the PO scheme. In this subsection, we consider the case
where the output Yk is perturbed by filtered white noise sequences wk and v as
denoted in (5). For this case, the data equation (6) becomes

y8 F8 [ X] ]+HsUj,+H’Wj,+V,,xja_s_l
whereH is equal to Hs with D, Bac, and Bc replaced by 0, Kac, and Kc, respectively.
Furthermore, the matrices Wj,8 and Vd,8 are Hankel matrices constructed from w and
v, respectively.

Again, because the structure of the data equation is preserved, we only need to
substitute Step 4 of the original PO scheme by Steps 3 and 4 of the ACC_OM algorithm
in order to make this variant of the MOESP family applicable to the class of systems
described by (5). The latter scheme will be indicated by the ACC_PO scheme.

4.4. Incorporating a bilinear transformation of the shift operator in the
ACC_PI scheme. A lst vrint of the MOESP family of lgorithms for LTI systems is
the incorporation of a bilinear transformation of the shift operator in the PI scheme
as discussed in [13]. In the context of causal systems, it is shown in [13] that the
ltter transformation drastically improves the accuracy of the estimated state-space
matrices when the eigenwlues of the transition matrix of the system to be identified
are in the vicinity of point 1 in the complex plane. Extending this use of bilinear
transformation of the shift operator to the class of mixed causal, anti-causal systems
will led to improved estimates when the eigenvalues of A and E re both close to 1.

In terms of complex variables the following biliner transformation is considered:

z-a w+a
w= = z=, -l < a < 1, w, z E .

1 az 1 + aw

This transformation was also considered in [17] in the context of using Laguerre series
in parametric model identification.

In order to compactly denote the relationships between the state-space models
related to the complex z parameter and those related to the w parameter we introduce
the shift operator Z. Let the entry x0 at time instant 0 of the double infinite time
sequence x x-1 x0 X be indicated by a square box. Then the
operation of Z is represented as

(26) X--1 Xl Z--[ x0 - x2

This operator defines the operator W and vice versa as

(27) W (Z aI)(I aZ) -1 : Z (W -]-- aI)(I + aW)-1.

In this subsection, we demonstrate that incorporating this transformation in
mixed causal, anti-causal state-space models of the type (3) again preserves the struc-
ture of the data equation compared to that obtained for causal systems [13].

For the sake of brevity, we only highlight that the structure of the data equation
is preserved when the latter is given in operator form. Let xc, xac, u, and y denote
g2-sequences with components in R c, R ac, m, and R t, respectively. Then the
definition of the Z-operator in (26) allows one to write the system (3) in operator
format as

xZ Ax + Bu,
(28) xac Exacz q- Bacu,

y CCx + (CacE)xacZ + (CaCBac + D)u,
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where the matrices A, B, etc. are finite size matrices defined in (3). Substituting
the expression for the Z-operator in terms of the W-operator of (27) transforms this
state-space model into

(29)
xCW FCx + Gu(I + aW),
xac FacxacW .ql_ GaCu(I + aW),

y(I + aW) Hx + (HaCFa)xacW + (HGc + J)u(I + aW),

where

F -(I_Aa)-l(A_aI), Fac

Gc (I-Aa)-IB, Gc
g (1-a2)C(I-Aa)-1, (HF)

(I- Ea)-I(E-
(I-Ea)-IBac,
(1 a2) (CaCE)(I Ea)-1

(J + Hacaac) (CaCBac -l- D) + aCC(I Aa)-IBc + a (CaCE) (I Ea)-IBac.

The inverse of the matrices (I-Aa) and (I-Ea) exists under the conditions assumed
in this paper, that is, IA(A)I < 1 and IA(E)I < 1 and lal < 1. For a formal proof of
this assertion we refer to Theorem 1 of [13]. Conversely, when the state-space model
in (29) is given, we can derive the system matrices in (28) as follows:

A (I + FCa)-I(F + aI), E (I + Ea)-I(E + aI),
B (1 -a2)(I + Fa)-IG, B (1 --a2)(/+ FaCa)-lGac,
Cc HC(I-t FCa) -1, (CaCE) (HaCFac) (I-t- Faca) -1,

(CB + D) (J + H’G’) aHC(I + Fa)-lGC a (HaCFac) (I + FaCa)-lGac,
where the inverses again exist under the above stated conditions; see [13].

For the state-space model (29), the data equation in operator form is as follows:

y(I + aW)
y(I + aW)W

y(I + aW)Ws-1

H H(F)8=1

HCF H(Fa)8-2 [ x
[ xacWs-1

HC(FC)S-1 Hac

J + HacGac Hac(Fac)Gac Hac(Fac)s-2Gac 0 lt(I + aW)
HCG J + Hangc ua(Fa)s-3Gac 0 u(I + aW)W

H(F)S-2G HC(F)-3G HG j u(I + aW)Ws-1

Here the operations such as y(I + aW)Wk for s 1 _> k _> 0 represent an anti-causal
filtering operation of the output data sequence. The algorithmic details for generating
these sequences when only a finite number of output (and input) samples are available
are discussed in [13].

When denoting the data equation (6) in operator format, namely,

y u
yZ Fs xacZs_ nt- Hs

yZS-1 uZs-1



IDENTIFICATION OF MIXED CAUSAL, ANTI-CAUSAL SYSTEMS 347

we clearly observe that the structure of the data equation is preserved under a bilinear
transformation of the shift operator. It is again this property that leads to a straight-
forward extension of the PI_BTZ (the PI scheme using a bilinear transformation of the
Z-operator [13]) scheme toward mixed causal, anti-causal systems.

5. Summarizing remarks. In this paper, a number of subspace algorithms are
presented that allow one to solve a broad class of identification problems for mixed
causal, anti-causal systems that have a regular pencil.

The algorithms are complete in the sense that it becomes tempting to apply them
to realistic problems.

Acknowledgement. The author wants to acknowledge Mrs. X. Yu for fruitful
discussions related to 3.1 and 3.2 of this paper.
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IS THE POLAR DECOMPOSITION FINITELY COMPUTABLE?*

ALAN GEORGEt AND Kh. IKRAMOV$

Abstract. The polar decomposition of a square matrix is a major step toward the singular value
decomposition, and is an important device in its own right. Singular values of a matrix A, being
the eigenvalues for a matrix closely related to A, generally cannot be computed by a finite process
if only arithmetic operations and radicals are allowed. However, this consideration alone does not
prove that the polar decomposition is not finitely computable.

The problem of finite computability of the polar decomposition is not settled in this paper, but we
do show it to be equivalent to the following simpler-looking problem. Suppose f is a real polynomial
of degree n > 4, and all the roots of f are distinct positive numbers. Denote by g a polynomial of
the same degree whose zeros are the positive square roots of the zeros of f. Can this polynomial g
always be computed finitely for a given polynomial f? In the Appendix we discuss one nontrivial
situation where the polar decomposition can indeed be computed finitely.

Key words, polar decomposition, finite computation

AMS subject classification. 65F10

1. Introduction. In this paper, a computational problem 7) over or C is called
finitely solvable, or solvable by radicals, if the solution(s) of 7) can be obtained by a
finite algorithm using only operations from the following list:

(a) arithmetic operations +,-, , +;
(b) extraction of radicals of arbitrary integer degree;
(c) comparison with zero.
Checking to see if a general real or complex expression is identically zero is known

to be a hard problem (even an algorithmically intractable one!). Nevertheless, we
include operation (c) in our basic set, because practically all computational algorithms
rely on such comparisons.

The question we address is whether the problem of computing the polar decom-
position of a general real or complex matrix A is solvable by radicals. For background
material on the polar decomposition, see Gantmacher [2]. To be more definite, by the
polar decomposition of the square matrix A we mean its factorization of the form

(1) A=HV, H-H*>_O, VV*=I.

We remind the reader of the existence of another type of polar decomposition,
with the order of Hermitian and unitary factors reversed. The considerations in our
paper are applicable to this type of decomposition as well.

We believe that the answer to the question posed in the title is in general "no."
Indeed, the polar decomposition of A is very closely related to its singular value
decomposition. Moreover, the singular values of A, being the eigenvalues for the
matrix H in (1), cannot be, in general, computed finitely for n > 4.

This argument, although persuasive, is not a rigorous proof, and we do not settle
the question in this paper. Our contribution is to present four problems, including the
one in the title, and to show that they are equivalent. This may provide others with
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new avenues through which to settle the question of if, or under what restrictions, the
polar decomposition of a general matrix can be finitely computed. Of course this work
is largely of theoretical interest; there are a number of powerful and robust (nonfinite)
methods for computing the polar decomposition. A nice description can be found in
Higham [3].

In the Appendix we discuss one nontrivial situation where the polar decomposition
can indeed be computed finitely.

2. The polar decomposition and the extraction of the square root of
a polynomial. Below we state the four problems (P1)-(P4), including the one con-
tained in the title of the paper. We then show that these problems are equivalent.
We do that by proving the implications

P P1, P P, Pn P, Pa P4.

The relation P Pj means that the solvability by radicals of the problem P
implies that the problem Pj is solvable by radicals as well.

(P1) For a given matrix A E Cn’n, find a polar decomposition of A;
(P2) for a given nonsingular matrix A E In’n, find the polar decomposition of A;
(P3) for a given symmetric positive definite matrix A IRn’n, find the unique

positive definite square root of A;
(P4) for a given real polynomial f of degree n with distinct positive zeros A1,..., An,

1/2 /2find the polynomial g of the same degree with the positive zeros -’1 ,--

P=== P1.

Suppose A is a given complex x matrix. Applying to A the well-known
bidiagonalization procedure {for a description of the procedure in the real case see
[, Cp. lS, al}, w oi,

(2) B

ql e2

q2

The matrices P and Q here are computed as finite products of elementary Hermi-
tian matrices (Householder matrices, in the real case) and, possibly, diagonal unitary
matrices. We can always make the numbers qi and ei in (2) real and nonnegative.

Now if B is nonsingular and B HBVB is the polar decomposition of B, then

A- P*BQ- (P*HBP)(P*VBQ) HV

is the polar decomposition of A. Therefore, from the finite solvability of P2 it follows
that P1 is also finitely solvable.

If B is singular, i.e., some numbers qi in (2) are zero, then applying to B a finite
number of rotations, as described in [5, p. 111], we can decompose B into a direct
sum of nonsingular bidiagonal matrices and a zero matrix:

(3) C Tk...TIBRI... R

C1
o

Cm
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The polar decomposition of C can now be obtained by computing the polar decom-
positions of each of the blocks C(1 _< _< m). Then, retracing transformations (3)
and (2), we finally get the polar decomposition of A:

Suppose A is a given real nonsingular matrix. Then, applying to AA* a finite
algorithm which solves the problem P3, we obtain the Hermitian factor H in (1). This
matrix H is also nonsingular, and the unitary factor V for the polar decomposition
of A can now be computed as

V-H-1A.

The inversion of a nonsingular matrix is, of course, a finite (even rational!) procedure:

Suppose A is a given real symmetric positive definite n n matrix. Denote by
f(A) the characteristic polynomial of A. This polynomial can obviously be computed
finitely. Then, dividing by the greatest common divisor of f and its derivative f, we
obtain the polynomial f with distinct positive zeros, which is the minimal polynomial
of A. Next, applying to ] a finite algorithm which solves the problem P4, we obtain
the polynomial g whose positive zeros are the square roots of the distinct eigenvalues
)1,..., )m of A. This polynomial is therefore the minimal polynomial of the matrix
X, the square root of A.

If we let

then

g(A) A" + alA"-1 +... + a,_A + a,,

(4) g(X) X + aX"- +... + ar_X + a,I, O.

Replacing X2 by A, we rewrite (4) as

(5) (A) + (A)X O,

where and are (known) polynomials of degree _< [m/2J.
If (A) in (5) is nonsingular, then we immediately find Z as

X =-[b(A)] -1 (A).

Suppose now Y (A) is singular. On the other hand, Y cannot be the zero
matrix. Otherwise, the polynomial of of degree <_ [m/2J annihilates A, which is
impossible for a matrix with m distinct eigenvalues.

The image : and the null space Af of the nonzero matrix Y are two nontrivial
invariant subspaces of A. Moreover,

(R)Af.

One can find orthonormal bases of C and Af by computing the QR decomposition of
Y. In the orthonormal basis of I, comprised of the orthonormal bases of C and Af,
the matrix A decomposes into the direct sum of two matrices of lower order:

Q_IAQ=[Az 0 ]0 A
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The extraction of the square root of A is now reduced to the same problem with the
smaller matrices A and AAr. Applying the reasoning above to these matrices, we

either find the matrices A/2 and/or -’At or reduce the problem of extracting the
square root even further. Continuing in this way, we can construct A/2.

Remark. If (A) in (5) is singular then o(A) is singular as well. Moreover, if x
ker (A) then x ker o(A) as well. This means an eigenvalue A0 of A exists such
that

Because

we have g(A0) 0. Therefore,

for some eigenvalue A of A. We conclude that the matrix (A) in (5) can only be
singular if the spectrum of A contains a pair of the form (A0, A). We have

Suppose f is a given real polynomial of degree n with distinct positive zeros.
Finite procedures have recently been devised [1, 7] which allow one to construct a

symmetric matrix Sf with the characteristic polynomial f prescribed. If f is a real
polynomial with all the roots real then Sf is real as well. For our polynomial f, the
real symmetric matrix S should be positive definite. Hence, the Cholesky procedure
can be applied to S giving

S$ LLT

with the lower triangular matrix L. Now, using for L a finite algorithm which solves
the problem P1, we obtain, in particular, the matrix

H (LLT) 1/2 .11/2

The characteristic polynomial of H is the polynomial g desired.

a. Appendix. Since problems (P1)-(P4) are equivalent, we can consider the
extraction of the positive definite (p.d.) square root of a real symmetric p.d. matrix
A, instead of the polar decomposition.

Suppose B is an unreduced tridiagonal matrix:

(6) B

OZ fl

fl OZ2

We may assume the numbers ill,..., fin--1 to be positive.
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(7)

It is obvious that the matrix A B2 is pentadiagonah

al bl cl

bl a2 b2 ".

cl b2 a3

"" an-2 bn-2 Cn-2

"" bn-2 an-1 bn-1
Cn-2 bn- an

with the elements Cl,..., cn-2 positive.
Now, suppose we are given a real symmetric p.d. matrix A of the form (7), where

the elements Cl,..., c-2 are all positive. If it is known that the p.d. root B of A is a
tridiagonal matrix, then B can be computed finitely. Indeed, equating entries on the
main diagonal and two superdiagonals in B2 A, we obtain

(8) 021 + 12 al,

(9) 12 + c22 + a2,

(i0) 2 2 2
i-l+ai + =a, i=3,...,n--1,

2(11.) #n2_l / a

(12) (Oi -- 0i+1)#i bi, i 1,..., n 1,

and

(13) #i/i+l=ci, i=l,...,n-2.

Equation (13) shows that B is unreduced; i.e., all the ’s are nonzero. Now, we
deduce from these equations

1
(14) /2 Cl j--,

1/9

1 c2 1

1 ClC3 1
(16) /4 c3 33 c2 1’
and so on. In general, letting 1 , we have

(17) #2k d2k#, k 1,..., L(n- 1)/2J
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and

1
(18) 2k+1 d2k+l"-’5,

P
k 1,..., [(n- 2)/2.

The multipliers di can easily be expressed as rational functions of the c’s. Rewriting
equation (12) in the form

bi(19) ai --oi+ //, i 1,..., n- 1,

we see that a2,... ,a= can be immediately (and rationally!) computed as long as
al a and # are found. In particular,

bl(20)

Using (14), (20), (8), and (9), we have

(21) a2 _. 2
bl )

2 c21(22) 2+ ---a +-5=a2,
or

(23) 4 + b 2bla + a2fl2 + c2 a2fl2.

Because c2 al 2, we get from (23) the explicit expression for a as a function of

(24) a s2 + t

where

(25) s=al-a2, t=b+Cl2.
Substituting (24) into (21), we finally obtain

(26) (s2 + t)2 24b22 + al,

which is the biquadratic equation in . By assumption, the desired matrix B exists;
hence, equation (26) must have real solutions. For any of these solutions, we first
find a from (24), then 2,...,/-1 from (17)-(18), and a2,...,a from (19). We
then check if equations (10) and (11) are satisfied with these values for a’s and ’s.
Completing these calculations, we end up with exactly one set of correct values for
the unknown a’s and ’s.

Unfortunately, the finite computability of B just proved does not help much
in the general case. It is true that any symmetric or Hermitian (not necessarily
positive definite) matrix can be finitely reduced to a pentadiagonal form. The band
Lanczos algorithm by Ruhe (see [6, p. 286]) can be employed for this purpose with
(almost) any choice of the initial orthonormal vectors ql, q2. The problem is that most
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pentadiagonal forms of a given p.d. matrix A do not admit tridiagonal square roots.
To obtain the proper pentadiagonal form for A, we must find some way to assure that
the chosen vector q2 belongs, for a given ql, to the two-dimensional Krylov subspace

K:2 (B, ql) span{q1, Bql},

B being the p.d. square root of A. This is no simpler than our original problem of
finding B.

Acknowledgment and some additional observations. We are grateful to
one of the referees for raising some interesting points and questions that warrant
comment here. First, the referee points out, following [1], that to find f(A) it is
sufficient to compute the polynomial that takes on the values f(A) at the eigenvalues
of A. This condition appears to be closely related to our condition (P4), but we have
been unable to establish whether there is such a relation, or whether it is possible to
compute one polynomial from the other via a finite computation.

Additionally, the referee notes that if it is possible to determine the largest and
smallest singular value of a matrix, then its polar decomposition is finitely computable
via an optimally scaled Newton iteration. (The method can be found in [3] and the
finite convergence of the method is provided in [4].) We note that singular symmetric
stochastic matrices fall nicely into this category, having extreme singular values of
zero and one.
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Abstract. The identification of the noise correlations (e.g., between the sensors of an array)
is an important problem. It is also ill posed unless some additional conditions are verified. Here,
these supplementary conditions are reduced to a low-rank hypothesis and to the knowledge (e.g.,
an upper bound of its length) of the general structure of the noise correlations. By introducing an
original functional (named relative entropy functional), we develop a new approach for solving the
above problem. In particular, it is shown that this functional inherits from its definition interesting
and useful properties (such as location of the extrema, concavity, etc.). These properties are shown
using elementary linear algebra.
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1. Introduction and problem statement. Usually, the signal received on an
array of sensors is composed of source and noise parts. The aim of array processing is
to estimate source parameters from the array measurements [1]. However, in numerous
practical situations, especially in the array processing context, the noise parameters
are unknown.

Most of the practical array processing methods are based upon the properties of
the covariance matrices (CM) of the various signals impinging on the array. This is
particularly true for high-resolution methods for which source and noise parts play
symmetric roles [2-7]. For readers unfamiliar with these methods, we note that they
are rather similar, in spirit, to principal component analysis methods [8-10].

At a given frequency (after discrete Fourier transform, for example) the problem
of separation in source and noise parts is reduced to the following matrix equation:

R=S+B

(1) with:

R sensor outputs CM,
S source CM,
B noise CM,
R, S, B q x q matrices.

The matrix R is assumed to be known (it is actually estimated from the sensor
outputs). The problem we deal with can be stated as follows:

How can we obtain an "estimate" of B from R?

The problem stated above is ill posed and is meaningless without the following
additional hypotheses:

H1 S is positive semidefinite and rank deficient,
(2) H2 the general structure of B is known,

(B is positive definite ).

The above hypotheses are generally accepted in the array processing literature
[1-7] even if H2 is frequently replaced by a drastically simpler hypothesis, say, H.
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The matrix B is known except for a scalar multiplier A (A is the noise level). The
hypothesis H2 is thus far less restrictive than H. The general structure of B may be
simply a banded Toeplitz structure (with the positivity hypothesis) or given by the
covariance structure of a moving average (MA) spatial process [11].

The hypothesis H1 is also quite acceptable since the rank deficiency hypothesis
amounts to assuming that the number of sources is strictly inferior to the number of
sensors. This assumption is instrumental for high resolution methods.

After the noise matrix B is estimated, the source parameters (defining S) can
be estimated [1, 2, 7]. We want to stress that, for this approach, the parameters
defining B are estimated independently of the source ones, using only the observation
(i.e., the matrix R). For that purpose, an original approach will be derived. It
relies on the "separating" properties of a relative entropy functional (REF). Roughly
speaking, this functional allows us to "extract" the smooth component (i.e., the noise)
of the observations. Another approach consists of using an approximated likelihood
functional. This functional involves only the eigenvalues of a whitened matrix. A
complete description of this approach is given in [12]. This method presents some

(hidden) similarities with the REF method since it too relies on a (hidden) barrier
functional. However, it is much more classical in principle and does not present the
same possibilities.

The optimal methods [13] (for the statistical meaning) consist in simultaneously
estimating the source and noise parameters. These approaches are rather direct al-
though they may involve rather intricate derivations. However, the main criticism
comes from the absence of any convergence property for the iterative algorithms that
optimize the related functionals. The practical interests of such methods may thus
be greatly reduced despite their (theoretical) optimality.

The method that will be presented obeys the following general scheme: we define
a barrier functional forbidding the description of sources by the noise model. We
shall carefully study the estimation of the noise model (or equivalently of B) as well
as iterative optimization of the functional (gradient-like procedure). We stress that
this optimization is defined only with respect to noise parameters, which constitutes
the major novelty of our approach. We recall that the present paper deals with the
exact properties of the functional and, thus, that statistical considerations are not in
the paper’s scope.

Actually, the barrier property of the REF appears to be instrumental since it is a
means to create a singularity at the boundary of the feasible region. This study can
thus be included in the much more general context of barrier methods [14]. According
to [14], barrier methods fell from favor during the 1970s partly because of inherent
ill-conditioning in the Hessian matrix. We shall see that the proposed method does
not suffer from this drawback and enjoys interesting properties.

We use the following notation throughout the text of this paper:
matrices are represented by capital letters (e.g., R, S, B, Ui, Zi); all the matrices

are q q except the matrices Z (5) and N,
vectors are represented by capital bold letters (e.g., X, B, V, W),
scalars are denoted by small letters (e.g., b, 1), eigenvalues by small Greek letters

R generally represents the observation (or a resume), S the source part, and B
the noise part (noise parameters or b),

the symbols det and tr denote, respectively, the transpose and the trace (of a
q q matrix),
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diag denotes a diagonal matrix,
A and A* denote, respectively, the transpose and the hermitian adjoint of A,
Id stands for the identity matrix,
R(k) denotes the spatial density (31) of the observation, and
Re(z) denotes the real part of z, 2 the complex conjugate of z.

2. The relative entropy approach. This approach deals with a functional
depending only on the matrices R and B. In what follows, this functional will be
named the relative entropy functional (REF) and will play the central role in solving
the problem (1) under the hypotheses (2). It is defined below as

(3) H(B) log det(R B) + I. log det B,

where is a scalar factor and det(A) denotes the determinant of the matrix A.
A brief statistical motivation of H is presented in Appendix A. The scalar factor

is considered (see Appendix A) as a redundancy factor since it is associated with the
number of (statistically) independent noise vectors available along the array. Practi-
cally, the choice of the factor is related to statistical considerations beyond the scope
of the present paper.

Now a parameterization of the B matrix is necessary. For that purpose, a banded
Toeplitz parameterization is quite convenient, i.e., [15, 16]:

P

i--1

(4) where

i are scalars (real),
Ui is a q q matrix defined as usual by:

1 if k-l=i-1,ai(k, t) 0 else.

The number q represents the sensor number and is consequently the dimension of
U qthe square matrices R, S, B. The matrices { i}i=l constitute an orthogonal (for the

euclidean product) basis of Tq (the vector space of q-dimensional symmetric Toeplitz
matrices). For practical applications [7], p is small with respect to q.

Obviously, this parameterization does not ensure the positive definiteness of B,
so to avoid such a problem B can be parameterized as the covariance matrix of a MA
process:

(The symbol "t" denotes matrix transposition.)
Here the matrices Zi are (p p + q) rectangular matrices given by

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
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or

liflk-gI=i,(5) Zi(k, g) 0 else.

(This model is the assumed minimum phase [11].)
This parameterization will be especially useful for the special case study of large

arrays (5), but for the moment our attention will be restricted to the banded Toeplitz
parameterization. The REF will thus be defined as follows:

H (/1,...,/p) log det(R B) + 1. log det B

with B B (1,..., p) (R, B are q x q matrices).
The general optimization problem takes the following form. Find

under the constraints

(6) c

maxH (1,..., p)

R-B > 0,
B > 0.

(A > B means, as usual, that A- B is positive definite.)
Let B, be the parameter vector maximizing H under C, i.e.,

B. arg maxH (/,...,/p) under C.

As will be seen later, the functional H can be efficiently maximized by iterative
methods. But let us first consider the properties of B..

3. Properties of B.. Because the REF depends nonlinearly on the parameters
{/i}, it seems much simpler to formulate the problem in terms of the eigensystems.

The spatially white noise case is presented first. It is not relevant to our problem,
but it allows us to obtain a simple result and enlightens the role of the factor 1. Then
the general case is considered.

3.1. Spatially white noise case. This case is very simple but the reasoning is
rather similar to that used in the general case.

The noise is assumed to be uncorrelated (sensor to sensor), so

B=AId

(Id" identity matrix, A > 0, A ).
Consider now an eigendecomposition of R, i.e.,

q

R EaiVV, V _[_ Vj(i j), IIVill 1
i--1

(c >_ a >_... >_ cq > 0).

(, denotes transposition and conjugation.)
Then by means of elementary algebra, we have

q

(8) H(/k) E log (a .k) 4- ql. log/k.
i--1
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The problem now consists of determining the value of A that maximizes H(A)
under the constraints C.

Now

OH ql
q

-1
+

and denoting by the following particular value of A,

we obtain

Cq i--1
(l - 1)O/q "Jr" (O/q O/i)

--1

Now ai -aq _> 0 for i 1, 2,..., q and therefore

Furthermore, if A tends towards Cq, then OH/OA tends towards- x. Since H is
a differentiable and concave function of A in the interval ]0, q [, it follows that the
maximum of the REF under the constraints C is attained for a value A, of A satisfying
the following inequalities:

) < ,, < Cq.

3.2. General case. Let B0 be the exact noise CM and assume that B0 may
be described by the parameterization defining the B matrices. Then the following
proposition is valid.

PROPOSITION 3.1. Let { q}i=1 be the eigenvalues of the (whitened) matrix

BIB,, where B, denotes the matrix maximizing the REF H under the two con-
straints (B and R- B positive definite). Then these eigenvalues satisfy the following
inequalities:

Proof. The decomposition of R in source and noise parts (i.e., R S + B0) is
assumed to be unique (see Proposition 4.3). The rank of S is denoted by s (the source
number). Note that s is strictly inferior to q. Then the REF H takes the general
following form"

H(B) log det (S / (B0 B)) + I. log det B.

Let us now examine the various terms of the functional H(B). For that purpose,
let us note the following assumptions:

1. B0 is positive definite,
2. (B0 B) is positive definite.
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The first assumption is quite classical in the signal processing context since B0 is a
covariance matrix [1, 3]. The second will be justified later (Comment 1, pp. 361-362).

Since the matrix B0 is positive definite, it can be factorized in triangular factors
(Choleski factorization [17]), i.e.,

Bo ToT.
Thus

(11)

log det IS + (Bo B)] log det [S(Bo B) -1 q-Id]
+ log det (B0 B)
log det [ST-1, (Id T-IBT 1")-1T0-1 + Id]
+ log det (B0 B).

((B0 B)-1 T0-l* (Id- T-IBT-I*)-ITd-1).

Since the matrix (Id- T-IBT 1,)-1 is hermitian it is diagonalizable, i.e.,

(Id_ TIBT-I*)-I WAW*

(W unitary matrix, A diagonal) with

(1

(Ai eigenvalue of B B.)
In what follows, it is necessary to preserve the symmetry of the problem obtained

by using elementary algebra as follows:

logdet [ST* (Id- ToBT*) T + Id] logdet [STI*wAW*T + Id]
log det [I/2w*s’WI/2 + Id]

(12) with" S’= TST*.

(This last equality results from intensive use of the classical formula det(AB)
det(BA) [17].)

The matrix A1/2 in (12) is the diagonal matrix defined by A1/2(i, i) (A(i, i))1/2.
Its existence follows from the hypothesis that (B0 B) is positive definite. Thus, the
following equality holds trivially:

logdet [A1/2W*S’WA1/2-t-Id] logdet [A1/2W* (St-[ WA-1W*) WA1/2]
(13) log det A + log det (S’ + WA-1W*).

We are now able to calculate the partial derivatives of the REF H with respect
to the parameters Ai. More precisely, using a classical formula for the differentiation of
the determinant of a matrix A() [18] (i.e., 0/0 log det A() tr (A-I()O/OA())),
the partial derivatives OH/OAi take the following form:

OH 1 1 { 1 [OA l’A I A - 1- Ai + tr (S’ + WA-1W*)-IW W*

(14)
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(tr denotes the trace).
Now the following equality comes from the orthogonality property of the eigen-

vectors [17]"

(15) tr I(S’ T WA-1W*)-IwOA-1W*] W
0: -w (:’ + wzx-lw*) -1

(W is the ith column of the matrix W.)
Furthermore, one has

S’ + WA-1W >_ WA-1W*;

hence,

(St+WA-1W*)-I (WA-1W*) -1,
so that, finally,

(16) W (! -- WA-1W*)-Iw -- --Wi (WAW*)-IwiIn conclusion, we note that the term between braces in (14) (i.e., 1/(1- Ai)+
tr[(S’ + WA-1W*)-Iw( o A-1)W,]) is positive when Ai runs throughout the open
interval ]0, 1[. Consequently, the partial derivatives OH/OA are positive (i 1,..., q)
when Ai runs throughout the open interval ]0,1/1 + 1 [.

Furthermore, the equality

Bo B To (Id T BTI* T
proves that (under the basic assumptions) the matrix (Id T0-1BT-1,) must be
positive definite and that all the eigenvalues (i.e., 1 A) of the matrix Id- BIB
must be positive. It is thus sufficient to restrict our attention to the parameter values
/ such that all the eigenvalues Ai are smaller than 1.

Now the following fact is instrumental for the proof of Proposition 3.1: the REF
H is a concave functional on the whole domain C of the constraints (6). This property
will be shown in the next section independently of Proposition 3.1.

Denote by C’ the following (restricted) constraint domain defined as { B
such that (s.t.) B and B0 B are positive definite }. Then it is directly shown that
C’ is a convex subset of C.

When A tends towards 1_ then H tends towards- c. Since all the partial
derivatives OH/OA are positive when A runst,hrough the interval ]0,1/1 + 1[ and ,re
continuous on C’, there exists a matrix B, of such that the maximum of H on C is

C’attained for B,. Note that this maximum is unique on (concavity) and is attained
for a matrix B, such that all the eigenvalues A of B-IB,) belong to the interval

]l/l+ 1, 1[. So there is a point (,... ,) of C’ such that all the partial derivatives
OH/OA are altogether null.

Because the REF H is concave on the whole domain C, its maximum on C is
unique and is attained for a matrix B, of C’. This proves Proposition 3.1.

Comments. The preceding calculations require some comments.
1. In the proof of Proposition 3.1, the positive definite hypothesis (R- B) has

been replaced by the positive definite hypothesis (B0 B).
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Actually, the two subsets C and C’ (C’,- (B s.t. B and B0 B are positive
definite}) are convex and C contains C. Because the functional H is concave
on C (Proposition 4.1) and attains its maximum value on this maximum
is unique and satisfies Proposition 3.1 on the whole subset C [19].

2. Consider (16). Then this inequality becomes an equality (for all the values
of i) if and only if the source matrix S’ is null. In this case, all the partial
derivatives cOH/OA are null for {b } values s.t.

)IdBIB* i+ 1

or

) B0.B.= ll
The matrix B0 is thus perfectly "estimated" up to a scalar factor. We want
to stress that this scalar factor (i.e., 1/1 + 1) has no practical importance.

3. As has been seen in the proof of Proposition 3.1, the effect of sources is to
move the maximum of H and to cancel the equality of all the ’. Thus, in
the presence of sources, B0 cannot be perfectly "estimated" by maximizing
H. Of course, the "quality" of the estimate increases with the scalar 1.

4. Proposition 3.1 is still valid when the noise model is overdetermined (i.e.,
P0 _< P); this fact follows clearly from the proof of Proposition 3.1. For
practical applications, it is a fundamental point.

5. The following property seems valid (at least for sufficiently great values of q).
Conjecture 1. Consider two distinct values of the parameter l, say ll and 12

(/1 >/2), and denote {A} (respectively, {#}) to be the eigenvalues of BIB.tl (re-
spectively, B-1B.t2). Then the following property holds:

This property has been verified by numerous simulation results (see Figs. 3-6).
A very rough "proof’ is based on the following fact: two banded Toeplitz matrices
commute (approximately).

Actually, the REF method can be considered as a way to tackle the following prob-
lem: how to determine the "more random" noise model (i.e., maximizing log det B)
under the positive definiteness constraints (B and R- B positive definite). Clearly,
for this sense, the term log det(R- B) appears as a barrier functional forbidding in-
teraction between source and noise models. The factor represents the compromise
between the accuracy of estimated parameters (Proposition 3.1) and the statistical
variability of the estimated data (i.e.,/). It can thus be considered as a redundancy
factor (see Appendix A).

Obviously, this interpretation of the factor relies upon statistical considerations
that are not in the scope of this paper..

4. Maximization of the REF H. The numerical problem now consists of
determining the values of the parameters (/i p}i=1 that maximize the REF H under
the positivity constraints. After a general study of the functional concavity, the
problem of practical optimization will be considered.

Actually, the REF enjoys a useful property which has been instrumental in the
proof of Proposition 3.1.
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PROPOSITION 4.1. On the constraints domain (6) the REF is a concave func-
tional with respect to the {i}iP_-i parameters.

Proof. The proof of Proposition 4.1 relies upon classical results of linear algebra.
More precisely, we use the following classical lemmas, valid for any differential family
of isomorphisms [20]:

(17)
-logdetB(/) tr B-I()-
ff_ OBB-1 (Z) -B-1 (/)-b-B-

Then the Hessian matrix (denoted H2) of H with respect to the {/i}iP----1 is easily
obtained:

(lS) H2(i,j) zx 02H

Let X be any vector of P (X (Xl,..., Xp)); then

t92HXtH2X E xi OiOj
i,j

and using (18) and the linearity of the trace we get

(19)

The two terms -tr(--) of (19) are of the form -tr(AC AC) with

P

A (R-B)-1 or B-1 and C= ExU.
i=1

Since the matrix A is assumed to be positive definite, it admits a Choleski fac-
torization, say A TT*, so that

(20)

-tr [ACAC] -tr [TT*CTT*C]

(The symbol liE denotes the Frobenius norm [17] of a matrix.)
Finally, the quadratic form XtH2X is negative for any (nonnull) vector X. The

matrix H2 is therefore negative definite and H is therefore a concave functional with

{fl}=l on C. Consequently, gradient-like methods (with optimal stepsize)respect to P

will converge on C. [:]

Actually, this concavity property is very strong and quite dependent on the noise
parameterization. Thus Proposition 4.1 holds for a linear parameterization but not
for more restrictive (especially nonlinear) parameterizations. Consider, for instance,
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the MA parameterization of the noise (5); then the partial derivatives of the functional
H (with respect to bi) are directly calculated, yielding

OH
Ob

c)2H

--tr [(R- B)-ID/1] -+-1.tr [B-1D/1]

-1.tr [B-1 -1 [B-1D2DiB DJ]+l.tr ,]
with

D2BD.2.=
*" ObiObj

+ z z;.
The sign of the quadratic form XH2X is thus not at all evident. So the reason-

ing previously used for proving Proposition 4.1 cannot be directly extended to this
parameterization. The simplicity of the proof of Proposition 4.1 is essentially due to
the linear parameterization of the noise matrix B.

The concavity property seems (generally) wrong for the MA parameterization.
This is illustrated by Fig. 1, which represents the level curves of the functional
H (b0, bl). The cross corresponds to the exact values of b0 and bl. However, even
if Proposition 4.1 is not (generally) valid for the MA parameterization, the following
proposition holds.

PROPOSITION 4.2. The coefficients (b,..., b) of the MA process maximizing H
on the constraint domain satisfy the following inequalities:

Furthermore, the gradient of H is null for a unique point of the parameter set; this
point verifies the above proposition. This is a direct consequence of Proposition 4.1
and the one-to-one mapping between the coefficients (say {b}) of a rain-phase MA
model and its covariance set say {/i}). Therefore, there is a unique maximum of
H for the MA parameterization on the constraint domain C. Locating this point
is not at all obvious since the correspondence between the MA parameters and the
eigenvalues of the matrix B-1B, is highly nonlinear. So this property will be proved
by analytic arguments (see the proof of Proposition 5.1). A direct algebraic proof of
Proposition 4.2 seems unfeasible.

Let us now consider practical considerations and, more precisely, iterative meth-
ods for maximizing H.

We shall now briefly present the gradient method.
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[RELIM] Fonction H(bo,bl )
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FIG. 1. Values of the functional H (bo, bl), one source (bearing" 45 deg.,-10dB).

The calculation of the gradient vector is straightforward. The ith component of
the gradient vector Gk (at iteration k) is given by

(21) k(i) --tr [(]:- [k)-lvi] - l.tr (B-Iui)

(Bk is the noise matrix at iteration k.)
The gradient algorithm takes the following general form:

(22) X+l X pGa

with

and G defined by (21).
The scalar pk is the stepsize of the algorithm. In order to ensure convergence (on

C) of the gradient algorithm, it is worth determining the optimal stepsize.
The matrix translation of (22) is

Bk+l Bk pD

with

(23)

p

,--1

p

D c(i)u.
i:l
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The optimal stepsize Pk can be easily obtained by using eigendecompositions.
The corresponding algorithm is presented below (and detailed in Appendix B).

Step 1. Since Bk and R- B are positive definite, decompose them in
triangular factors:

Step 2.
matrices:

kCompute the eigenvalues {a } and {k} of the two hermitian

Step 3. Then the REF becomes an explicit function of the parameter (step-
size) p, given by

q q

(24) H(p) E log (1 + pc/k) + 1E log (1 pki) +cst.
i--1 i---1

Furthermore (it is perhaps the most important fact), the positivity constraints
C are translated into explicit (relatively to p) constraints, i.e.,

l+pa > 0, i=l,...,q,(25) C 1-p > 0, i=l,...,q.

Step 4. The optimal stepsize p is simply obtained by maximizing H(p) given
by (24) under the constraints (25). This task is easily achieved by means of
a unidimensional Newton method initialized at 0.

Obviously, the gradient method may be replaced by more sophisticated iterative
methods (Newton, BFGS, etc.). However, this does not appear drastically important
since the number of parameters defining the noise model (i.e., p) is generally quite
smaller than q and because of Propositions 4.1 and 4.2. A direct extension to the
complex case (the noise parameters are complex) is provided in Appendix C.

We now consider the unicity of the decomposition in source and noise parts. This
is an important problem of identifiability [21]. The source’s CM matrix S is assumed to
be Toeplitz. Physically, this corresponds to the plane wave hypothesis and a uniform
linear array assumption [1-7]. Since S is rank deficient and semipositive definite, S
may be written in the following form (thanks to the theorem of Caratheodory [22]):

(26)

s
j=l

with :aj > 0,

Zj 1, zj,...,zj Izjl 1,
rank (S) s.

Then a sufficient (and very rough) condition ensuring unicity of the decomposition
will be obtained as follows. Assume the existence of two such decompositions. Then

R $1 - B1 q2 + B2;
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hence

$1 $2 B2 B1

(B1 and B2 are p-banded Toeplitz matrices).
In order to annihilate the noise effect, we consider the (- x t_) lower left

submatrix L of $1 $2 defined by

L(i, j) ($1 $2) (q + i p, j), l<i,j<
q-p

We assume, in the previous equation, that q-p is even. Otherwise, it must be replaced
by q-p- 1. All the components of the matrix L must be null since B1 and B2 are
two p-banded Toeplitz matrices. The following equality is then directly obtained from

. ,Z j,1 O’j,2 j,2( j,2)Z’ Z"
j--1 j--1

with

(27)

Ztj,1A (zq--q q--l)j,1 Zj,1

Z" A (zO Zq’-l)j,1 j,l’’’’ j,1

q’ q-P
(j= l, s).

Now there exist coefficients {ao, al,... ,as} such that the roots of the polynomial
equation

A(z) ao + alz + a2z
2 +... + asz8 0

are {Zl,1,..., Zs,1}. Hence the s x (q- p) matrix N defined by

annihilates the columns of Z (Z[ is the rectangular matrix whose colums are the
vectors Zi; i 1,..., s) when s < q. In other words,

NZ O,

which implies that NZ O.
This implication is easily shown by considering the columns of Z and Z. They

span the same space since by (27)

Z’IA1Z Z 2 2Z2
with

A1 diag(a,,..., A2 diag(al,2,..., as,2).
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Consequently, {Zl,2,..., Zs,2} are also the roots of A(z). So there exists a permutation
matrix P such that Z1 Z2P.

Now assume that the dimension of Z’j (i.e., q’) is superior to s. Then using a
basic result on Vandermonde determinants [23], the solution to (27) is either

(7j,1 0, j 1,..., s,
aj,2 O, j 1, s,

or, for each source index j (related to $1), there exists a source index k (related to
$2) such that

(28)

or, equivalently, there exists a s s permutation matrix P such that

(29) Zl Z2P.

(The matrices Zi and Z2 are the rectangular matrices (27) whose columns are the
source vectors.)

Thus, the following proposition holds.
PROPOSITION 4.3. Assume that S and B are Toeplitz matrices and assume,

furthermore, that q-p is greater than 2s. Then the decomposition in source and
noise matrices is unique.

Note that the plane wave assumption or, equivalently, the Toeplitz hypothesis,
has been instrumental for proving Proposition 4.3, which may be only considered as
a sufficient and rough identifiability condition. The identifiability problem is greatly
complicated by the noise correlation. In this case, the noise subspace has no clear
algebraic meaning, as opposed to the white noise case.

We would like to stress that the accuracy of noise parameter estimates (i.e., the
{/i }) is expressed only in terms of the eigenvalues of B-1B. and not directly in terms
of the/i. However, these two subsets are strongly related even if these relations are
nonexplicit and highly nonlinear in the general case.

Actually, there is a one to one correspondence between the noise parameter vector
and the vector of the eigenvalues of the matrix B-1B,.
Indeed, consider the Jacobian matrix of partial derivatives [17]:

Ov

Using the classical lemma (simple eigenvalues) [17] we have

OAi 0v,

and thus

(3o)
tr (B-IuIVIV)

tr (BlgpVlV)

tr (B-1Ulvqv) /
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Now the matrices {VV}q=1 are linearly independent in Mq(C) (the space of
hermitian q x q matrices) and, consequently, the rank of the rectangular matrix J is
generally equal to p q > p).

Finally, when becomes great the eigenvalues of BIB, approach 1 (Proposi-
tion 3.1) and the parameter vector B, approaches B0. Using simple algebraic con-
siderations, it seems difficult to go further, but as will be seen in 5, an analytic
formulation of the REF will allow us to refine the results of Proposition 3.1.

5. Analytic properties of the REF. The REF properties, previously consid-
ered, rely upon algebraic considerations. We shall see now that the REF definition can
be translated in terms of analytic functions, allowing us to make the REF properties
precise.

Let R(k) be the (spatial) density of the stationary process received by the array.
For a uniform array, R(k) is simply the Fourier transform of the covariance matrix R,
i.e.,

q--1

R(k) E rj exp (2irkjd)
j--l--q

with

(31)

R Toepl (to, rl,..., rq-1),
d intersensor distance,
k (d/A). sin 0, A :wavelength, 0: bearing.

Even if the scalar d has a physical meaning, this meaning may be forgotten for
what follows. Using Szego’s theorem [22] one obtains (for q large)

(32) lim
1
log det R

1
logR(k)dk,

q--*cx) q

where w is the spatial bandwidth.
Once again the physical meaning of w is not at all fundamental for what follows.

Usually it is assumed to be 1/2. Hence for a large value of q, the REF can be expressed
as follows:

(33) log (R(k) B(k)) dk + 1. log B(k)dk.
w

An MA noise modelling (5) seems to be quite convenient since it avoids the
positivity problems while conserving the banded Toeplitz structure of the covariance
matrix. For this model, B(k) is given by

(34)

B(k) IF(z)I
with
F(z) bo + blz +... + bp_Zp-
z exp(2irkd),
2 =-1.

Then the following proposition of the REF holds.
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PROPOSITION 5.1. Assume that the noise may be exactly modelled by an MA
process (b, bl,..., bp_l). Then for any MA modelling of the same order (p), the

coefficients (b b b* 1) of the MA process that maximizes U (33) underC satisfy...p_
the following set of inequalities:

i-0,1,...,p- 1.1

Proof. Previously, the proofs basically used the tools of linear algebra. From
now on they will be replaced by complex analysis arguments. A direct approach will
be considered. More precisely, the study of the sign of functionals involving partial
derivatives (e.g., Ai0H/Obi) will be instrumental.

The REF H is given by (33) and its partial derivatives (with respect to the {bi})
are straightforwardly obtained:

OH f’ Re (zi-’(k)) [1R(k) (l + 1)B(k)]
(a) dk

Obi J_ (R(k) B(k)) B(k)

(Re: real part of a complex number, 2: complex conjugate of z.)
We first consider the noise alone case. Then R(k) Bo(k) and the partial deriva-

tives OH/Obi become

OH /? Re (zi(k)) [1Bo(k) (1 + 1)B(k)]
Ob- , (Bo(k) B(k)) B(k)

dk.

Because of the independence of the functions {Re (zi(k))} in the polynomial space,
there exists a set of scalars {i} such that

E AiRe (zi(k)) 1Bo(k) (1 + 1)B(k),

which implies

OH /? (1Bo(k) (1 + 1)B(k))2

(Bo(a)

Let us now examine the right member of (36). Clearly, the integrand is positive
since the function B0 (k) B(k) must be positive on I-w, +w] because of the definition
of the REF. Therefore, iOH/Obi is positive and is null if and only if the numerator
(lBo(k)- (1 + 1)B(k)) is almost everywhere (a.e.) null on I-w, w] or

B(k) (1/1 + 1)Bo(k),

which implies

obi + i bi’ 0,1,...,p- 1.

Consequently, the gradient ofH is null only when bi v/i/l + i.b( 0, 1,... ,p-l).
Proposition 5.1 is thus proved for this (special) case.

The coefficients bi are assumed to be real.
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We now assume that at least a source is present and we consider the following
functional of the partial derivatives:

with

(37)

dk

S(k)
I1 R(k) B(k)

dk,

fw So(k) (1 + l/l)B(k) dk,J_ R(k)- B(k)

R(k) S(k) 4- Bo(k), B(k) given by (34).

The scalar product bOH/Ob is thus written as the sum of the terms I1 and
I2. We shall now examine them.

First, note that (R(k)- B(k)) is positive no matter what k is in the interval
I-w, +w]. This is due to the definition of the REF and involves the barrier functional
log (R(k) B(k)). Furthermore, S(k) is also positive (it is a power spectral density),
so that the term I1 is always positive.

Second, now assume that a single source is present. Then

r2

S(k) =,
Iz- zol

with z0 the pole of the source, z0 E D(0, 1).
Then the following inequality holds:

S(k) 1 /__ a2

(38) S(k)dk
1

R(k) B(k)
dk >

o o 1 -Izo["
(c: lower bound of n(k)- B(k)on [-w, +w], a2 source power.)

Let us consider the term I2. For that purpose, it is worth partitioning the pa-
rameter domain ({b}) into zones, as depicted below. For the sake of clarity, only the
two-dimensional (2-D) case will be presented in Fig. 2.

Let us now prove that the maximum of H cannot be attained on Z1. More
precisely, assume that the coefficients {bi} satisfy the following inequalities (defining
Zl):

Ibil < Ibl l+ 1
for i 0,1,...,p- 1.

Now Parseval’s equality asserts that

p-1

B0( )
i=0
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FIG. 2. Decomposition of the positive orthant in 4 zones (Z1,Z2,Z3,4) b, b, b x/l/1 q- 1,

b V/i/ +

and, consequently,

/-w Bo(k)- +l 1
e(k) dk- Ei=o (b)2- 1 (b)

so that

Therefore, the term I2 is bounded on 21. So when the source pole z0 approaches
the unit circle, then I1 tends towards +c. Note that this is equivalent to the rank
deficiency hypothesis for source CM. Finally, the following result has been obtained:

(40) bi-h-. >0 on 21
i=0

When the source contribution is null (i.e., S 0), then the partial derivatives
OH/Ob are null for b b V/1/l + 1, 0,..., p- 1. The effect of the source is thus
to displace the location of the maximum of H.

Let us now consider the zones 22 and 23.
If the coefficients {b} belong to 22 or 23, then the term I2 of (37) is not neces-

sarily positive, but it remains bounded. Therefore when Iz01 tends towards 1 (plane
wave hypothesis) then one has once again

(41) b-h--. > 0 on 22,23.
i--1

Finally, if the coefficients {b} approach their exact values {b}, then H tends
toward- cx. According to (40), (41) the maximum of H is thus attained on 24,
achieving the proof.
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Obviously, the reasoning is strictly similar for the multiple source case. [:]

Jensen’s theorem [24] can be used to calculate the REF. Thus, since B(k) is
analytic in D(0, 1) we obtain (w 1/2)

log(B(k))dk 2 log IF(0)[- log(Izl

where {z} are the zeros of B(k) inside the unit circle.
Thus, the following equality holds:

1/2
log(B(k))dk 2 log(b0).

1/2

It is rather surprising that the limit (q - cx) of the term (1/q)log
(detB (b0,..,,bp)) is simply 2log(b0). The first part (noise alone case) of Propo-
sition 5.1 can be proved in this way (Jensen’s theorem). However, practically, this
proof is restricted to first-order MA models.

Practically, R(k) must be replaced by an estimate/(k), generally obtained by
Fourier transform of the spatial covariances:

j=q-1

(42) (k) P(jd)wj exp (2ikjd)
j=-q+l

where P(jd) are estimates of the spatial covariances.
Estimates of P(jd) are themselves obtained by replacing the exact mtrix R by

n orthogonal projection of the periodogram matrix [11] on the Toeplitz subspace
[15,16]. The scalars wj represent the array weighting. They are necessary for sidelobe
reduction and, overall, to ensure the positivity of (k). For this purpose, the following
weighting ensures the positivity constraint of (k)"

w (1,

since it amounts to a consideration of (k) defined by

(k) DDk.
The REF method can be easily extended to multifrequency nalysis. Under the
independence sumption, the following formulation of the REF is obtained:

f max

]
I=I min

6. he whitening procedure. he more classical and direct whitening proce-
dure consists of performing a Choleski Nctoriation of the matrix B, (i.e., B, TT,,
T triangular factor) and defining the whitened matrix R by

R T-1RT-1..

However, this approach suffers from some drawbacks, which may become important.
Among them are the computation cost (for a large array) and the numerical condi-
tioning if the matrix B. is near to singularity. So the following procedure is generally
preferable.
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1. Determine an autoregressive (AR) model "equivalent" to the MA model. Let
p’ be the AR model order. The term "equivalent" means that the covariance sequence
of the AR model is as close as possible to the MA ones. Usually, this is achieved by
means of the Yule-Walker equation [11]. Standard procedures exist for this problem

2. Consider the whitened matrix defined as follows:

Ro- AoRAo,

where Ao is a rectangular q- p’ q defined by

(44)
ZoO ap, 0 0

ao ap, 0

0 0 ao ap,

This whitening method enjoys the following properties.
1. Rzo is a Toeplitz matrix.
2. The transform of a source CM matrix (i.e., DoD) is a rank-one matrix

associated with the same bearing and given by

with

A, (DoD) A, q (0) DoDo

q (0) IA (z)I.
Both the Toeplitz and plane wave structures are preserved by using this whitening

procedure. In the case of a very large array, the above formula suggests the following
(approximated) whitening:

7. Computation results and further comments. In this section, the be-
havior of the REF will be illustrated by computation and simulation results. The
covariance matrix of the sensor outputs is given by

2Do,D, +Bo(45) R
i=1

(B0 exact noise CM; Do steering vector [1] associated with a source coming from the
bearing 0i and with spectral density a2).

The aim of the following results is to illustrate the REF properties.
1. Effects of signal to noise ratios and of the factor 1. The effects of the signal to

noise ratios are illustrated by Figs. 3 and 4. The eigenvalues of BIBt,, are ranked
in increasing order. The index of each eigenvalue is plotted in the x-axis and its
corresponding value in the y-axis. For these two figures, both the source bearings
and the noise parameters are similar. They differ only by the source powers ("level"
indicates the source spectral density a).

The REF (3) is maximized by using a standard gradient algorithm, initialized on
(ill 0.1, f12 .0,..., f15 ---.0) or, in other words Binit -/" .Id ( is chosen "small").
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Thanks to Propositions 3.1 and 4.1, the convergence of the iterative maximization
algorithm is ensured no matter what initialization satisfies the constraints C. The
previous choice (for initialization) appears to the simpler. Once the gradient method
has converged, a matrix B,, is obtained for each value of l. For each value of a
horizontal dotted line y 1/1 / 1) is plotted and the eigenvalues of BIB,, are
compared to this line.

Proposition 3.1 is verified no matter what the value of and the signal to noise
ratios are. The lowest eigenvalue of B-1B,, may be slightly inferior to the theoretical
lower bound (i.e., 1/1 + 1) because of the stopping rule of the iterative algorithm.

i0.0_ 0.91.
5.0_ 0.83_

2.0_

1.0_

0.5.

0.2,

0.67

0.33.

0.17.

Eigenwlues of B-B,L/(L+I)

|O. O’ ,. 0.0
o

Sources 2 Noise parameters
Bearing 60.0 70.0 0 2 3 4

Level 0.10 0.10 1.00 0.60 0.18-0.14-0.10

q=lO p=

FIO. 3. Verification of Proposition 3.1. Eigenvalues of the matrix B1Bl,, for various values
of l, p 5, q 10, s 2. Noise parameters (fl 1, f2 0.6, f3 0.18, f4 --0.14, f5 --0.10),
two sources (bearings 60 and 70 deg., powers 0.1 and 0.1).

2. Noise modelling overdetermination and Proposition 4.3. The proof of Propo-
sition 3.1 shows that it still holds when the noise model is overdetermined. This fact
is illustrated by Fig. 5, where we assumed that the noise model was defined by 7
parameters when the true order was 5. The REF has been maximized with respect to
fl,...,/7. Note that the true parameters are those of Fig. 4. Proposition 3.1 is still
verified in Fig. 4 even if an effect of overdetermination is an increase in the greater
eigenvalues of BIB,,, thus enlarging the dispersion of the eigenvalues. Conversely,
Proposition 3.1 is not verified if the noise model is underdetermined.

The effects of a "large" source number are presented in Fig. 6. Obviously, the
dispersion of the eigenvalues is enlarged, but Proposition 3.1 still holds when the
hypotheses of Proposition 4.3 are not satisfied. Proposition 4.3 thus appears to be
very pessimistic. Note that Conjecture 1 is valid for all these simulations.

3. Verification of Proposition 5.1. Proposition 5.1 is illustrated by Table 1, for
which the computation parameters are

q 32,
Bo MA(2)’bo 1, bl =0.3, b2--0.3.

As can be seen in Table 1, Proposition 5.1 is verified no matter what the value
of is. The parameters {b}*} have been computed by using a gradient algorithm for
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o , 7 a o

Sources 2 Noise parameters
Bearing 60.0 70.0 0 2 3 4

Level 10.00 10.00 1.00 0.60 0.18-0.14-0.10
q=10 p= 5

FIG. 4. Verification of Proposition 3.1. Eigenvalues of the matrix BIBI,. for various values
of 1,p 5, q 10, s 2. Noise parameters (1 1,f12 0.6, fl3 0.18, fl4 --0.14, fl5 --0.10),
two sources (bearings 60 and 70 deg., powers 10 and 10).

Eigenvalues of B-1B,
L L/(L+i)

5.0 0.83
0.8

2.0 0.67.
| 0.6

1.0. 0.50J

_
0.5 0.33

0.2 0.17 0.2

o ,o.o
0 1 2 4 7 8 9 10

Sources 2 Noise parameters
Bearing 60.0 70.0 0 2 3 4 5 6

Level 10.00 10.00 1.00 0.60 0.18 -0.14-0.10 0.00 0.00

q=10 p= 7

Fro. 5. Effect of the noise model overdeteination. Eigenvalues of the matrix B Bt,. for
vaous values of l,p 7, q 10, s 2. Noise parameters (1 1, 2 0.6, 3 0.18,4
-0.14,5 -0.10,6 0.0,7 0.0), two sources (bearings 60 and 70 deg., powers 10 and 10).

maximizing the REF H (30). Because it is quite direct, the calculation of the gradient
is skipped. No convergence problem occurs.

4. Simulation results. Practically, the REF H (3) is replaced by the following
functional:

(46) H logdet (/- B) +/logdet B,
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Level
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q=10 p= 5

Eigenwlues of B-* B,
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0.83

0.67

0.6
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1.00 0.60 0.18 -0.14 -0.10

FIG. 6. Verification of Proposition 4.3. Eigenvalues of the matrix B1Bl,. for various values
of l, p 5, q 10, s 5. Noise parameters (/1 1, f2 0.6,/3 0.18, f4 -0.14,/5 -0.10),
five sources (bearings 30, 40, 50, 60, and 70 deg., powers 1).

where/ is an estimated CM of the sensor outputs.
The vectors Xi of array outputs have then been simulated. The general scheme

of the simulation is presented below.
1. Let B0 be the exact noise matrix, which performs a Choleski factorization of

Bo, say,

Bo TT*.

2. Let Yi be a zero-mean gaussian complex vector of dimension q with covariance
matrix Id; then a noise vector is Yi TYi.

3. A source vector Si is simulated by

2Si ai,jDo,j with" ai,j Af (0, aj )
j----1

The covariance matrix/2/is then estimated by the following.
1. / (l/N)Ei XiX, Xi Si + Yi.
2. /= proj(/).
The projection is the orthogonal projection on the Toeplitz subspace, which is

simply obtained by averaging along the diagonals [15-16]. The gradient algorithm
is once again used for maximizing the REF (cf. 4). Since the initialization is not
critical, we simply choose Binit ) Id. The value of A must be inferior to the lowest
eigenvalue of R. After runs of the algorithm, noise estimates are obtained. The
eigenvalues of the matrix BIB, are presented in Figs. 7 and 8 for 10 trials, each
corresponding to N 300. In other words, the snapshot number is 300.

Figures 7 and 8 correspond to the same simulated data; they differ only by the
value of 1. Proposition 3.1 advocates choosing a large I. This is not true for simulated
data. If the value of is 3, then Proposition 3.1 is "almost" valid. The statistical
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TABLE
Values of b (1) for various values of I.

Value of

bo
1

b2
bo

2 bl
b2
bo

3 bl
b2
bo

4 bl
b2
o

5 bl
b2
bo

10 bl
b2

{b } without {b } with

source source

0.71
0.21

-0.21

0.82

0.24
-0.24

O.87

0.26

-0.26

0.89
0.27

-0.27

0.91
0.27

-0.27

0.va .0 0.
0.22 0.3 0.21

-0.23 -0.3 -0.21

0.84 1.0 0.82
0.25 0.3 0.24

-0.27 -0.3 -0.24

0.89 1.0 0.87
0.26 0.3 0.26

-0.2s -o. -o.6

0.91 1.0 0’89
0.27 0.3 0.27

--0.28 --0.3 --0.27
0.93 1.0 0’91
0.28 0.3 0.27

-0.29 --0.3 --0.27

0.95 0.97 1.0 0195
0.29 0.29 0.3 0.29

--0.29 --0.29 --0.3 --0.29

dispersion of the results of the various trials is rather reduced. This is not the case
when the value of is 10. It thus seems that there is an optimal value of 1.

The choice of the optimal value of the parameter results from statistical consid-
erations relating the values of the parameters p, q, with the statistical properties of
the b’s estimates. Actually, the quantities defining the statistical behavior (standard
deviation bias) of the b estimates can be calculated by using an expansion of the {}
around their asymptotic values b.

This kind of calculation presents no major difficulty, but it is omitted here since
it is beyond the scope of this paper. Roughly, there is a compromise between the
accuracy of the b’s estimates (large values of l) and their variance. Thus appears as
an uncertainty factor describing the redundancy of information relative to the noise
structure.

8. Conclusion. The properties of an original functional have been studied. They
appear to be quite interesting, proving furthermore that the maximization of the REF
is easy and reliable. The REF thus appears to be a promising method for solving an
ill-posed problem.

Appendix A: A definition of the REF. We shall consider, for the REF def-
inition, that the physical array is constituted of n8 equispaced sensors impinged by s
sources, and we shall assume that the correlation length of the noise is null beyond p
sensors.

Now consider the vector B defined by

B (BI,B,...,B),
where the vectors Bi are (statistically) independent sample vectors of the noise im-
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FIC. 7. Simulated data. Eigenvalues of the matrix B1Bl,. for 3. Ten trials, number
of snapshots N 300, two sources (bearings 60 and 70 deg., powers:l and 1), noise parame-
ters :(D1 1, D2 0.6, D3 0.18,/4 -0.14, D5 -0.10).

L
1-

i0.0. 0.91.

0 0
o

Sources 2 3
Bearing 60.0 70.0 80.0
Level 1.00 1.00 0.00

a=lO p= 5

Eigenvalues of B-1B,
L/(L+I)

-i.0

0.8

0.6

0.4

0.2

0.0
4 +

Noise aarameters
0 2 3 4

1.00 0.60 0.18 -0.14 -0.10
BT 300 TN 10

FIC. 8. Simulated data. Eigenvalues of the matrix BIBI,, for 10. Ten trials, number
of snapshots N 300, two sources (bearings 60 and 70 deg., powers:l and 1), noise parame-
ters :(D1 1, 2 0.6, 3 0.18,/4 -0.14, D5 -0.10).

pinging on the array and with

(47) Bi q dimensional vector.

Furthermore, let X be an observation vector (sensor outputs) of the same di-
mension q. Then denote Bi[X to be the linear minimum variance estimate of the
zero-mean random vector X (i.e., the orthogonal projection of the random vector Bi
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on the Hilbert space spanned by X). The following results:

B/IX E (SIX*)[IE (XX*)]-lX,
E denotes expectation, and by a slight abuse of notation (concatenation of the pro-
jections), we have

(48) BIX ] (X*)[I (XX*)]-lx.
Then a "measure" of the "uncertainty" upon/3 which is not "explained" by X is

deduced from the conditional variance of B and is equal to

(49) I(B, X) log det [covar

Actually, the observation vector X is the sum of a source part (X) and a noise
part (B1), say,

(50) X S + B1.

Using (48) and (49), the following expression of I(B, X) is easily derived, yielding

B

I(B, X) log det
0

B
0 O. R-I(B 0 O)

(51) log det (Rq B) + 1. log det B log det Rq.

Appendix B: Optimization of the stepsize. This appendix is devoted to the
calculation of the optimal stepsize p of the gradient’s algorithm on C.

The major aim of this appendix is to obtain an explicit formulation of the REF
H (R, Bk+l). For that purpose, consider the following factorization:

Bk TkT and R- Bk Sk,S
(by assumption Bk and R- Bk are positive definite) so that

log det (R Bk + pDk) log det (SkS; + pDk)
(52) log det [Sk (Id + PS-1DkkS-l*)Sk]*

logdet (R- Bk)+ logdet (Id +
Similarly, one obtains

(53) log det (Bk pDa) log det Bk + log det (Id pT[1DkT[1,).
Therefore, using (52) and (53), the following results:

(54) H(p) log det (Id + pS;1DkS;1.) + I. log det (Id pT[1DkT1.) + cst.

The two matrices SIDkS1. and TIDkT1. are hermitian and therefore diag-
konalizable. Let {hi } and {flk} be their respective eigenvalues. The following explicit

form of H(p) is thus

q q

(55) H(p) E log (1 :t- pak) + 1. E log (1 pfl) + est.
i=1 i=1
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The two constraints C (6) are translated into explicit constraints (with respect to
p), i.e.,

(56) R Bk+l positive definite,
Bk+l positive definite.

The optimal stepsize Pk is obtained by maximizing H(p) (55) under the con-
straints (56). Practically, Pk is obtained by means of a unidimensional Newton method
initialized at p 0. The convergence of Newton’s method on C is ensured since H(p)
is concave on this domain.

Appendix C: The complex case. The gradient algorithm for REF maximiza-
tion will now be extended to the complex case. For that purpose, let V/be the q q
matrix defined by

1 if 1-k=i-1,
0 else.

The noise matrix B then takes the following form:

A real gradient vector Gk is then defined by

-t (/xu),
t(/x(v + y)),
t (x(y ))

v t(( + )),
g’ -itr (Ak(Vp V)),

with

Ak=I.(Bk-1)-(R-Bk)-1.

The gradient iteration takes then the following form:

Bk+l Bk PkDk

with

2’Ok g U1 + g V2 q- V -k gk (V2 V +’" q- g Vp nt- Vp + ig Vp Vpt
The rest of the algorithm is strictly similar to the real case.
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PERTURBATION ANALYSIS FOR TWO-SIDED (OR COMPLETE)
ORTHOGONAL DECOMPOSITIONS*

RICARDO D. FIERROt

Abstract. Two-sided (or complete) orthogonal decompositions are good alternatives to the sin-
gular value decomposition (SVD) because they can yield good approximations to the fundamental
subspaces associated with a numerically rank-deficient matrix. In this paper we derive perturba-
tion bounds for the subspaces associated with a general two-sided orthogonal decomposition of a
numerically rank-deficient matrix. The results imply the subspaces are only slightly more sensitive
to perturbations than singular subspaces, provided the norm of the off-diagonal blocks of the middle
matrices are sufficiently small with respect to the size of the perturbation. We consider regularizing
the solution to the ill-conditioned least squares problem by truncating the decomposition and present
perturbation theory for the minimum norm solution of the resulting least squares problem. The main
results can be specialized to well known SVD-based perturbation bounds for singular subspaces as
well as the truncated least squares solution.

Key words, orthogonal decompositions, singular value decomposition, rank deficiency, rank
revealing, subspaces, perturbation, least squares

AMS subject classifications. 65F25, 65F30

1. Introduction. A two-sided (or complete) orthogonal decomposition of an m
n matrix A is a product of three matrices: an orthogonal matrix, a middle matrix, and
another orthogonal matrix. For practical reasons the middle matrix is usually either
triangular or diagonal. The most well known example of such a decomposition is the
singular value decomposition (SVD), where the middle matrix is diagonal. The SVD
has proven to be a valuable and reliable tool in a wide variety of settings. Denote the
SVD of A (cf. [9, 2.3]) by

(1) A UFVT [U1 U2 U+/-] F [VI V2]T

where

k n-k

0 N2 n- k
0 0 m-n.

We assume (m _> n), otherwise we consider the transposed matrix AT. The parameter
k is the numerical rank of A and the singular values of A, denoted ai, are the diagonal
elements of E with (T1 (T2

_ _
(Tn

_
0. We also denote by

A =_ U VT

a rank-k matrix approximation to A, where E1 diag(al,..., ak). The SVD is a very
powerful tool because the algorithm is numerically stable, detects near-rank deficiency,
and provides a basis for the fundamental subspaces associated with a numerically
rank-deficient matrix. The sensitivity of the singular values to perturbations of A can

Received by the editors March 14, 1994; accepted for publication (in revised form) by C. Van
Loan May 26, 1995.

Department of Mathematics, California State University, San Marcos, CA 92096 (fierro@
thunder.csusm.edu).
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be found, e.g., in [9, pp. 428-429]. The sensitivity of SVD-based subspaces, called
singular subspaces, has been analyzed by Wedin [19].

The SVD can be used, for example, to analyze the ill-conditioned least squares
(LS) problem. It is well known that when A is very ill conditioned, the minimum
norm LS solution to

min lib- Axll2

may be very sensitive to small changes in A or b, and that some form of regularization
is needed to produce a useful solution. One technique is truncated LS, where one com-
putes the minimum norm solution, called the truncated singular value decomposition
(TSVD) solution, to the LS problem

min lib Ak xl12.

An SVD-based sensitivity analysis of the TSVD solution is given in [8].
The purpose of this paper is to analyze (with respect to perturbations of A) the

sensitivity of fundamental subspaces obtained from a general two-sided orthogonal
decomposition, hereto referred as the UMV decomposition. Then we regularize the
solution to the ill-conditioned LS problem by truncating the UMV decomposition
and present perturbation theory for the minimum norm solution of the resulting LS
problem.

It will be very convenient to use the following notation to represent two com-
plete orthogonal decompositions where the middle matrix is either upper or lower
triangular. The decompositions are denoted

(2) A URRV lURk URo UR+/-] R [VRk VRo]T

(3) A ULL VLT [ULk ULO UL+/-] L [VL VLO]T,

where R and L have the following block structure:

k n-k k n-k

(4) R= Rk F k L=
0 G n-k H E
0 0 m-k, 0 0

k

m-k.

Both Rk and G are upper triangular matrices, while Lk and E are lower triangular.
Moreover, Rk and Lk are nonsingular. We shall let

Atk =-- UtkRkvRTk and ALk ULkLkVLTk
denote rank-k matrix approximations to A. Stewart [15, 17] devised practical algo-
rithms for computing such decompositions, called the rank-reveMing URV and ULV
algorithms. The rank-revealing nature of the algorithms is achieved by condition es-
timation, plane rotations, and deflation procedures. These algorithms are efficient
whenever k is not too much smaller than min(m, n). Fierro and Hansen [8] show how
more efficient algorithms can be used if the matrix A is low rank, i.e., k << min(m, n).
These low rank revealing algorithms rely on principal singular vector estimation (via
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the Power method or the Lanczos method, for example), orthogonal transformations
(via plane rotations or Householder transformations), and deflation procedures.

In this paper we shall refer to the complete orthogonal decompositions in (2)
and.(3) simply as URV and ULV decompositions, respectively, and we will not be
concerned with the details of the algorithm used to achieve the decompositions. The
rank-revealing form of (2) and (3) provide the same rank and nearly all of the same
subspace information as the SVD, but with lower computational complexity. Stewart
[16] derived sharp bounds for estimating the singular values of A using a two-sided
decomposition, and Fierro and Bunch [5] derived sharp a posteriori bounds for as-
sessing the quality of their subspaces (cf. 2.1). These results prove that the URV
and ULV decompositions not only reveal the numerical rank of the matrix but also
provide good approximations to the singular subspaces as part of the factorization. In
addition, they are attractive because they can be updated in (9(n2) flops, compared
with (.O(n3) flops for the SVD. This is particularly important in recursive problems
that arise in signal processing applications. The efficiency, stability, parallel, and up-
dating/downdating properties of the algorithms have stimulated many to investigate
the feasibility of the decompositions for various applications. To date, the applicabil-
ity has been examined in updating and downdating [2, 13, 17], subspace tracking [15],
accuracy in approximating least squares solutions [7], an efficient and parallelizable
total least squares algorithm [18], large-scale sparse factorizations [8, 14], direction-
of-arrival estimation problems [1, 11], and information retrieval [3].

This paper is motivated by the promising possibilities of the URV and ULV de-
compositions in situations where the SVD is typically applied. For M R or L,
we are primarily interested in a sensitivity analysis for T(VMk) and T(VMo), which
approximates the numericM rowspace and nullspace of A, respectively, and 7(UMk),
which approximates the numerical range of A. These subspaces are relevant to appli-
cations that involve least squares, total least squares, matrix approximation, subspace
tracking, etc. and thus it is important to identify the parameters that influence the
sensitivity of the URV or ULV-based subspaces to perturbations.

The paper is organized as follows. In 2 we briefly review approximation proper-
ties of the previously mentioned URV- or ULV-based subspaces to illuminate the role
of the block elements of the triangular matrices in the quality of the subspaces. Then
we review perturbation bounds for the SVD-based subspaces by Wedin [19]. In 3 we
identify the influencing parameters which provide insight into the sensitivity of the
subspaces associated with a general two-sided orthogonal decomposition to perturba-
tions. By a general two-sided orthogonal decomposition we mean the middle matrix,
denoted M, has the 3 2 block partition

k n-k

H C n-k
0 0 m-k.

The perturbation bounds illuminate the role of the block matrices of the middle
matrix in the sensitivity of the subspaces. The bounds in 3 can be specialized to
Wedin’s well-known perturbation bounds in connection with the SVD [19]. In 4
we regularize the ill-conditioned LS problem by truncating the two-sided orthogonal
decomposition and derive perturbation bounds for the minimum norm LS solution
(which we call the TUMVsolution). We include bounds in terms of subspace angles to
give a clear perspective on the role of the subspaces in the sensitivity of the truncated
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solution. The result can be specialized to Hansen’s perturbation bounds for the TSVD
solution [10]. In 5 we provide an example, and in 6 we summarize our primary
results.

Throughout this paper I1" represents any orthogonally invariant norm, unless
otherwise specified, a(D) denotes the set of singular values of matrix D, T(D) and
Af(D) denote the range (column space) and nullspace of the matrix D, respectively.
amin(D) denotes the smallest singular value of D and amax(D) denotes the largest
singular value of D. Finally, the superscript f denotes the pseudoinverse, while T
denotes the transpose.

2. Review. The orthogonal projector onto a subspace S is denoted Ps, and
the projector onto its orthogonal complement is denoted P- I- Ps. For two
equidimensional subspaces 81 and S2 we define

sinO(S ,S2) I1(I-P  )P =II- I1(I-P =)P  II,

In the 2-norm this represents the distance between the subspaces, cf. [9, p. 76]. If 82
is viewed as a perturbation of 81, then sin O(1,82) characterizes the sensitivity of
the subspace 81 to perturbations. In 2.1 we will consider the quality or closeness of
the URV- and ULV-based subspaces to singular subspaces. In 2.2 we will review the
well-known perturbation bounds for singular subspaces.

2.1. A posteriori error bounds. As mentioned earlier, the URV and ULV
decompositions possess many nice properties that nearly demand it be considered
as a possible Substitute to the SVD in some applications. In many applications both
rank and subspace information must be determined. Stewart [16] showed how one can
infer the numerical rank of the matrix from such decompositions, and the bounds can
easily be turned into a posteriori bounds. Fierro and Bunch [5] proved the following
result which shows how one can determine the quality of the URV- and ULV-based
subspaces as compared with the SVD-based subspaces. The bounds give insight to
the role of the gap in the singular values of the diagonal blocks of the middle matrix
as well as the norm of the off-diagonal blocks.

THEOREM 2.1 (Fierro and Bunch [5]). Let A have the SVD in (1) and the URV
and ULV decompositions as in (2) and (3). Assume I1" II" 112. If IIEII < (:rmin(nk)
then

sin O(T4(ALTk), T4(AT))_<

and

O’2min(Lk) IIEII e

IIHII < sin O(n(AL,), 7"(A))< IIHII
IILll + IIEII O’min(Lk)- IIEII"

g II ll < (rmin(Rk), then

< sin O(Ti(ATRk), Ti(A))<[IRI[ + I]G[I

and

sin O(n(A), n(Ak)) <_
Cr2min(Rk)-
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These bounds guarantee that as the off-diagonal blocks F or H decrease then the
URV- or ULV-based subspaces correspondingly converge to their SVD counterparts.
The bounds also reveal that there is a lower limit in the closeness of certain subspaces.
In 3 these bounds will be extended to orthogonally invariant norms when we examine
the sensitivity of URV- and ULV-based subspaces to perturbations in a more general
setting.

2.2. SVD perturbation bounds. Now we shall review perturbation bounds
in connection with the SVD. Let A -b A represent a perturbation of A. Denote
the SVD of by

(5) 2--T [1 2 ][1 2]T

where is partitioned according to E. Defining k 11, we wish to find good
upper bounds for

sin O((A),()) and sin O((A),())
to obtain an idea of the sensitivity of these important subspaces associated with
the SVD. These quantities are very important, for example, in characterizing the
sensitivity of TSVD solutions; cf. 4.

We will need the residuals AI ID and AT fQ[gT, where the columns
of ) form an orthonormal basis for 74(.T), the columns of 1 form an orthonormal
basis for T(k), and/1 TSAfQ. Note that

We now state the perturbation bounds in connection with the SVD.
THEOREM 2.2 (Wedin [19]). Assume there exists a > 0 and ( >_ 0 such that

amin(]l)
_

O/--( and amax(E2)

_ .
Take e max{SA[, [sATI[}. Then for every unitary invariant no we have

sinO((A),()) and sinO((A),()) .
Using the definitions of e and 5 and perturbation theory of singular values, Theorem
2.2 can be quantified in terms of the size of the perturbation [SA" If ]SA] < a--ak+l,
then

(6) sin O((A),()) < [SA and

sin O(n(A), n())

Therefore, the singular subspaces associated with the cluster of singular values {ai}i1
are relatively insensitive to small perturbations (]SA a -ak+l). There is also a
complementary version of Theorem 2.2; cf. [19] and 3.

3. Perturbation bounds for U-based subspaces. Let A + 5A have
the corresponding complete orthogonal decomposition
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where R is partitioned according to (4). We want to estimate the sensitivity of the
URV-based subspaces when we have estimates for 115All the gap between the least
singular value of Rk and the largest singular value of G, and the size of the off-
diagonal blocks F and/. In a similar vein, if

(8)

we are equally interested in the sensitivity of the ULV-based subspaces.
As we will see, the perturbation theory for the URV- and ULV-based subspaces

can be derived with a single treatment if we consider the most general two-sided
orthogonal decomposition, which we denote the UMV decomposition:

(9) A UMM VII [UMk UMO UM_L] M [VMk VMO]T.

Here, the "middle" matrix M has the following 3 2 block partition

k n-k

M= Sk F k
H C n-k
0 0 m-k.

We do not place any restrictions on the block elements ofM except that Sk is required
to be nonsingular (w.l.o.g.). The UMV decomposition of the perturbed matrix . is
denoted

(10) . M](/I f/ M MO M+/- I fZMk fZMo T

where is partitioned according to M. If we define the rank-k matrices

(11) AMk gMkSk Mk and fffk
it follows that

A AMk -F UMoHVTMk zt- UMkFVI-IO zt- UMoCVTMo
and

We wish to derive good upper bounds for

sin O(TC(A), T(TMk)) and sin O(T4.(AM), n(4Mk ),

and it should be clear that good upper bounds for the URV- and ULV-based subspaces
will immediately follow. As mentioned earlier, these quantities play an important
role in understanding the sensitivity of truncated least squares solutions obtained by
truncating the two-sided orthogonal decomposition; cf. 4.

In the spirit of Wedin [19] we will use the residuals --6Af(M and --6ATMk in
the upper bounds, where the columns of -Ma form an orthonormal basis for T(fi,k
and the columns of ]Ma form an orthonormal basis for T(Ma). If we define Mk =--
a6Af(Mk, then the UMV residuals --6Af(Ma and --6ATMt are given by

--AfMk (Af(Mk /’MkbMk) UMoHVMk Mk,

VMOF UMkYMk.
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These residuals will play a crucial role in the following sensitivity analysis through
parameter eM, defined by

(12)

Note that eM is the maximum norm of the projection of 5A into 7g(JMk) or
and

We are now ready to state the main result of this section.
THEOREM 3.1. Let A and . have the UMV decompositions as in (9) and (10),

respectively. Assume there exists a 5M > 0 and OZM > 0 such that

amin(Sk) >_ aM -4-(M and O-max(C) < oM

Take eM mx{l[Sn2Mll, IIATM][}. Thn fo wy unitary invariant norm we
have

sin O(T(Ak), T(tMk)) < liFll + I111
5M

(IIHII + IIH[I) (:rmax(C) M+ (M O’min(ik) nt- (:rmax(C) (M

and

sinO((AMk) (flMk)) < IIHII + I111 (IIFII + IIPlI) O’rnax(C)+ (M tTmin(k) nt- tTmax(C

Proof. To bound sin O(T(ATMk), 7(/)), we proceed by first finding a tractable
expression for the matrix VMo"

It is easy to show 116ATMk IIATM II. Further, we have

II[UM0 UM_]II II[UM0 UMITMkI[- sin O(T(AMk), T(ftMk)).
Occasionally we shall use the following result in the proof (cf. [12])"

IICDII _< IICll IIDII _< IICII IIDII.
By taking norms in a straightforward way it follows that

sin O(’R,(ATMt), 7(k)) _< 1[/1[[2 ([IF[]--[-1[[[)--[-[[-1[[2 M

(13) + [[1[]2 ][C[[2 sin O(T,(AMk), T,(Mk)).
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Now we need to bound sin O(T(AMt:), ’(Mk)), and we proceed by finding an
expression for the matrix P’(A)Mkr:

Therefore, since IISAMk[I II(A2MkII, it follows that

sin O(n(AM), n(-M)) < (IIHI[ + I111)]l:-lle + II-ll]e M
(14) + IIC]l I15-111. sin O(n(A), n(A)).
Substituting (14) into (13) we get

sin O(n(ATMk), n(ftTMk)) <_ [[-lII 2 (llgll --IIPlI) + [1]2 (1 + ICI2 ]llII2)M

(15) + [[C[[ [[1[[ sin O((A),()).

Solving for sin ((Ak),()) and using the fact [;1[[2/([];[2+]C[2) 1,
we get the final result

(16)

sin O(n(ATM), n(fiTMk)) <_ IlYll + IlPll (IIHII + IIll)max(C)+
(7min (Sk) (7max (C) 2

O’min(k)- O’2max (C)
M

/
O’min (.k) O’max(C)

On the other hand, if we substitute (13) into (14) and solve for sin O(n(AM),
T(AMk)) instead we get

(17)

Again, we have used the mild overestimate i];ll]2/(ll;lll 2 --IICII2)

__
1. The as-

sumptions on OZM and (M imply
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1 1 1 1

O’min (gk) O’max (C) - MM and
0.2min (gk) (T2max (C) - M Tmin(Sk) "" (Ymax(C)

From this and (16), (17) the desired results immediately follow.

Remark 1. If OM is hi1 upper bound for amax(C), then Theorem 3.1 has something
meaningful to say for all perturbations 8A such that OZM < Crmin(k). An obvious
choice for M is amax(C).

Remark 2. The bounds in Theorem 3.1 can be tightened by using Crmin(k)
amax(C) instead of iM. Alternatively, the bounds can be overestimated by sub-
stituting (Tmin(g_k) --(:rmax(C with (M or amin(k)- amax(C), and by bounding
(Tmax(C)/(O’min(Sk) + (Tmax(C)) by 1.

Remark 3. Upper bounds for 1/((Tmin(gk) (Tmax(C)) are

1 1

(Tmin(gk)- O’max(C (Tmin(Sk) --(Tmax(C -IIFII- IIHII- II/11- II/11- IIiAII

and

1 1

Tmin(gk)- (Tmax(C) (Tk --(TkT1 --IIFII- IIHII- I1 11- I1 11- II AII

Remark 4. Theorem 3.1 specializes to Wedin’s perturbation bounds for singular
subspaces in Theorem 2.2: by setting IIFII--I111--IIHII II/11 0, it immediately
follows that

(a) from the definitions e M and 5 (M, and
(b) the corresponding subspaces coincide (e.g., n(AT) n(ATMk) and n(.k)

Remark 5. The bounds also permit a comparison between approximate numerical
nullspaces of any two competing two-sided orthogonal decompositions. For example, if
we consider the singular subspaces of A and either the URV- or ULV-based subspaces
of A, then we can immediately deduce the upper bounds in Theorem 2.1. Or, we can
compare singular subspaces of A with the corresponding UMV-based subspaces of A
to get
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and

sin O(n(Ak), n(ftMk)) <_ I111 / I1[-III /
(Tmin(gk) (Tk+

< IlPl[ / II/[I / [16All

Using the definitions of eM and M, and perturbation theory of singular values,
Theorem 3.1 can be quantified in terms of an upper bound for
lIHll) the size of the perturbation II AII, Yonows,

COROLLARY 3.2. Using the notation of Theorem 3.1, suppose T is a parameter
that satisfies

If 4T + 115All < ak ak+l, then

(18)

and

sin O(n(ATMk), n(TM)) <_
(Tk+l 4r -IIAll

(19) sin O(n(AMk), n(AMk)) <_ 4r + IIAll

Therefore, the UMV-based subspaces (ATMk) and T(AMk) are relatively insensi-
tive to 5A provided 115All << ak- ak+i--4T. In comparison with the singular subspace
bounds in (6), Corollary 3 implies the subspaces associated with the UMV decompo-
sition are only slightly more sensitive than the singular subspaces, provided the norm
of the off-diagonal blocks of M and M are "sufficiently" small with respect to 115All,
that is, 4T << 115All. This includes the URV and ULV decompositions, in which case
4r can be replaced by 2T.

Now we specialize Theorem 3.1 to the widely used URV and ULV decompositions
for completeness and clari_ty, with particular focus on the ability of the URV- and
ULV-based subspaces of A in approximating the singular subspaces of A. Let the
columns of Rk form an orthonormal basis for 7(k and the columns of Rk form
an orthonormal basis for T(R}), with an obvious corresponding meaning for (Lk
and YLk. Define eR and eL by

(20) eR =-- max{llSAfR,l, 1IsAT?Rk’I } and eL max{],SALa][,
COROLLARY 3.3. Let A have the SVD as in (1) and let A A + 5A have the

URV and ULV decompositions as in (7) and (8), respectively. Define eR and eL as in

Let r be any number such that I111 <_ r. If r + 115AII < ak -ak+, then

sin O(n(A[), n(flTRk)) <_

<

k
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and

sin O(n(Ak), n(fiRk)) <

(22)

O-2mi’n’(/]’k ’0-+ + Tmin(/k) (Tk_l_1

Let r be any number such that I111 -< ’. If + IIAII < k --k+ then

sin O(n(A), n(fik)) <_

(23) <

+
O’min O’min(k) O’k+

and

sin O(n(A), n(flL)) <_

(24) <

O’min(Lk) O’k+l

T -4-II,AII

By comparing (6) and (21)-(24), the important conclusion from Corollary 3 is
that the URV- and ULV-based subspaces of A are only slightly more sensitive to the
perturbation 5A than the singular subspaces of , provided T is sufficiently small with
respect to 115All; that is, T << 115All.

The residuals --SAf(uk and --SATMk in Theorem 3.1 are defined in terms of basis
vectors for T(4k) and Tt(Uk). h similar result can be derived for residuals based
on complementary basis vectors. Consider the complementary residuals --SAf(uo
and-SAYMo, where the columns of )U0 E n(,-k) form an orthonormal basis
for JV’(IMk) and the columns of ]YM0 E mx(m-k) form an orthonormal basis for
7(fi.M) +/-. It is necessary to extend the columns of ]YM0 to more than just basis
vectors for 7E(u0) because the subspace sensitivity measure requires orthogonal

"Tcomplements. If we define Duo YMoAXMo then

-A:.o (A:MO ?MOD0) UMkFVMoXMO
-A?,o (A?o :obo) [o?,o.

Now we are ready to state the subspace bounds in terms of the complementary
residuals, which extend Wedin’s sin O theorem with complementary residuals [19].

THEOREM 3.4. Let A and A have the UMV decompositions as in (9) and (10),
respectively. Assume there exists a 5i > 0 and OM > 0 such that

ffmin(k) >_ OZM "- M and O’max() <_ OM.

Take eM max { IIAMolI, IIATMoII }. Thn foy unitary invariant norm we

have

sin O(n(ATM), n(flTM)) < IIFII / I111 (IIHll + I111) ffmax() M
X
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and

sin O(n(AM), n(fiU)) <_ IIHII + I111 (IIFII + I111) O’max() M+(M (M O’min(’k) -4- O’max() (M"

Proof. The proof is analogous to that of Theorem 3.1.

4. UMV decompositions and regularization. In this section we regularize
the solution to the ill-conditioned LS problem

(25) min lib- Axll2

by truncating the two-sided orthogonal decomposition of A. Then we derive per-
turbation theory for the minimum norm solution of the resulting rank-deficient LS
problem.

When A is very ill conditioned, the ordinary LS solution Xo8 Atb VtUTb
may be very sensitive to errors in A and b in the sense that small errors in A or b
may result in disproportionately large changes in the solution. The TSVD technique
(cf. [9]) is commonly used to produce a less sensitive solution by computing by the
minimum norm solution to the related LS problem

(26) min lib Ak xl12.

The minimum norm LS solution to (26), called the TSVD solution, is given by

(27) Xk Akb VIF uITb.

Defining A + iA and b + b as usual, we let

denote the TSVD solution to the perturbed truncated LS problem.
As an alternative to the TSVD technique, we consider truncating the two-sided

orthogonal decomposition to obtain the following LS problem:

(28) min lib AM x[12.x

The motivation here is that it is often less computationally demanding to compute
AMk than Ak. The minimum norm LS solution to (28), called the TUMV solution,
is given by

(29) XMk ACMkb VMkSIUIkb,

and the TUMV solution to the corresponding perturbed LS problem is denoted

(30) Mk h/lk) ?Mkl-fYlk.
The following theorem presents perturbation theory for the TUMV solution, i.e.,

upper bounds for the relative error IIXMk--MklI/IIXMklI. The bounds give insight into
the sensitivity of XMk to the perturbations 5A and 5b, as well as the decomposition
itself. The derivation proceeds with two key ideas in mind:



PERTURBATION ANALYSIS 395

first, XMk and &Mk belong to n(VMk) n(A) and n(Mk)
respectively;

second, XMk and Mk are the (unique) minimum norm solutions to the (com-
patible) overdetermined system of linear equations AMkX Pn(AMk)b and MkX
Pn(Mk)’ respectively.

Therefore, it is natural to derive perturbation bounds which involve the familiar
scalars

sin O(n(ATMk), n(.TMk)) and sin O(n(AMt:), n(ftik)).
For simplicity, let II" II"

THEOREM 4.1. Let f4 A + SA and b + Sb, and let XMk and CM be
defined as in (29) and (30), respectively. Define the LS residual rM b- AXM,
PM IIrM / UMoHSUbll/llbll, ad the condition nbeM
Assume there exists a 6M > 0 and aM 0 such that

O’min(k) aM -]-M and O’max(C OM.

Then

IIXMk 5CMkll < sin O(n(ATM) n(ftTMk))

+ Mc(]’rMk’l/l’bllV/1 pk sinO(n(AMk),n(M)))
IIA[I i p IIAll

where sin O((A),(A)) and 8in O((A),(AM)) are boarded according
oo3.1., oIIAII ZdbM (10 Oo
he bounds.

Proof. We begin wih

(A )b-(AA
(31) + (AAM
After some algebraic manipulation it follows that

ACMAMk M.M (ACM M)A- VMkS;FvO + M--PTMo

Substituting this into (31), we get

XMk 2Mk (ACM flCMk)rMk --(VkS;FVo Mk-Po)XMk
--.Mk5AxM .Mk5b + (ACMkAMk MiMk)XMk,

which leads to

MII (AMk Mk)rMkll + (VMkSkT 1FVIIO ,/rMk-I?0)XM
(32) +IIMkAXMkll + IIAMSbl[ + IIXMII sin O(7"i(Ak),n(-TMk))
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Now we shall bound the individual terms on the right. To bound the first term,
note that .tMk fflMk _fMkfTMk and rMk PT(UMk b UMHVITIk PTC(UMk-I- rMk.
Consequently,

(33)

(34)

II;P(.)P(.)II
< IlfltMkl] IIrMkll sin O(Ti(AM), Ti(flMk))

<_ ’M IIgMgbll IIMII sin O(T(AMk), T(AMk)).

Now, it can be shown rM +/- T(AM) and b rMk + UMoHSIUKb + UMkUkb.
Therefore, ]IUMkUTMkbll 2 --]]bll 2 (1 -IIrMk + UMoHS;1U4Kb]]2/Ilb]]2) Hence,

1 1 1

I]UMaUabl
<_ x

V/1 PMk2
where PMk- IIrMk + UMoHS-IuI4KblI/IIblI, and

(35) II(AMk- Mk)rMII < q2Mk . IIXMklI sin O(T(Auk),n(fiMk)).
V/1 PMk

We bound the second term according to

(36) IIFII + IIPlI) IIxMkll.II(VMTG-1EVMT0- *MlPo)XMII
_
M IIAII

To bound the third and fourth terms we have

(37) IIAIIII-*MAXMII
_
M IIA’Ii IIXM,II

and

IIbll/llbll IIXM,II.(38) IIA*M, bll _< M,
V/1 p2Mk

Taking into account (32}-(38) we see that the desired result immediately follows.
Finally, the result can be strengthened as stated, since in (37) we see that

IIA*MA XMII IIM;IAXMII-- IIg-ll IIATEXMII IIXMII
<_ ’M, IIXM,II" D

Remark 6. The perturbation bound in Theorem 4.1 characterizes the role of the
subspaces in the sensitivity of the TUMV solution XMk. Further, the upper bounds
in Theorem 3.1 highlight the importance of the block matrices of the middle matrix
in the sensitivity of XM, providing additional insight.
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Remark 7. By setting IIFII I111 ilHII II/ll 0 we have also derived
perturbation bounds for the TSVD solution: defining k IIAll I1i11, r =_ b- Axk,
and pk =-IIrll/llbll, we get

I]x kl] < sin O(7(AT) 7())

(39)

Ik ( eb Pk k(40) < 2 + ’2 + x

where we have defined

IIAII Ilbll IIAII IIA*II --’ak / eA, and w -= ffk+l
k

Equation (39) is a well-known perturbation result for the TSVD solution x cf. [10,
Thin. 3.4]. Therefore, the perturbation bounds for the solution to the LS problem
obtained by truncating the two-sided orthogonal decomposition specialize to the well-
known SVD-based perturbation result.

Remark 8. The bound in Theorem 4.1 can be applied to obtain a bound for

IIx Mkll/llxll,
For convenience we specialize the general perturbation result to the URV and

ULV decompositions.
COROLLARY 4.2. Using the notation in Theorem 4.1, the following bounds hold:

If (Tmax (G) < (7min (RIo), then

If (Tmax(E) < (Ymin(Lk), then

Ilxik- ikll < (IIHII + IIHII)(Tmax(E)
_[_

[Ix/[I (:r2min(Jk) ff2max(E) min(Jk) max(E)

The factor V/i p in (39) represents a minor correction to [10, Thm. 3.4].
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n(L) x()

As mentioned in 1, the URV and ULV decompositions can be used to solve LS
problems (28) in a noisy environment in various domains such as signal processing,
mainly because triangular systems are easy to solve and their structure is easier to
preserve in updating and downdating problems. Often, xk represents the exact or
desired solution to the noise-free LS problem and the TURV and TULV solutions
represent approximations to xk derived from the noisy LS problem.

COROLLARY 4.3. Using the notation in Theorem 4.1, define

ffk+l
k gkEA k

k

zf + IIAII < +, then

I’k I b PkIIz -11< e,+: + +v/1-IIx,ll 1- rlk wk eY 1- rlk eY V/1 P2k Pk

g + IleAl] < +, then

Equation (39) and Corollary 4.3 imply &n and "Lk are only slightly more sensitive
than k to the perturbation 6A, provided (p << 115All and << IIiAII, respectively.

5. Numerical example. We complete our discussion with a small numerical
example. The singular values of the 20 6 matrix A are

a(A) {10, 3, 1, 5.10-2, 10-4, 10-5},

and the numerical rank of A is k 4 (arbitrarily chosen). We defined the right-hand
side b e 20 by b A [1, 1, 1, 1, 1, 1] T. The elements of [tiA tib] are from the normal
distribution with mean zero and standard deviation a, where

a 3.10-6, 8.10-6, 3.10-5, 8.10-5, 3.10-4, or 8.10-4.

The URVand ULVdecompositions for A and were computed by means of Stewart’s
algorithms, and the singular vector estimates needed in those algorithms were ob-
tained with a single step of inverse iteration. As shown in [5], the quality of these
estimates influences the size of the off-diagonal blocks (which in turn influence the
subspace angles). A single step was enough in this simulation to produce sufficiently
small off-diagonal blocks.

The values in Table 1 and Table 2 represent the average of 100 trials. Table 1
summarizes the mean values of the subspace angles (cf. Theorem 3.1):

sin O(n(ATuk), Ti(fftTuk)) and sin O(T4,(AMI), T,(ffMk))
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TABLE
Comparison of the subspace angles. All values represent the mean of 100 trials.

3.0e-06
8.0e-06

3.0e-05

8.0e-05

3.0e-04
8.0e-04

sin O(n(A’), n(fi.kT)) sin O(n(Ak), n(TRk)) sin O(n(Ak),
8.0886e--05 8.0843e--05 8.0886e--05

1.9946e-04 1.9955e--04 1.9946e--04

7.9777e--04 7.9686e-04 7.9777e--04

2.3027e--03 2.3055e--03 2.3027e--03

7.9393e--03 7.9885e--03 7.9373e--03
1.9140e--02 1.9967e--02 1.9119e--02

sin O(T(’ALk ),a Sin O(7(Ak), 7(k))
’3.0e--06
8.0e--06

3.0e-05
8.0e-05

3.0e-04
8.0e-04

2.3703e-04 2.3702e-04 2.3704e-04

6.2721e-04 6.2721e-04 6.2716e-04

2.3208e-03 2.3208e-03 2.3211e-03

6.4126e-03 6.4126e-03 6.4128e-03

2.2876e-02 2.2877e-02 2.2886e-02
6.2716e-02 6.2742e-02 6.3042e--02

TABLE 2
Comparison of the relative errors for the truncated LS solutions. All values represent the mean

of 100 trials.

’3’.0e:06’ 8.0886e-05 ’8.0843e-05 8.0886e-05

8.0e-06

3.0e-05

8.0e-05

3.0e-04
8.0e-04

1.9946e-04 1.9955e-04 1.9946e-04
7.9777e-04 7.9686e-04 7.9777e-04

2.3027e-03 2.3055e-03 2.3027e-03
7.9393e-03 7.9885e-03 7.9373e-03
1.9140e-02 1.9967e-02 1.9119e-02

for the SVD, URV, and ULV. In this simulation the URV- and ULV-based subspaces
are only slightly more sensitive to noise than the singular subspaces. Table 2 summa-
rizes the mean values of IIXMk--&MklI/IIXMkll (cf. Theorem 4.1) and the corresponding
upper bound in terms of the subspace angles (cf. Theorem 3.1) for the SVD, URV,
and ULV. In this simulation the TURV and TULV solutions are only slightly more
sensitive to noise than the TSVD solution.

6. Conclusion. In this paper we derived perturbation bounds for the subspaces
associated with a general two-sided (or complete) orthogonal decomposition (called
the UMVdecomposition) of a numerically rank-deficient matrix. The analysis implies
the UMV-based subspaces are only slightly more sensitive to perturbations than sin-
gular subspaces, provided the off-diagonal blocks of the middle matrices M and 2t7/
are sufficiently small with respect to the size of the perturbation. Then we considered
regularizing the solution to the ill-conditioned least squares problem by truncating the
complete orthogonal decomposition and derived perturbation bounds for the result-
ing minimum norm least squares solution (called the TUMV solution). The analysis
implies the TUMV solution is only slightly more sensitive to perturbations than the
TSVD solution, provided the off-diagonal blocks of the middle matrices M and are
sufficiently small with respect to the size of the perturbation. Finally, we showed how
the new bounds can be specialized to well-known SVD-based perturbation results for
singular subspaces and the TSVD solution.
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A JACOBI-DAVIDSON ITERATION METHOD FOR LINEAR
EIGENVALUE PROBLEMS*
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Abstract. In this paper we propose a new method for the iterative computation of a few of the
extremal eigenvalues of a symmetric matrix and their associated eigenvectors. The method is based
on an old and almost unknown method of Jacobi. Jacobi’s approach, combined with Davidson’s
method, leads to a new method that has improved convergence properties and that may be used
for general matrices. We also propose a variant of the new method that may be useful for the
computation of nonextremal eigenvalues as well.

Key words, eigenvalues and eigenvectors, Davidson’s method, Jacobi iterations, harmonic Ritz
values
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1. Introduction. Suppose we want to compute one or more eigenvalues and
their corresponding eigenvectors of the n n matrix A. Several iterative methods
are available: Jacobi’s diagonalization method [9], [22], the power method [9], the
method of Lanczos [13], [22], Arnoldi’s method [1], [25], and Davidson’s method [4],
[25], [3], [14], [17]. The latter method has been reported to be quite successful, most
notably in connection with certain symmetric problems in computational chemistry
[4], [5], [31]. The success of the method seems to depend quite heavily on the (strong)
diagonal dominance of A.

The method of Davidson is commonly seen as an extension to Lanczos’s method,
but as Shad [25] points out, from the implementation point of view it is more related
to Arnoldi’s method. In spite of these relations, the success of the method is not
well understood [25]. Some recent convergence results and improvements, as well as
numerical experiments, are reported in [3], [14], [15], [17], [16], [18], [27].

Jacobi [12] proposed a method for eigenvalue approximation that essentially was
a combination of (1) Jacobi rotations, (2) Gauss-Jacobi iterations, and (3) an almost
forgotten method that we will refer to as Jacobi’s orthogonal component correction
(JOCC). Reinvestigation of Jacobi’s ideas leads to another view on the method of
Davidson, and this not only helps us explain the behavior of the method, it also leads
to a new and robust method with superior convergence properties for nondiagonally
dominant (unsymmetric) matrices as well. Special variants of this method are already
known; see [18], [27] and our discussion in 4.1.

The outline of this paper is as follows. In 2 we briefly describe the methods of
Davidson and Jacobi, and we show that the original Davidson’s method may be viewed
as an accelerated Gauss-Jacobi iteration method. Likewise, more recent approaches
which include other preconditioners M can be interpreted as accelerated standard
iteration methods associated with the splitting A M- N.

In 3 we propose the new approach, which is essentially a combination of the
JOCC approach and the method of Davidson for creating more general subspaces. The
difference between this approach and Davidson’s method may seem very subtle but it
is fundamental. Whereas in Davidson’s method accurate preconditioners M (accurate

Received by the editors June 22, 1994; accepted for publication (in revised form) by A. Green-
baum May 22, 1995.

Mathematical Institute, University of Utrecht, Budapestlaan 6, P.O. Box 80.010, Utrecht 3508
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in the sense that they approximate the inverse of the given operator very well) may
lead to stagnation or very slow convergence, the new approach takes advantage of
such preconditioners, even if they are exact inverses. It should be stressed that in this
approach we do not precondition the given eigensystem (neither does Davidson), but
we precondition an auxiliary system for the corrections for the eigen approximations.
The behavior of the method is further discussed in 4. There we see that for a specific
choice the speed of convergence of the approximated eigenvalue is quadratic (and for
symmetric problems even cubic). In practice, this requires the exact solution of a
correction equation, but as we will demonstrate by simple examples (6), this may be
relaxed. We suggest using approximate solutions for the correction equations. This
idea may be further exploited for the construction of efficient inner-outer iteration
schemes, or by using preconditioners similar to those suggested for the Davidson
method.

In 5 we discuss theharmonic Ritz values, and we show how these can be used in
combination with our new algorithm for the determination of "interior" eigenvalues.
We conclude with some simple but illustrative numerical examples in 6. The new
method has already found its way into more complicated applications in chemistry
and plasma physics modeling.

2. The methods of Davidson and Jacobi. Jacobi and Davidson originally
presented their methods for symmetric matrices, but as is well known and as we
will do in our presentation, both methods can easily be formulated for nonsymmetric
matrices.

2.1. Davidsons method. The main idea behind Davidson’s method is the fol-
lowing one. Suppose we have some subspace K of dimension k, over which the pro-
jected matrix A has a Ritz value 0k (e.g., 0k is the largest Ritz value) and a corre-
sponding Ritz vector uk. Let us assume that an orthogonal basis for K is given by
the vectors vl, v2,. vk.

Quite naturally the problem of how to expand the subspace in order to find
successful update for uk arises. To that end we compute the defect r Auk
Then Davidson, in his original paper [4], suggests computing t from (DA --0kI)t r,
where DA is the diagonal of the matrix A. The vector t is made orthogonal to the
basis vectors vl,..., vk, and the resulting vector is chosen as the new Vk+l, by which
K is expanded.

It has been reported that this method can be quite successful in finding dominant
eigenvalues of (strongly) diagonally dominant matrices. The matrix (DA-
can be viewed as a preconditioner for the vector r. Davidson [6] suggests that his
algorithm (more precisely, the Davidson-Liu variant of it) may be interpreted as a
Newton-Raphson scheme, and this has been used as an argument to explain its fast
convergence. It is tempting to also see the preconditioner as an approximation for
(A- OkI) -1, and, indeed, this approach has been followed for the construction of
more complicated preconditioners (see, e.g., [16], [3], [14], [17]). However, note that
(A- 0kI) -1 would map r onto uk, and hence it would not lead to an expansion of
our search space. Clearly, this is a wrong interpretation for the preconditioner.

2.2. The methods of Jacobi. In his paper of 1846 [12], Jacobi introduced
a combination of two iterative methods for the computation of approximations of
eigenvalues of a symmetric matrix. He proposed the combination as an entity, but

This came to our attention by reading A. den Boer’s Master’s thesis [7].
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at present the methods are only used separately. The first method is well known and
is referred to as the Jacobi method (e.g., 8.4 in [9]). It is based on Jacobi plane
rotations, which are used to force the matrix A to diagonal dominance. We will
refer to this method as Jacobi’s diagonalisation method. The second method is much
less well known and is related to the Davidson method. For ease of discussion we
will call this second method the JOCC. It turns out that Davidson’s method can be
interpreted as an accelerated JOCC method, just as Arnoldi’s method can be seen as
an accelerated power method.

2.2.1. The JOCC method. Jacobi considered an eigenvalue problem as a sys-
tem of linear equations for which his iterative linear solver [11], the Jacobi or Gauss-
Jacobi iteration (e.g., 10.1 in [9]), might be applicable.

Suppose we have a diagonally dominant matrix A, of which a1,1 a is the largest
diagonal element. Then a is an approximation for the largest eigenvalue A, and el
is an approximation for the corresponding eigenvector u. In modern matrix notation
(which was unknown in Jacobi’s time), his approach can be presented as follows.

Consider the eigenvalue problem

where F is a square matrix, a is a scalar, and b, c and z are vectors of appropriate
size. We are interested in the eigenvalue A that is close in some sense to c, and in the
corresponding eigenvector u (1, zT)T, with component z orthogonal to el. Problem
(1) is equivalent with

(2) O + cTz,
(F-

Jacobi proposed to solve (3) iteratively by his Jacobi iteration, with Z1 0, and an
updated approximation for , using (2) :2

Ok O CTzk,(41 (D OkI)zk+l (D F)zk b,

where D is the diagonal of F (although 0k is not a Ritz value, we have used it to
characterize it as an eigenvalue approximation).

Jacobi solved, as is also customary now, the update Yk for zk from the diagonal
system rather than solving Zk+l directly. Therefore, a better representation of the
JOCC method would be

with z 0, 1 O, and Yl -(D-aI)-b. However, in connection with Davidson’s
method, representation (4) simplifies the discussion.

2 Actually, Jacobi updated the approximation of A only at every even step. There is no explanation
for why he did not update in the odd steps as well.
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2.2.2. Short discussion on the JOCC method. Jacobi was well aware of the
fact that the Jacobi iteration converges (fast) if the matrix is (strongly) diagonally
dominant. Therefore, he proposed to perform a number of steps of the Jacobi diago-
nalization method in order to obtain a (strongly) diagonally dominant matrix before
applying the JOCC method. Since he was interested in the eigenvalue closest to a, he
did enough steps using the diagonalization method to obtain a diagonally dominant
F- aI so that F- OkI was also diagonally dominant. This can be done provided that

is a simple eigenvalue of A. The application of the diagonalization method can be
viewed as a technique to improve the initial guess el, i.e., the given matrix is rotated
so that e is closer to the (rotated) eigenvector u. These rotations were done only at
the start of the iteration process, and this process was carried out with fixed F and
D.

However, note that in Jacobi’s approach we are looking, at all stages, for the
orthogonal complement to the initial approximation u e. We do not take into

T)T become available in the process,account that better approximations ua (1, zk
and that it may be more efficient to try to compute the orthogonal complement
u- (uTuk)uk. In the JOCC framework an improved approximation would have led
to a similar situation as in (1), if we would have applied plane rotations on A, such
that ua would have been rotated to e by these rotations. Therefore, what Jacobi
did only in the first step of the process could have been done at each step of the
iteration process. This is an exciting idea, since in Jacobi’s approach the rotations
were motivated by the desire to obtain stronger diagonal dominance, whereas our
discussion suggests that one might take advantage of the information in the iteration
process. Of course, this would have led to a different operator F in each step and this
is an important observation for the formulation of our new algorithm.

2.3. Davidsons method as an accelerated JOCC method, We will apply
Davidson’s method for the same problem as before. In particular we will assume that
A is as in (1) and that Ul el.

The eigenvector approximations produced in the kth step of JOCC, as well as in
the Davidson method, are denoted by u. We assume that uk is scaled such that its

T)T Let Ok be the associated approximation to thefirst coordinate is 1" Uk (1, zk
eigenvalue. It will be clear from the context to which process an approximation refers.

The residual is given by

O + cTz(6) r (A eaI)u (F OkI)zk + b

Davidson proposes computing tk from

(7) (DA OI)tk --ra,

where DA is the diagonal of A. For the component k := (0, y[)T of tk orthogonal to
Ul it follows, with D the diagonal of F, that

(S) (D OkI)yk -(F OkI)zk b (D F)zk (D OkI)z b,

or equivalently,

(9) (D OaI)(zk + Yk) (D F)za b.

Comparing (9) with (4), we see that zk + ya is the Zk+l that we would have obtained
with one step of JOCC starting at za. But after this point, Davidson’s method is
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an improvement over the JOCC method because instead of taking k+l (1, (zk +
yk)T)T uk + k as the next approximating eigenvector (as in JOCC), Davidson
suggests computing the Ritz vector of A with respect to the subspace computed so
far (that is, over the subspace spanned by the old approximations ul,..., u and the
new k+l). Actually, Davidson selects the correction tk, but

span(u1,..., uk, k+l) span(u1,..., Uk, tk).
For the computation of the Ritz vector it is convenient to have an orthonormal basis,
and that is precisely what is constructed in Davidson’s method. This orthonormal
basis vl,...,Vk+l appears if one orthonormalizes ul,...,uk,tk by Gram-Schmidt.
The (k + 1)th step in either JOCC or Davidson’s method can be summarized as
follows.

JOCC. Jacobi computes the component of t orthogonal to Ul and takes

Uk+l Uk --k, 0k+l eAu+l. Unlike Davidson’s approach, Jacobi only
computes components that are orthogonal to ul el. However, in view of
the orthogonalization step, the components in the Ul-direction (as well as in
new directions) automatically vanish in Davidson’s method.

Davidsons method. Davidson computes the component v+l of tk orthogo-
hal to Ul,... ,uk and takes for uk+l and 0+1 the Ritz vector, respectively,
Ritz value, of A with respect to the space spanned by vl,..., V+l. Davidson
exploits the complete subspace constructed so far, while Jacobi takes only a
simple linear combination of the last vector zk and the last correction Yk (or,
taking the Ul-component into account, of Ul, the last vector uk, and the last
correction t). Although span(Ul,...,Uk,kH-1) span(ul,...,uk+l), the
Davidson approximations do not span the same subspace as the Jacobi ap-
proximations since the eigenvalue approximations 0 of Jacobi and of David-
son are different. Consequently, the methods have different corrections t and
also different components orthogonal to the uj.

Note that our formulation makes clear that Davidson’s method also attempts
to find the orthogonal update (0, zT)T for the initial guess Ul el, and it does so
by a clever orthogonalization procedure. However, just as in the JOCC approach,
the process works with fixed operators (in particular DA; other variants use different
approximations for A) and not with operators associated with the orthogonal com-
plement of the current approximation uk (see also 2.2.2). This characterizes the
difference between our algorithm (of 3) and Davidson’s method.

3. The new Jacobi-Davidson iteration method. From now on we will allow
the matrix A to be complex, and in order to express this we use the notation v* for
the complex conjugate of a vector (if complex), or the transpose (if real), and likewise
for matrices.

As we have stressed in the previous section, the JOCC method and Davidson’s
method can be seen as methods that attempt to find the correction to some initially
given eigenvector approximation. In fact, what we want is to find the orthogonal
complement for our current approximation uk with respect to the desired eigenvector
u of A. Therefore, we are interested in seeing explicitly what happens in the subspace
tk

The orthogonal projection of A onto that space is given by B (I- uku)A(I-
uku) (we assume that uk has been normalized). Note that for ua el, we have that
F (cf. (1)) is the restriction of B with respect to e. It follows that

(10) A B + Auku + ukucA



406 GERARD L. G. SLEIJPEN AND HENK A. VAN DER VORST

When we are in search of an eigenvalue A of A close to Ok, then we want to have the
correction v _k uk to uk such that

A(uk + v)= A(Uk + V),

or, after inserting (10) and realizing that Buk 0,

(11) (B- M)v -r + (- Ok -uAv)uk.

Since the left-hand side and r have no component in uk, it follows that the factor for
uk must vanish, and hence v should satisfy

(12) (B- AI)v -r.

We replace by the current approximation Ok just as in JOCC and Davidson’s
method, but, unlike both methods, we propose to work with approximations for an
operator (B) that varies from step to step. The resulting algorithm may be viewed as
a combination of Jacobi’s approach to look for the orthogonal complement of a given
eigenvector approximation and the Davidson algorithm for expanding the subspace
in which the eigenvector approximations are constructed. This explains our choice
of the name Jacobi-Davidson for the new method. Note that we are free to use any
method for the (approximate) solution of (12) and that it is not necessary to require
diagonal dominance of B (or A).

Before we present our complete algorithm, we briefly review some different ap-
proaches.

1. If we approximate v simply by r, then we formally obtain the same results as
with the Arnoldi method.

2. If we approximate v by (DA --OkI)-lr, then we obtain the original Davidson
method.

3. More recent suggestions made in [3], [14], [15], [17], [6] come down to better
approximations for the inverse of A-OkI, e.g., incomplete decompositions for
this operator. However, as is well known, this is a risky approach (see [25],
[3]) since the exact inverse of this operator leads to failure of the method.3

Therefore the approximation should not be too accurate [25].
4. In our approach, we replace B- AI by B- OkI, and one has to select suitable

approximations _[_ uk for the solution of

(13) (B- OkI)t --r and t _1_ uk.

This will lead to quadratical convergence if we take the exact solution t (see
observation 3 in 4), which is in sharp contrast with what happens if one
takes the exact solution of (A- OkI)t --r.

5. Another viewpoint on our modified Davidson algorithm is that it can be seen
as an accelerated inexact shift and invert method (that is, the "invert" part
may be inexact).

We do not know, for general systems, how to approximate a solution of (13)
sufficiently well with modest computational effort. In most of our numerical exper-
iments, we have constructed approximations by carrying out only a few steps of an
iterative method (for instance, generalized minimum residual: GMRES [26]) in order

3 Any progress in this case may be attributed to the effects of rounding errors.
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ALGORITHM 1. The Jacobi-Davidson method.

1. Start: Choose an initial nontrivial vector v.
Compute vl= v/llvll2, wl- Avl, h11- vwl,
set VI= Iv1], WI= [wl], Hi= [h11],
u=vl, =h11, compute r=wl-OU.

2. Iterate: Until convergence do:

3. Inner Loop: For k-1,...,m-1 do:
Solve (approximately) t _k u,

4. Restart:

(I u u*) (A OI) (I u u*) t -r.

Orthogonalize t against Vk via modified Gram-Schmidt,
and expand Vk with this vector to V+I.
Compute W+l:= Avk+l
and expand W with this vector to Wk+l.
Compute Vk*+lw+l the last column of H+I:= V+IAV+I,
and v*+lWk, the last row of H+I (only if A = A*).
Compute the largest eigenpair (, s) of H+I (with ]lsl12 1).
Compute the Ritz vector u :=
compute := Au (= Wk+lS), and
the associated residual vector r := - Ou.
Test for convergence. Stop if satisfied.

Set Vl=[u], WI=[], Hl=[0],andgoto3.

to illustrate how powerful our approach is even when we solve the system only in
very modest precision, but this is certainly not an optimal choice in many practical
situations. However, our experiments illustrate that the better we approximate the so-
lution of (13), the faster convergence we obtain (and no stagnation as in Davidson’s
method).

The algorithm for the improved Davidson method then becomes as in Algorithm 1
(in the style of [25]). We have skipped indices for variables that overwrite old values
in an iteration step, e.g., u instead of uk. We do not discuss implementation issues,
but we note that the computational costs for Algorithm 1 are about the same as for
Davidson’s method (provided that the same amount of computational work is spent
to approximate the solutions of the involved linear systems).

4. Further discussion. In this section we will discuss a convenient way of in-
corporating preconditioning in the Jacobi-Davidson method. We will also discuss
relations with other methods, e.g., shift and invert techniques, and we will try to
get some insight into the behavior of the new method in situations where Davidson’s
method or shift and invert methods work well. This will make the differences between
these methods clearer.

In the Jacobi-Davidson method we must solve (13), or equivalently

(4) (I uu)(A OI)(I uu)t -r and t _k u
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(see Algorithm 1, in which we have skipped the index k).
Equation (14) can be solved approximately by selecting some more easily in-

vertible approximation for the operator (I- UkU*k)(A- OkI)(I- UkU*k), or by some
(preconditioned) iterative method. If any approximation (preconditioner) is available,
then this will most often be an approximation for A- OkI.

However, the formulation in (14) is not very suitable for incorporating available
approximations for A- OkI. We will first discuss how to construct approximate solu-
tions orthogonal to uk straight from a given approximation for A-Oki (l-step approx-
imation: 4.1). Then we will propose how to compute such an approximated solution
efficiently by a preconditioned iterative scheme (iterative approximation: 4.2).

4.1. l-step approximations. A more convenient formulation for (14) is ob-
tained as follows. We are interested in determining t _[_ uk, and for this t we have
that

(I--uku)t=t,

and then it follows from (14) that

(15) (A OkI)t suk --r

or

(A OkI)t SUk r.

When we have a suitable preconditioner M A- OkI available, then we can compute
an approximation for t:

(16) -- M-luk M-lr.

The value of s is determined by the requirement that should be orthogonal to uk"

,M-1Uk r
,M-1Uk Uk

Equation (16) leads to several interesting observations.
1. If we choose s 0, then we obtain the Davidson method (with preconditioner

M). In this case will not be orthogonal to uk.
2. If we choose s as in (17), then we have an instance of the Jacobi-Davidson

method. This approach has already been suggested in [18]. In that paper the
method is obtained from a first-order correction approach for the eigensystem.
Further experiments with this approach are reported in [27]. Note that this
method requires two operations with the preconditioning matrix per iteration.

3. If M A- OkI, then (16) reduces to

t e(A OkI)-uk Uk.

Since t is made orthogonal to uk afterwards, this choice is equivalent with
t (A- 0kI)-uk. In this case the method is just mathematically equivalent
to (accelerated) shift and invert iteration (with optimal shift). For symmetric
A this is the (accelerated) inverse Rayleigh quotient method, which converges
cubically [21]. In the unsymmetric case we have quadratical convergence [21],
[19]. In view of the speed of convergence of shift and invert methods, it
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may hardly be worthwhile to accelerate them in a "Davidson" manner: the
overhead is significant and the gains may only be minor. Moreover, in finite
precision arithmetic the vector (A- OkI)-lUk may make a very small angle
with uk, so that it will be impossible then to compute a significant orthogonal
search direction.

4. If M : A- OkI, then with M-luk we obtain an inexact shift and invert
method with "Davidson" subspace acceleration. This method may be an
attractive alternative for the previous one if the invert part cannot be carried
out exactly. Also in this variant we have no orthogonality between and
If M is a good approximation for A- OkI then M-luk may also make a very
small angle with uk, so that effective subspace expansion will be impossible
(as in 3).

The methods suggested in the first and the third observation are well known, and
the question arises whether we may gain anything by the less well known second
alternative (or the fourth one).

To get some insight into this matter, we consider a situation for which Davidson’s
method converges rapidly, namely, when A is strongly diagonally dominant. We write

A DA + E,

where DA denotes the diagonal of A, and we assume that IIEII is small compared
with IIDAII and that al is the largest diagonal element in absolute value (note that
this also includes situations where only the largest diagonal element has relatively
small off-diagonal elements in the same row and column).

We write uk e + f and assume that I]f]l << I[lll 1 (which is a natural
assumption in this case).

Then for the coordinates (r) of r it follows that

and

(r)l (all -Ok)+ (Etk)l -(all --O)(f)

(r)i (Euk)i + (a

Since Ok a, this means that the coordinates (r) are not small relative to (r). In
the case that f 0 we even have that r Euk, and (r)l 0 (since r +/- uk e).

With Davidson’s method we obtain

[= (DA OkI)-lr uk + (DA OkI)-lEuk,
and the part (DA --OkI)-lEuk of this vector will not be very small compared to uk
(for f 0 the component uk even vanishes). This means that we may expect to
recover this part in a large number of significant digits after orthogonalizing with
respect to uk, and this makes Davidson’s method work well for diagonally dominant
problems (since we expand the search space by a well-determined vector).

We have seen the effect of the component (DA --OkI)-r, and now we consider
what happens with the component (DA --OkI)-uk in the Jacobi-Davidson method
for this situation. To this end we compute as in observation 4 above:-- (DA OkI)-luk.
For the coordinates of we have that

aii k
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and we see that will make a very small angle with uk el (since all 0k). This
implies that - (*uk)uk may have only a few significant digits, and then it may be
a waste of effort to expand the subspace with this (insignificant) vector. However, in
the Jacobi-Davidson method we compute the new vector as

e(DA OkI)-lUk (DA 9kI)-lrk.

The factor is well determined, and note that for our strongly diagonally dominant
model problem we have in good approximation that

]Ie(DA OkI)-Ukl[: < IlUkll2 II(DA 0ki)-1/’112 I[(DA OkI)-ltk[12

II(D 

Furthermore, since uk _1_ r, we have that e(DA- 0kI)-luk and (DA- OkI)-lr are
not in the same direction, and therefore there will be hardly any cancellation in the
computation of . This means that is well determined in finite precision and 2_ uk.

Our discussion can be adapted for nondiagonally dominant matrices as well, when
we restrict ourselves to situations where the approximations uk and Ok are sufficiently
close to their limit values and where we have good preconditioners (e.g., inner iteration

methods).
We will illustrate our observations by a simple example taken from [3]" Exam-

ple 5.1. In that example the matrix A of dimension 1000 has diagonal elements
aj,j j. The elements on the sub- and super-diagonal (aj_,j and ay,y+) are all
equal to 0.5, as well as the elements al,000 and a1000,1.

For this matrix we compute the largest eigenvalue ( 1000.225641) with (a)
the standard Lanczos method, (b) Davidson’s method with diagonal precondition-
ing ((DA- 0kI)-), and (c) the Jacobi-Davidson method with the same diagonal
preconditioning, carried out as in (16).

With the same starting vector as in [3] we obtain, of course, the same results:
a slowly converging Lanczos process, a much faster Davidson process, and Jacobi-
Davidson is just as fast as Davidson in this case. The reason for this is that the
starting vector e + e000 for Davidson and el + 2000e1000 for Lanczos are quite
good for these processes, and the values for s, which describe the difference between
(b) and (c), are very small in this case. Shift and invert Lanczos with shift 1001.0
takes 5 steps for full convergence, whereas Jacobi-Davidson with exact inverse for
A- OkI takes 3 steps.

In Table 1 we see the effects when we take a slightly different starting vector
Ul (0.01, 0.01,..., 0.01, 1)T, that is, we have taken a starting vector which still has
a large component in the dominating eigenvector. This is reflected by the fact that
the Ritz value in the first step of all three methods is equal to 954.695.... In practical
situations we will often not have such good starting vectors available. The Lanczos
process converges slowly again, as might be expected for this uniformly distributed
spectrum. In view of our discussion in 2.3 we may interpret the new starting vector
as a good starting vector for a perturbed matrix A. This implies that the diagonal
preconditioner may not be expected to be a very good preconditioner. This is reflected
by the very poor convergence behavior of Davidson’s method. The difference with
the Jacobi-Davidson method is now quite notable (see the values of s), and for this
method we observe rather fast convergence again.
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TABLE 1
Approximation errors A- Ok.

Iteration Lanczos Davidson
0 0.45e+02
1 0.56e+01
2 0.16e+01
3 0.71e+00
4 0.43e+00
5 0.32e+00
6 0.26e+00
7 0.24e+00
8 0.22e+00
9 0.21e+00
10 0.20e+00
11 0.19e+00
12 0.19e+00
13 0.18e+00
14 0.17e+00
15 0.16e+00

0.45e+02
0.40e+02
0.40e+02
0.40e+02
0.40e+02
0.40e+02
0.39e+02
0.38e+02
0.37e+02
0.36e+02
0.36e+02
0.35e+02
0.34e+02
0.33e+02
0.32e+02
0.31e+02

Jacobi-Davidson [e[
0.45e+02
0.25e+02 0.50e+02
0.74e+01 0.12e+03
0.15e+01 0.11e+02
0.14e+01 0.14e+01
0.55e-01 0.49e+00
0.13e-02 0.72e-01
0.29e-04 0.29e-02
0.33e-06 0.14e-03
0.25e-08 0.34e-05

Although this example may seem quite artificial, it displays quite nicely the be-
havior that we have seen in our experiments, as well as what we have tried to explain
in our discussion.

In conclusion, Davidson’s method works well in these situations where does not
have a strong component in the direction of uk. Shift and invert approaches work well
if the component in the direction of u in uk is strongly increased. However, in this case
this component may dominate so strongly (when we have a good preconditioner) that
it prevents us from reconstructing in finite precision arithmetic a relevant orthogonal
expansion for the search space. In this respect, the Jacobi-Davidson method is a
compromise between the Davidson method and the accelerated (inexact) shift and
invert method, since the factor properly controls the influence of uk and makes sure
that we construct the orthogonal expansion of the subspace correctly. In this view
Jacobi-Davidson offers the best of two worlds, and this will be illustrated by our
numerical examples.

4.2. Iterative approximations. If a preconditioned iterative method is used
to solve (14), then, in each step of the linear solver, a "preconditioning equation" has
to be solved.

If M is some approximation of A- OkI then the projected matrix

Md (I u u) M (I uk u)

can be taken as an approximation of (I- uk uc)(A- OI)(I- uk u) and, in each
iterative step, we will have to solve an equation of the form Mdz y, where y is some
given vector orthogonal to u and z _[_ u, has to be computed. Of course, z can be
computed as (cf. (16)-(17))

(Mly=) z=aM-luk-M-y with a=
-1ukM Y

ukM luk

In this approach, we have to solve, except for the first iteration step, only one system
involving M in each iteration step. The inner product uM-luk, to be computed
only once, can also be used in all steps of the iteration process for (14).
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The use of a (preconditioned) Krylov subspace iteration method for (14) does not
lead to the same result as when we apply this iterative method to the two equations in
(16) separately. For instance, if p is a polynomial such that p(A-OkI) (A-OkI)-1

then, with M-1 p(A- OkI), (16) can be used to find an approximate solution of
(14) leading to

(18) sp(A OI)u p(A OI)r (I u u) p (A OI) (I Uk u)r,

while using p directly for (14) would yield

(19) - p ((I Uk u) (A OkI) (I uk u)) r.

Clearly, these expressions are not identical. For Krylov subspace methods that auto-
maticMly (and implicitly) determine such polynomials, the differences may be even
more significant. Most importantly, such a method for (14) would be aiming for an
proximation of the inverse of (I-u u*)(A-OI) (I--uk u) on the space orthogonal to
uk, rather than for an approximation of (A--OkI) -1 as the method for (16) would do.
If 0k is an accurate approximation of the eigenvalue A, A-OkI will be almost singular,
while that will not be the case for the projected matrix (I-uk u)(A--OkI)(I--uk u)

+/- if A is simple). This means that the iterative solution of (14) may(as a map on uk,
be easier than iteratively solving systems such as (A OkI)z y.

By iteratively solving (14) we expect more stable results" by putting the interme-
diate approximations orthogonal to Uk (as, for instance, in (19)) we may hope to have
less cancellation by rounding errors than when putting only the final approximation
orthogonal to uk (as, for instance, in (18)).
We cannot answer the question of how accurately (14) should be solved in order

to have convergence for the Jacobi-Davidson method. Our experiences, as well as
experiences reported in [2], seem to indicate that even a modest error reduction in
the solution of (14) suffices and more work spent in this (inner) iteration for (14)
often leads to a reduction in the number of Jacobi-Davidson iteration steps. For
some numerical evidence, see 6.

5. Jacobi-Davidson with harmonic Ritz values. In the previous sections
we have used the Galerkin approach for the approximation of eigenvectors and eigen-
values. In this approach, Hk is the orthogonal projection of the matrix A onto
)k {Vl,..., Vk}, and its eigenvalues are called the Ritz values of A with respect
to ]2k [22]. The Ritz values converge monotonically to the extremal eigenvalues when
A is symmetric. If A is nonsymmetric, the convergence is in general not monotonicM,
but the convergence behavior is still often quite regular with respect to the extremal
eigenvalues. Interesting observations for the nonsymmetric case have been made in
[24], [10].

For the "interior" (the non extremal) eigenvMues the situation is less clear. The
convergence can be very irregular, even in the symmetric situation (due to rounding
errors). This behavior makes it difficult to approximate interior eigenvalues or to
design algorithms that select the correct Ritz values and handle rounding errors well
(see, e.g., [24]).

In [14] the author suggested using a minimum residual approach for the com-
putation of interior eigenvMues. We follow a slightly different approach which leads
to identical results for symmetric matrices. In this approach, as we will show in
the next section, we use orthogonal projections onto AlZk. The obtained eigenvMue
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approximations differ from the standard Ritz values for A. In a recent paper [20],
these approximations were called harmonic Ritz values, and they were identified as
inverses of Ritz approximations for the inverse of A. It was also shown in [20] that,
for symmetric matrices, these harmonic Ritz values exhibit a monotonic convergence
behavior with respect to the eigenvalues with smallest absolute value. This further
supports the observation made in [14] that, for the approximation of "interior" eigen-
values (close to some # E C), more regular convergence behavior with the harmonic
Ritz values (of A- #I) than with the Ritz values may be expected.

In [20] the harmonic Ritz values for symmetric matrices are discussed. The non-
symmetric case has been considered in [30], [8]. However, in all these papers the dis-
cussion is restricted to harmonic Ritz values of A with respect to Krylov subspaces.
In [14] the harmonic Ritz values are considered for more general subspaces associated
with symmetric matrices. The approach is based on a generalized Rayleigh-Ritz pro-
cedure, and it is pointed out in [14] that the harmonic Ritz values are to be preferred
for the Davidson method when aiming for interior eigenvalues.

In connection with the Jacobi-Davidson method for unsymmetric matrices, we
propose a slightly more general approach based on projections. To this end, as well
as for the introduction of notations that we will also need later, we discuss to some
extent the harmonic Ritz values in 5.1.

5.1. Harmonic Ritz values on general subspaces.
Ritz values. If 12k is a linear subspace of (2 then 0k is a Ritz value of A with

respect to 12k with Ritz vector uk if

(20) uk E ];k, uk = 0, Auk- Ouk +/- );k.

How well the Ritz pair (0k, uk) approximates an eigenpair (,, w) of A depends on the
angle between w and 12k.

In practical computations one usually computes Ritz values with respect to a
growing sequence of subspaces 12k (that is, 12k C 12k+1 and dim(lZk) < dim(12k+l).

If A is normal, then any Ritz value is in the convex hull of the spectrum of A: any
Ritz value is a mean (convex combination) of eigenvalues. For normal matrices, at
least, this helps to explain the often regular convergence of extremal Ritz values with
respect to extremal eigenvalues. For further discussions on the convergence behavior
of Ritz values (for symmetric matrices), see [22], [29].

Harmonic Ritz values. A value 0k C is a harmonic Ritz value of A with respect
to some linear subspace l/Yk if 0-1 is a Ritz value of A-1 with respect to lA;k [20].

Fornormal matrices, 0-1 is in the convex hull of the collection of A-l’s, where
,k is an eigenvalue of A: any harmonic Ritz value is a harmonic mean of eigenvalues.
This property explains their name and, at least for normal matrices, it explains why
we may expect a more regular convergence behavior of harmonic Ritz values with
respect to the eigenvalues that are closest to the origin.

Of course, we would like to avoid computing A-1 or solving linear systems in-
volving A. The following theorem gives a clue about how that can be done.

THEOREM 5.1. Let ;k be some k-dimensional subspace with basis v,..., vk. A
value Ok C is a harmonic Ritz value of A with respect to the subspace 14;k "= A;k
if and only if

(21) Agk --Okgk +/- AlZk for some uk 12k, gk O.
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If Wl,..., Wk span AZk then,a with

1TXz,AVVk :--[Vll"" IVk], Wk :--[Wll"" IWk], and Hk (W;Vk)- vvk k,

property (21) is equivalent to

(22) Iks 0s for some s e C, s 0 (and Vks)"

the eigenvalues of the k x k matrix Hk are the harmonic Ritz values of A.
Proo By (20), (o-l,Ak) is a Ritz pair of A-1 with respect to AP if and only

if

(A-1 lI)Ak AYk

for a k Pk, k

_
0.

Since (A-- OI)Ak -O-(Aa-) we have the first property of the
theorem.

For the second part of the theorem, note that (21) is equivalent to

(23) AVis OkVks Wk for an s 0,

which is equivalent to

WAVks Ok(WVk)s O

or Hks ks O.
We will call the vector k in (21) the harmonic Ritz vector associated with the

harmonic Ritz value Ok and (Ok, k) is a harmonic Ritz pair.
In the context of Krylov subspace methods (Arnoldi or Lanczos), ]?k is the Krylov

subspace lk(A; vl). The vj are orthonormal and such that vl,..., v span Ei(A;v)
for 1, 2, Then AVk Vk+Hk+l,k, with Hk+l,k a (k + 1) k upper Hessenberg
matrix.

The elements of Hk+,k follow from the orthogonalization procedure for the Krylov
subspace basis vectors. In this situation, with Hk,k the upper k k block of
we see that

Wk AVk Hk+ kVk+ Vk H + Vk*+ Vk+ Hk+ k

-1Hk,k Hk+l,kHk+l,k.
Since Hk+l,k Hk,k--ek+le, where is equal to the element in position (k+ 1, k) of
Hk+l,k, the harmonic Ritz values can be computed from a matrix which is a rank-one
update of Hk,k:

Ik H,k-lH+l,kHk+l,k Hk,k + ]fll2H -lekek,k

In [8], the author is interested in quasi-kernel polynomials (e.g., GMRES and quasi-
minimal residual (QMR) polynomials). The zeros of these polynomials are harmonic
Ritz values with respect to Krylov subspaces. This follows from Corollary 5.3 in [8],
where these zeros are shown to be the eigenvalues of H,k-lH+,kHk+,k. However,

4 If Ark has dimension less than k, then this subspace contains an eigenvector of A; this situation
is often referred to as a lucky breakdown. We do not consider this situation here.
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in that paper these zeros are not interpreted as the Ritz values of A-1 with respect
to some Krylov subspace.

In the context of Davidson’s method we have more general subspace_s k and
/Yk Ak. According to Theorem 5.1 we have to construct the matrix Hk (which
will not be Hessenberg in general), and this can be accomplished by either constructing
an orthonormal basis for A.k (similar to Arnoldi’s method) or by constructing bi-
orthogonal bases for ]k and APk (similar to the bi-Lanczos method). We will consider
this in more detail in 5.2.

5.2. The computation of the harmonic Ritz values.

5.2.1. Bi-orthogonal basis construction. In our algorithms, we expand the
subspace k by one vector in each sweep of the iteration. We proceed as follows.

Suppose that vl,..., vk span ]?k and that w,...,wk span A]?k, in such a way
that, with Vk := [v[... Ivk] and

AVk Wk

and

Lk WVk is lower triangular

(in this case we say that Wk and Vk are bi-orthogonal).
According to Theorem 5.1 the harmonic Ritz values are the eigenvalues of

where k:= WWk.

Hence, if (Ok, s) is an eigenpair of Hk then (Ok, Vks) is a harmonic Ritz pair.
Let t be the vector by which we want to expand the subspace
First, we bi-orthogonalize t with respect to Vk and

(24) ’= t- VcL-Iwt and vk+ :=
112

Then Vk+l is our next basis vector in the ];-space and we expand Vk by Vk+l to Yk+l"
Yk+l := [YklVk+l].

Next, we compute Wk+ AVk+l, our next basis vector in the A]Z-space, and
we expand Wk to Wk+l.

Then the vector wc+lVk+l is computed and Lk is expanded to Lk+l by this

k + 1 row vector. Finally, we compute W+lwk+l as the new column of H+I. By
symmetry, we automatically have the new row of Hk+l.

Since L VAVk and L is upper triangular, we see that Lk is diagonal if A is
self-adjoint.

The formulation of the bi-orthogonalization step (24) does not allow for the use
of modified Gram-Schmidt orthogonalization (due to the k k matrix Lk). We can

incorporate Lk into W by working with Wk := Wk k instead of with Wk and then
modified Gram-Schmidt is possible:

v(i+I) (i) (i) (i 1, ..,k- 1),v()=t, =v -viwiv v(k)

However, in this approach we have to update Wk, which would require k additional
long vector updates.
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5.2.2. Orthogonal basis construction. For stability reasons one might prefer
to work with an orthogonal basis rather than with bi-orthogonal ones. In the context
of harmonic Ritz values, an orthonormal basis for the image space Al;k is attractive:

*ww At, w := w- WkWk and

t "= t- VkWcw and

Then WWk I, W AVk, and (cf. Theorem 5.1)

Wk+l :=

Vk+l := I111."

(26) k (WVk)-IWAVk (W;Vk) -1.

It is not necessary to invert WcV since the harmonic Ritz values are simply the
inverses of the eigenvalues of WVa. The construction of an orthogonal basis for
can be done with modified Gram-Schmidt.

Finally, note that -1 WVk WA-1Wk, and we explicitly have the matrix
of the projection of A-1 with respect to an orthonormal basis of P;k. This again
reveals how the harmonic Ritz values appear as inverses of Ritz values of A-1 with
respect to A’Pk.

5.3. A restart strategy. In the Jacobi-Davidson algorithm, Algorithm 1, it is
suggested, just as for the original Davidson method, to restart simply by taking the
Ritz vector Um computed so far as a new initial guess. However, the process may
construct a new search space that has considerable overlap with the previous one;
this phenomenon is well known for the restarted power method and the restarted
Arnoldi (without deflation) and it may lead to a reduced speed of convergence or
even to stagnation. One may try to prevent this by retaining part of the search
space, i.e., by returning to step 3 of Algorithm 1 with a well chosen g-dimensional

subspace of the span of vl,..., v, for some g > 1. With our simple restart, we expect
that the process will also construct vectors with strong components in directions of
eigenvectors associated with eigenvalues close to the wanted eigenvalue. And this is
just the kind of information that we have discarded at the point of restart.

This suggests a strategy of retaining g Ritz vectors associated with the Ritz values
closest to this eigenvalue as well (including the Ritz vector Um that is the approxima-
tion for the desired eigenvector). In Algorithm 1, these would be the g largest Ritz
values. A similar restart strategy can be used for the harmonic Ritz values and, say,
bi-orthogonalization: for the initial matrices V and W after restart we should take
care that W AV and the matrices should be bi-orthogonal (i.e., W* should be
lower triangular).

5.4. The use of the harmonic Ritz values. According to our approaches
for the computation of harmonic Ritz values in 5.2, there are two variants for an
algorithm that exploits the convergence properties of the harmonic Ritz values toward
the eigenvalues closest to the origin. Of course, these algorithms can also be used to
compute eigenvalues that are close to some it E C. In that case one should work with
A itI instead of A.

We start with the variant based on bi-orthogonalization.

5.4.1. Jacobi-Davidson with bi-orthogonal basis. When working with har-
monic Ritz values, we have to be careful in applying Jacobi’s expansion technique.
If (0,) is a harmonic Ritz pair of A then r Ak --Okk is orthogonal to Ak,
whereas in our discussion about the new Jacobi-Davidson method with regular Ritz
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values (cf. 3) the vector r was orthogonal to uk. However, we can follow Jacobi’s
approach here as well by using a skew basis or a skew projection. The update for
should be in the space or_thogonal to := Ak. If A is the eigenvalue of A closest to
the harmonic Ritz value 0, then the optimal update is the solution v of

() (-)=- wre B.= A

In our algorithm we will solve this equation (27) approximately. To be more precise,
we solve approximately

* (A-I) I UkU

Note that cn be computed without an additional matrix vector product with
A since A AVis WkUs (if WU AVe, where U is a mtrix of order
k).

The above considerations lead to Algorithm 2.

5.4.2. Jacobi-Davidson with orthogonal basis. If we want to work with an
orthonormal basis for APk then we my proceed as follows.

Let Vl, v,...,v be the Jacobi-Davidson vectors obtained fter k steps. Then
we orthonormlize the set Av, Av2,...,Av (as in (25)). The eigenvalues of H
(cf. (26)) are the harmonic Ritz values of A, and let 0 be the one of interest, with
corresponding hrmonic Ritz vector Vs (s is the eigenvector of H, normalized
such that ]A ).

Since (0-, A) is a Ritz pair of A- with respect to AP, we have with z := A
that w "= A-lz-lz is orthogonal to z, and although we do not hve A- available,
the vector w cn be efficiently computed from

(29) W n-Xz lz n-lngk8 0-1z gk8

The orthonormal basis set for APk should be expanded by a suitable vector At, which,
according to our Jacobi-Davidson approach, is computed approximately from

(o) (- *) (A- ;) ( z*) At -.

Also in this case we can avoid working with A-1, since (30) reduces to

(1) ( z*) (A -0)(- V*A) t

We may not expect ny difference between the use of (28) and (31) when we use
GMRES s the inner iteration, s we will see now.

Since z]2 1 and w 2 z Ak, we see that 1 z*z OZ*k. rthermore,
we have that Okw Okk Ak --r.

It cun be shown that the operator in the left-hand side of (28) and the one in the
left-hand side of (31) differ only by rank-one matrix of the form r(2(A-
Therefore, the operators generate identical Krylov subspaces if, in both cases, r is the
first Krylov subspace vector: Krylov subspace methods like GMRES(m) with initial
approximation x 0 lead, in exact rithmetic, to identical approximate solutions
when used to solve equations (28) and (31).

It is not yet clear which of the two approaches will be more efficient in practical
situations. Much depends upon how the projected systems are approximately solved.
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ALGORITHM 2. The Jacobi-Davidson algorithm with harmonic Ritz values and bi-orthogonali-
zation.

1. Start: Choose an initial nontrivial vector v.
Compute Vl-- v/llvl[2 Wl-- Avl, /11-- WVl, hll-- WWl,
set t 1, VI= [vii, WI= [wi], LI= [/11], Sl [hli],

v, Wl, O hll/ l, compute r

2. Iterate: Until convergence do"

3. Inner loop: For k-g,...,m-1 do:
Solve approximately t _L ,

* (I *(I -,- ) A "dI

Bi-orthogonalize t against Vk and Wk
(= - VL;W;, v+ /111)
and expand Vk with this vector to Vk+.
Compute wa+l :-- Avk+
and expand Wk with this vector to Wk+.
Compute w+1Vk+, the last row vector of Lk+ "= Wk+Vk+,
compute w+Wk+l, the last row vector of Hk+l :-- Wk*+Wk+l,
its adjoint is the last column of k+i. k+i L-_l+i.
Compute the smallest eigenpair (0, s) of Hk+.
Compute the harmonic Ritz vector ’= Vk+s/llVk+sll2
compute := A (= Wk+s/llVk+isll2), and
the associated residual vector r :- -.Test for convergence. Stop if satisfied.

4. Restart: Choose an appropriate value for g < m.

Compute the smallest t eigenvalues of Hm and
the matrix Y with columns the associated eigenvectors.
Orthogonalize Y with respect to Lm (cf. 5.2.1):
Y= ZR with R upper triangular and Z*LmZ lower triangular.
Set := VmZ, W:= WmZ, L’= Z*LmZ, Ht’= Z*H,Z, and goto 3.

6. Numerical examples. The new algorithm has already been successfully ap-
plied in applications from chemistry (in which Davidson’s method was the preferred
one before) and magnetohydrodynamics (MHD) models. For reports on these expe-
riences, see [2], [28].

The simple examples that we will present here should be seen as illustrations
only of the new approach. The examples have been coded in MATLAB and have
been executed on a SUN SPARC workstation in about 15 decimals working precision.
Most of our examples are for symmetric matrices, since it was easier for us to check
the behavior of the Ritz values in this case, but our codes did not take advantage of
this fact for the generation of the matrices Hk.

Example 1. We start with a simple tridiagonal diagonally dominant matrix A,
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with diagonal elements 2.4 and off-diagonal elements 1, of order n 100. The starting
vector is taken to be the vector with all l’s, scaled to unit length.

In Davidson’s method, the suggested approach is to approximate the inverse of
A- OkI, and in this example we take just (A- OkI) -1, which is the best one can do
if one wants to approximate well. Note that the standard choice (DA -OkI) leads to
(almost) nrnoldi’s method, which converges only very slowly (for << n) in this case.

In Figure 1 we have plotted the log of IA- 0k[ as the dashed curve, and we see
that this indeed almost leads to stagnation (some progress is made, since we have
computed the inverse in floating point arithmetic). If, however, we use the Jacobi-
Davidson method (as in 3), again with exact inversion of the projected operator
B- OkI, then we observe (the lower curve) very fast (cubical?) convergence, just as
expected.

Of course, solving the involved linear systems exactly is usually too expensive,
and it might be more realistic to investigate what happens if we take more crude
approximations for the operators involved. For the Davidson method we take 5 steps
of GMRES for the approximation of the solution of (A- OkI)v r, and for Jacobi-
Davidson we also take 5 steps of GMRES for the approximate solution of the projected
system (13). The results are given in Figure 2 (the dashed curve represents the results
for the Davidson method).

Convergence plot for example

-.16 ,’o .1; ’o ’5 ’o
Number of Iterations of (Jacobi-)Davidson

Convergence plot for example

20 25 30 35
Number of iterations of (Jacobi-)Davidson

FIG. 1. Convergence of Ritz values with ex- FIG. 2. Convergence of Ritz values with ap-
act inverses, proximate inverses.

Again we see that for this moderately diagonally dominant matrix it is attractive
to work with the Jacobi-Davidson method. Note that the 5 GMRES steps for the
approximate inversion step are not sufficient to have quadratical convergence, but the
linear convergence takes place with a very small convergence factor.

We also learn from this example that Krylov subspace methods may not be ex-
pected to make good preconditioners for Davidson’s method: with a few steps one
suffers from the fact that A- OkI has a very small eigenvalue, and if carried out to
high precision (almost) stagnation is to be expected. The Jacobi-Davidson method
does not have these problems, since the projected operator B- OkI does not have a
small eigenvalue (unless the eigenvalue A is close to some other eigenvalue of A).

Example 2. Our second example is still highly artificial, but here we try to mimic
more or less what happens when a matrix is not diagonally dominant. The matrix A
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is constructed as B QIAQ1, with

A tridiag(-1, 2, -1),

and Q1 is a Householder transformation. The order of the matrices is 100. Note that
the distribution of the eigenvalues at the upper and lower ends of the spectrum is not
particularly favorable for Krylov subspace methods since they are not well separated
in a relative sense.

For those who wish to repeat our experiments we add that the Householder vector
h was chosen with elements hj v/j + .45, j 1, 2,..., 100. The starting vector
for the iteration algorithms was chosen as a vector with all elements equal to 1.
Furthermore, we restarted the outer iterations after each 20 steps, which represents a
usual strategy in practical situations.

The Davidson algorithm (with DA- OkI) needed 565 iteration steps to find the
largest eigenvalue

3.9990325...

to almost working precision.
In the Jacobi-Davidson algorithm we did the inner iterations, necessary for solving

(13) approximately, with 5 steps of GMRES. This time we needed 65 outer iterations
(i.e., 320 inner iteration steps). The inner iteration method (GMRES), as well as
the number of steps (5 steps), has been chosen arbitrarily. In actual computations
one may choose any appropriate means to approximate the solution of the projected
system (13), such as, e.g., the incomplete LU (ILU).

Example 3. This example illustrates that our new algorithms (in 3 and 5)
may also be used for the computation of interior eigenvalues. In this example we
compute an approximation for the eigenvalue of smallest absolute value. For this
purpose the Jacobi-Davidson algorithm that uses Ritz values (3) is modified; instead
of computing the largest eigenpair (0k, uk) of Hk we compute the one with smallest
absolute value for the Ritz value.

Again we take a simple matrix: A is the 100 100 diagonal matrix with spectrum

t2 0.8 t 10’ j 1,..., 100

All coordinates of the starting vector vl are equal to 1. We solve the projected
equations approximately using 8 steps of GMRES. We do not use restarts for the
(outer) iterations.

Note that our algorithms, like any Krylov subspace method, do not take advantage
of the fact that A is diagonal as long as we do not use diagonal preconditioning.
Indeed, with D QTAQ and y Qv, we see that K:i(D;v) QTIi(A;y), so
that except for an orthogonal transformation the same subspaces are generated. In
particular, the Rayleigh quotients, of which the Ritz values are the local extrema for
symmetric matrices, are the same for both subspaces. This means that if the starting
vectors are properly related as y Qv, then the Krylov method with D and v leads
to the same convergence history as the method with A and y.

We have also used the harmonic Ritz value variant of Jacobi-Davidson as in 5.
Figures 3 and 5 show the convergence history of log0 [[rk[[2, where the residual
at step k, is either Auk --gkUk for the Ritz pair with Ritz value of smallest absolute
value, or Ak --Okk for the harmonic Ritz pair with harmonic Ritz value of smallest
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absolute value. Along the vertical axis we have log10 I[rkll2 and we have the iteration
number k along the horizontal axis. Figures 4 and 6 show the convergence history of
all (harmonic) Ritz values (indicated by .) in the interval indicated along the vertical
axis. Again, we have the number of iteration steps along the horizontal axis. We have
marked the positions of the eigenvalues (with +) at the right of Figures 4 and 6.

Convergence plot for example

-1% 1=0 1=5 2 2=5 80
Number of iterations of Jacobi-Davidson

Convergence plot for example

0.151-
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Or "--.--;-;--:-:.-;--:-:-v-:--,--:-:--. -:-;--:--.-+-

-0.1

-0.151-

’ I 16 20 25 30
Number of iterations of Jacobi-Davidson

FIG. 3. Convergence residuals using Ritz
values.

FIG. 4. The Ritz values

Convergence plot for example
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Number ol fferations ol Jacobi-Davidson

Convergence plot for example
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-0.1

-0,151-
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Number of iterations of Jacobi-Davidson

FIG. 5. Convergence residuals using har-
monic Ritz values.

FIG. 6. The harmonic Ritz values.

For this example, the algorithm based on Ritz values (see Figures 3 and 4) con-
verges about as fast as the algorithm based on harmonic Ritz values (see Figures 5
and 6), but the convergence history with harmonic Ritz values is much smoother.
The difference in smoothness seems to also be typical for other examples. This fact
can be exploited for the construction of restart strategies and stopping criteria. From
experiments, we have learned that restarting for the "Ritz value" algorithm can be
quite problematic; see also [14] for similar observations.

Example 4. In our previous examples the matrices A are symmetric. However,
our algorithms are not restricted to the symmetric case and may also be used for the
approximation of nonreal eigenvalues. In this example, we use complex arithmetic.
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FIG. 7. Convergence residuals using har-
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FIG. 8. Real parts of harmonic Ritz values.
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FIG. 9. Imaginary parts of harmonic Ritz
values

FIG. 10. Harmonic Ritz values in . at step 33.

For this example we have simply augmented the diagonal matrix of Example 3
by the two complex diagonal elements 0.8 + 0.1 and 0.8 0.1 to a matrix of order
102, and we have applied the harmonic Ritz value variant of our algorithm (5) to
the matrix A #I with shift # 0.81 / 0.08 i. Again, all coordinates of the starting
vector are 1. Now we solve the projected equations approximately using 10 steps of
GMRES.

Figures 7-9 show the convergence history of the residual vector (Figure 7), the
real parts of the harmonic Ritz values (Figure 8), and the imaginary parts of the
harmonic Ritz values (Figure 9). Figure 10 shows the harmonic Ritz values of order
33. In Figures 7-9, we have used the same symbols as in the previous example. In
Figure 10, the harmonic Ritz values of step 33 of the Jacobi-Davidson iteration are
represented by a +, while the eigenvalues of A are represented by o.

Clearly, the algorithm finds the eigenvalue A 0.8 + 0.1 of A close to the shift
#, but also other ones, such as the conjugate of (which is quite far from the shift).
This is typical for other experiments as well; usually a large number of (harmonic)
Ritz values are converging in the Jacobi-Davidson method.
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Example 5. In this example we experimentally compare the performances of the
Davidson method, the Jacobi-Davidson method, and the accelerated shift and inexact
invert (ASII) variant of observation 4 in 4.1, i.e., we expand our search space by (the
orthogonal complement of) the approximate solution t of

(A OkI)t --r
(+/-

(A OkI)t uk

(D),
(JD),
(SI),

respectively (cf. 4). We solve these equations approximately by m steps of full
GMRES (with 0 as an initial guess). Since we are interested in the absolute smallest
eigenvalue we take for 0k the absolute smallest eigenvalue of Hk VcAVk. The
preconditioner M for GMRES is kept fixed throughout the iteration process. The
systems (D) and (SI) are preconditioned by M-1, while the projection Md :-- (I-
ukuc)M(I- uku) is used as preconditioner for (JD). This means that for (JD) we
have to solve equations of the form Mdz y, where y is a given vector orthogonal
to uk. We follow the approach as indicated in 4.1 and we solve this equation by
z oM-luk M-ly with c ukM- *Y/UkM

We have applied the three methods--Davidson, Jacobi-Davidson, and SI--for a
matrix from the Harwell-Boeing set of test matrices" A is the SHERMAN4 matrix
shifted by 0.5 (we wish to compute the eigenvalue of the SHERMAN4 matrix that is
closest to 0.5). A is of order n 1104. All eigenvalues of A appear to be real and are
in the interval [0.030726, 66.497]. The smallest eigenvalues are (in 5 decimal places):
0.030726, 0.084702, 0.27757, 0.39884, 0.43154, 0.58979, 0.63480,..., so that with the
given shift we are aiming at the fifth eigenvalue.

For M we have selected the ILU(2) decomposition of A. We have plotted the
log10 of the norm of the residual versus the number of outer iteration steps (which is
the dimension of the search space Vk)" Figures 11, 12, and 13 show the results for,
respectively, 5, 10, and 25 steps of GMRES.

Convergence plot for example

steps GMRES

Davidson

Jacobi-Davldson

Acc. Shift In. Inverl

10 15 20 30 35
number of iterations

Convergence plot for example

"6

Davidson

JacobI-Davldson

Acc. Shift In. Inverl

number of iterations

FIG. 11. Using 5 steps of preconditioned FIG. 12. Using 10 steps of preconditioned
GMRES. GMRES.

Larger values of rn imply more accurate approximate solutions of the "expansion
equations" (D), (JD), and (SI). In line with our discussions in 3 and our results in
Example 1, we see that improving the approximation in Davidson’s method slows the
speed of convergence and it may even lead to stagnation (cf. the dash-dotted curves
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-14

Convergence plot for example

steps GMRES

Davidson

Jacobi-Davidson

Acc. Shift In. Inverl

10 15 20 25 30 35
number of iterations

FIC. 13. Using 25 steps of preconditioned GMRES.

-.). As might be anticipated, for ASII we observe the opposite effect (cf. the dotted
curves ); the more precisely we solve (SI), the faster the method converges, while
stagnation may occur if (SI) is not solved accurately enough. The speed of convergence
of our Jacobi-Davidson method does not depend so much upon the accuracy of the
approximate solutions of (JD) (cf. the solid curves--)" the method converges faster
than Davidson and ASII.

As argued in 4.1, ASII may be rather sensitive to rounding errors, especially if
the expanding vector t has a large component in the direction of u. For ASII, but also
for Davidson, we had to apply modified Gram-Schmidt (mod-GS) twice to maintain
sufficient orthogonality of Vk, while in Jacobi-Davidson this was not necessary. By
doing mod-GS only once, the angle between the expansion vector t and the already
available search space may become too small to allow an accurate computation of the
orthogonal component. In such a situation, it may help to apply mod-GS more often
[23]. For the present example, twice was enough (but other examples, not reported
here, required more mod-GS sweeps).
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Abstract. In the theoretical treatment of linear differential-algebraic equations one must deal
with inconsistent initial conditions, inconsistent inhomogeneities, and undetermined solution com-
ponents. Often their occurrence is excluded by assumptions to allow a theory along the lines of
differential equations. This paper aims at a theory that generalizes the well-known least squares
solution of linear algebraic equations to linear differential-algebraic equations and that fixes a unique
solution even when the initial conditions or the inhomogeneities are inconsistent or when unde-
termined solution components are present. For that a higher index differential-algebraic equation
satisfying some mild assumptions is replaced by a so-called strangeness-free differential-algebraic
equation with the same solution set. The new equation is transformed into an operator equation and
finally generalized inverses are developed for the underlying differential-algebraic operator.

Key words, differential-algebraic equations, standard form, Moore-Penrose pseudoinverse,
generalized inverse, least squares regularization
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1. Introduction. We study the solution of linear differential-algebraic equations
(DAEs)

(1) E(t)(t) A(t)x(t) + f(t)

with initial condition

x0,

where t e [a,b] and E,A e C([a,b],R’’n), f e C([a,b],]Rm), x0 e Rn. Here
Cr([t0, tl],Rre’n) denotes the set of r-times continuously differentiable functions from
the interval [t0, tl] to the vector space R,,n of real m n matrices.

Although problems of the form (1), (2) can easily be seen as generalizations of
possibly under- or overdetermined systems of linear equations

(3) Ax b

with A E R’’, b E Rm, theoretical investigations of (1) mostly require the DAE to
have a unique solution for consistent initial values x0. This reduces the considerations
not only to the case m n but also prohibits the occurrence of undetermined solution
components. This, however, excludes DAEs that may be found, e.g., in the study of
optimal control problems for descriptor systems; see [16].

In the theory of linear equations the problem of undetermined solution compo-
nents or inconsistent right-hand sides is overcome by embedding (3) into the mini-
mization problem

1 1
(4) llxl122 min! s.t. llAx bl122 min!,
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which has a unique solution in any case. This unique solution, also called least squares
solution, can be written in the form

(5) x A+b

with the help of the Moore-Penrose pseudoinverse A+ of A. A more detailed inter-
pretation is that the matrix A induces a homomorphism A: ’ by x H Ax.
For fixed A the mapping which maps b on the unique solution x of (4) is found to
be linear. A matrix representation of this homomorphism with respect to canonical
bases is then given by A+. It is well known that A+ satisfies the four Penrose axioms

(6)

(a) AA+A A,
(b) A+AA+ A+,
(c) (AA+)T= AA+,
(d) (A+A)T= A+A;

see, e.g., [1, 6]. In turn, for given A E ]1re’n, the four axioms fix a unique matrix A+ E
n,,, whose existence follows, for example, by the solvability of (4).

It is the aim of this paper to generalize this concept for linear equations to a
large class of linear DAEs with variable coefficients. In more detail, we first replace
the given problem by an equivalent (in the sense that there is a special one-to-one
correspondence of the solution sets) so-called strangeness-free problem. For this we
then develop an appropriate generalized inverse of some operator representation of
the new problem in the spirit of the Moore-Penrose pseudoinverse. In particular, the
explicit representation of this Moore-Penrose pseudoinverse mainly consists of the
solution of a linear quadratic control problem.

In [11], Hanke treated similar questions in the context of integrable functions.
In a Hilbert space setting he was able to show that, in general, the operators de-
scribing (1), (2) with rn n are closable. He then gave a representation of the
associated closed operator for which the Moore-Penrose pseudoinverse then exists
but is in general not continuous. Finally he showed that it is indeed continuous for
problems with (differentiation) index at most one and not continuous when the index
exceeds one. In contrast to his approach, we replace a higher index problem by an
equivalent strangeness-free problem, we work in spaces of continuous functions (i.e.,
we have no Hilbert space structure), we allow for undetermined solution components
and nonsquare systems, and we give an explicit representation of the Moore-Penrose
pseudoinverse, thus showing continuity of the pseudoinverse.

Note that besides the Moore-Penrose pseudoinverse one can find other kinds
of generalized inverses when dealing with differential-algebraic equations or special
cases of them. The so-called Drazin inverse, see, e.g., [7] or [6, Chap. 9], is used
for equations with constant coefficients to give an explicit representation of the set
of solutions and consistent initial values. This theory, however, is not extendable to
the case of variable coefficients. In the theory of boundary value problems for linear
ordinary differential equations, so-called generalized Green’s functions are used; see,
e.g., [22, Chap. III, 10]. These functions define operators that yield a specific solution
for a given inhomogeneity even when the solution is not unique due to the choice of the
boundary conditions. Note, however, that due to the unique solvability of initial value
problems these operators are Fredholm operators; i.e., the given problem is essentially
finite dimensional. In the present paper we only treat initial value problems for linear
DAEs. But these allow for the presence of undetermined solution components such
that the kernel of the associated operator may have infinite dimension. Thus the
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operator is, in general, not Fredholm. The main focus of this paper, therefore, will be
to handle this infinite dimensional kernel. The extension to boundary value problems
seems to be possible but is beyond the scope of this paper.

The present paper is organized as follows. In 2, we give a standard form of DAEs
required for the subsequent construction, thus specifying the class of DAEs we can
treat in the theory to follow. The appropriate analytical context on the basis of dual
systems is outlined in 3. We then treat two possible embeddings of (1), (2) into
minimization problems in 4, both leading to generalizations of the Moore-Penrose
pseudoinverse for matrices. Finally, we give some conclusions in 5.

2. Standard form of DAEs. In order to treat (1) as generalization of linear
equations on the one hand as well as of differential equations on the other we must
carefully select suitable definitions for solvability and related questions fitting to both
extreme cases. Even finding an appropriate notion of solvability of (1) seems to be
a hard problem. See, e.g., [2, 4, 5, 8, 10, 12] for different definitions of solvability in
the context of DAEs. Many of them are orientated at properties of linear differential
equations and ignore results known for the special case (3), one of which, for example,
is that (3) is solvable (in the sense that there is a solution) if and only if rank A
rank(A, b). In view of (1) the weakest possible meaning of a (strong or classical)
solution without additional assumptions on the smoothness of the coefficients is given
in the following definition.

DEFINITION 2.1. (a) A function x Cl([a,b],]n) is called a solution of (1) if
and only if it satisfies (1) pointwise.

(b) The DAE (1) is called solvable and the inhomogeneity f is called consistent

if and only if(l) has at least one solution.
(c) An initial condition (2) is called consistent if and only if (1) has a solution

that satisfies (2).
(d) An initial value problem (1), (2) is called (uniquely) solvable if and only if

there is a (unique) solution of (1) satisfying (2).
Under certain circumstances it is possible and necessary to weaken the smooth-

ness requirements for a solution. We shall come back to this point when it becomes
important.

Unfortunately it seems to be impossible to deal with (1) in full generality. With-
out any further restrictions many undesired phenomena can occur. Compare the
observations made in the following examples with the fact that linear differential
equations, corresponding to E being pointwise nonsingular, are uniquely solvable for
any continuous coefficients E, A, and f.

Example 2.2. Consider the singular differential equation

t2(t) f(t)

on [-1, 1] with initial condition x(-1) 0. For to be continuous, we must require f
to be continuous f(0) 0 and f differentiable at t 0. The unique solution is then
given by

x(t) f(s) ds.
8

Example 2.3. Consider the so-called standard problem of index two

0 0 2(t) 0 1 x2(t) -+- f2(t)
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which has the unique solution

Xl(t) --]2(t) fl(t),
x (t)

independent of the interval of interest. Obviously we must at least require f to
be continuously differentiable on the entire interval to be able to write down the
solution. Because of the special shape of E, which cancels the entry 51, we may be
theoretically satisfied with this smoothness requirement, although the above definition
would need f to be twice continuously differentiable.

Hence the set of possible inhomogeneities may be restricted even in the case of
uniquely solvable problems by additional smoothness requirements or even by inner
point conditions depending on the given matrix functions E and A. For a unified
treatment we must therefore impose some restrictions on the functions E and A. It
must, however, be clear that the remaining class of DAEs is reasonably large.

In [17, 19, 18, 21] it has been shown that under some constant rank and smooth-
ness assumptions concerning the matrix functions E and A a given (higher index)
DAE can be transformed in such a way that the set of solutions remains the same
and the new equation is strangeness-free. The latter property can be defined in the
following way.

DEFINITION 2.4. The DAE (1) is called strangeness-free if there exist P E
C([a, b],re’m) and Q Cl([a, b],In’n), both pointwise orthogonal, such that we can

transform (1) to the standard form

(t)(t) fl(t)2(t) + ](t),
where

(8)

E(t) P(t)E(t)Q(t)
ra(t) 0 0

0 0 0
0 0 0

fl(t) P(t)A(t)Q(t) P(t)E(t)((t)

5c(t) Q(t)Tx(t),
](t) P(t)f(t)

All (t)
A21(t)

0

A2(t) A13(t) ]0
0 0

with EE and EA pointwise nonsingular and all blocksizes are allowed to be zero.
Observe that this definition is more general than requiring the differentiation

index (see, e.g., [5]) to be at most one. This is due to the occurrence of the third block
row and column in and ft. which yields an infinite dimensional solution space for the
homogeneous problem (t);&(t) fi(t)(t). If these blocks are not present (implying
rn n) the assumption of (1) being strangeness-free reduces to the assumption of (1)
having differentiation index zero or one.

Note that the above transformation onto a strangeness-free DAE is numerically
implementable; i.e., for a numerical treatment of (1) we may assume that the problem
is strangeness-free; see [19]. At this point we should mention that the transformation
procedure in [17]-[19] does not determine E, A, and f uniquely but up to multiplica-
tion by a pointwise orthogonal matrix function from the left. Thus we must take care
that our approach does not depend on such transformations. We also remark that it
is currently under investigation how far the necessary constant rank assumptions can
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be relaxed if one still requires classical solutions or how weaker solvability concepts
can be obtained by dropping further assumptions; see [3, 21].

In order to treat problems of the form (1), (2) that have no unique solution along
the lines of the treatment of (3), a necessary condition is that in the uniquely solvable
case the mapping which maps f on the unique solution x for fixed E and A is linear.
In particular, we must have the trivial solution for f 0. Necessary for this is that
the initial condition is homogeneous, i.e., that x0 0. This, however, can be obtained
without loss of generality by shifting x(t) to x(t)-xo which changes the inhomogeneity
from f(t) to f (t) + A(t)xo.

Summarizing this section, considering the current state of research, it seems rea-
sonable to concentrate on those linear DAEs with homogeneous initial condition

(9) E(t)ic(t) A(t)x(t) + f(t), x(a) O,

that are strangeness-free, i.e., that can be transformed into the standard form indi-
cated by (7) and (8).

3. Dual systems. Following the lines of the construction of the Moore-Penrose
pseudoinverse for matrices as sketched in the introduction, we must deal with ho-
momorphisms between function spaces, preferably some linear spaces of continuous
functions or appropriate subspaces. In view of (4) the norm of choice would be given
by

b

(10) Ilxll V/(x,x), (x,y) x(t)Ty(t) dt.

Because spaces of continuous functions cannot be closed with respect to this norm,
we are not in the pure setting of Banach spaces nor of Hilbert spaces. See [1, Chap. 8]
for details on generalized inverses of operators on Hilbert spaces. In this section we
therefore build up a scenario for defining a Moore-Penrose pseudoinverse which is
general enough to be applicable in the setting of linear spaces of continuous functions.

Looking at (6) we find two essential ingredients in imposing the four Penrose
axioms. These are the binary operation of matrix multiplication and the transposi-
tion of square matrices. In the language of mappings they must be interpreted as

composition of homomorphisms (we shall still call it multiplication) and the adjoint
of endomorphisms. While the first item is trivial in any setting, the notion of an ad-
joint is heavily based on the presence of a Hilbert space structure. The most general
substitute we can find here is the concept of conjugates with respect to dual systems
(pairs); cf. [14, Chap. IX].

DEFINITION 3.1. Let (X, X*) be a pair of (real) vector spaces equipped with a
bilinear form (.,.): X X*

(a) The pair (X, X*) is called a left dual system if and only if (x, x*) 0 for all
x X implies x* O.

(b) The pair (X, X*) is called a right dual system if and only if (x, x*) 0 for
all x* X* implies x O.

(c) The pair (X,X*) is called a dual system if and only if it is a left as well as a

right dual system.
It is common sense not to state the bilinear form explicitly. Requiring (X,X*)

to be some dual system therefore includes that there is a related fixed bilinear form
with the above properties.
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DEFINITION 3.2. Let (X,X*) be a left dual system and A:X X be an endo-
morphism. An endomorphism A*" X* --+ X* is called a conjugate of A if and only

(11) (Ax, x*) =(x,A*x*)

holds for all x E X and x* X*.
For a unique declaration of a Moore-Penrose pseudoinverse we of course need at

least uniqueness of a conjugate. In addition we also need the inversion rule for the
conjugate of a product.

LEMMA 3.3. Let (X,X*) be a left dual system and A:X --+ X be an en-
domorphism. There is at most one endomorphism A*" X* -- X* being conjugate
to A. Let the endomorphisms A*,B*" X* -- X* be conjugate to the endomorphisms
A, B: X --+ X. Then AB has a conjugate (AB)* which is given by

(12) (AB)* B’A*.

Proof. See, e.g., [14].
Observing that the third and fourth Penrose axioms in (6) require some endomor-

phisms to be self-conjugate, we must restrict to self-dual systems, i.e., to X* X.
At this point we have everything prepared to define a Moore-Penrose pseudoinverse
for an appropriate class of homomorphisms.

DEFINITION 3.4. Let (X,X) and (Y,Y) be (left) dual systems and D’X -+

Y be a homomorphism. A homomorphism D+" Y -+ X is called a Moore-Penrose
pseudoinverse of D if and only if DD+ and D+D possess conjugates (DD+) and
(D+D) and the relations

(a) DD+D=D,
(13) (b) D+DD+ D+,

(c) (DO+) DO+,
(d) (D+D) D+D

hold.
As for matrices, the four axioms (13) guarantee uniqueness of the Moore-Penrose

pseudoinverse, whereas existence in general cannot be shown.
LEMMA 3.5. Let (X,X) and (Y, Y) be (left) dual systems and D: X -+ Y be a

homomorphism. Then D has at most one Moore-Penrose pseudoinverse D+" Y -+ X.
Proof. Let D+, D-" Y -+ X be two Moore-Penrose pseudoinverses of D. Then

we have

D+ D+DD+ D+DD-DD+
(D+D)*(D-D)*D+ (D-DD+D)*D+
(D-D)*D+ D-DO+ D-(DD+)
D-(DD-DD+)* D-(DD+)*(DD-)
D-DD+DD D-DD- D-.

We finish this section with the remark that a Euclidean space X, i.e., a (real)
vector space with an inner product, trivially forms a dual system (X, X) with itself.

4. Generalized inverses. According to (4) and (10) we consider the minimiza-
tion problem

1 1
(14) [[x[[ 2 min! s.t. -[[Dx- f[[2 min!
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with D defined by

(15) Dx(t) E(t)ic(t) A(t)x(t)

from (9) or more explicitly

lab 1Ilk(16) IIx(t) ll2 dt min! s.t. IIE(t)ic(t) A(t)x(t) f(t)l122 dt min!.

In this form the specification of the problem is not complete. We still have to specify
the appropriate spaces X and Y for D to act between. Requiring x to be continu-
ously differentiable in general yields a continuous f Dx. But even in the uniquely
solvable case, f being continuous cannot guarantee the solution x to be continuously
differentiable as the case E 0 shows.

We circumvent this problem by setting

Z {x e C([a,b],]Rn) lE+Ex e Cl([a,b],Nn), E+Ex(a)= 0},(17) y=C([a,b],N,),

and defining D: X --+ Y indirectly via the standard form (7) by

(18)

where/)" J --, with

(19)

and

D PTDQT

[95c(t) (t)(t) ft(t)Sc(t)

{2 e C([a, b],) +2 e Cl([a,b],Nn), J+J2(a)= 0},
Y C([a, b], Rr).

To simplify notation, here and in the following we use bold letters to denote operators
standing for pointwise application of the corresponding matrix function; e.g., Ex(t)
E(t)x(t). Similarly, one has to interpret superscripts at such operators; e.g., QTx(t)
Q(t)_Tx(t). In this way the matrix functions P and Q fix operators P: Y I7" and
Q" X X. The latter property holds, because for 2 J and x Q5: we get

E+Ex= (PTQT)+(PTQT)x
Q,+ppT Q,+, E Cl([a,b],]Rn),

because Q Cl([a,b],Rn’n) and P, Q are pointwise orthogonal, and hence x X.
Setting 2 (21,22,23) according to the block structure of the standard form (8)

and observing the special form of/), the condition 2 ) implies 21 to be continuously
differentiable. But only this part of 2 actually appears on the right-hand side of (19).
Thus (18) indeed defines an operator D: X --, Y allowing the use of less smooth
functions x compared with Definition 2.1. In addition, it is easy to see that D is
a homomorphism. Compare this construction with the introduction of a so-called
modified matrix pencil in [10] which also aimed at admitting less smooth solutions.

In accordance with the theory of differential equations, we call D a differential-
algebraic operator.

Because

(21) Ilxll- IIQrxll- I1 11, IIDx-fll- IIP(PrDQrx- f)ll- lib’-]11,
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the minimization problem (14) transforms covariantly with the application of the
operators P and Q. Consequently, we can first solve the minimization problem for
DAEs in standard form and then transform the solution back to get a solution of the
original problem. Moreover, having found the Moore-Penrose pseudoinverse/+ of
the relation

(22) D+ Q+P

immediately gives the Moore-Penrose pseudoinverse of D.
Inserting the explicit form of/ and into (16) for the transformed problem

yields

(23) lf
b

(SCl(t)TScl(t) + 5C2(t)T&2(t) + &3(t)Tsc3(t)) dt min!

s.t. (1 (t)Tl (t) + (t)r(t) + a(t)a(t)) dt min!

with

(24)
1 (t) EE(t)I (t) AI (t)& (t) A.(t)2:(t) Aa(t)Yca(t) f-1 (t),
2(t) -A2(t)l (t) EA (t)2(t) f2(t),

where 2 (, 2, &3)_and_ ] (]1, 2, ]3) are partitioned according to the_given block
structure. For given f E Y minimization is to be taken over the whole of X from (20)
which can be written as

(25))- {(1,2,/3) e C([a,b],n) ll continuously differentiable, 21(a) 0}.

The constraint is easily satisfied by choosing an arbitrary continuous fundtion 3,
taking 1 to be the solution of the linear initial value problem

(26) l(t)- EE(t)-l[Al(t) A12(t)En(t)-A2(t)]Yc1(t)
+ EE(t)-l[A13(t)c3(t) + ]l(t) A2(t)En(t)-l]2(t)], 5c(a) O,

and finally setting

(27) &2(t) -EA(t)-1[A21(t)(t)+ ]2(t)].

Thus we remain with the problem of minimizing 1/2llxll 2 under the constraints (26)
and (27).

Observe that this is the place where pointwise invertibility of the matrices EE,
EA is needed in order to satisfy the constraints. But it is clear that weak solvability
or smooth completion of solutions may be applied to generalize our results.

Taking a closer look at system (23), one immediately recognizes a linear quadratic
control problem where &3 takes the role of the control. But compared with the stan-
dard problem of linear quadratic control, the constraints appear to be more general
due to the occurrence of inhomogeneities. See, e.g., [20] and references therein for
related results on the homogeneous linear quadratic control problem.
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4.1. Linear quadratic control problems with inhomogeneities. Because
the solution of linear quadratic control problems with inhomogeneities is an interesting
topic by itself, we treat this problem with a new simplified and adapted notation which
should not be mixed up with the one used so far.

THEOREM 4.1. Let

A e C([a, b],ld’d), B e C([a, b], d,k),(s)
f e C([a, b],ld), g e C([a, bl,t).

Then the linear quadratic control problem

(29)

C e C([a, bl,Nt’d),

l fab- (x(t)Tx(t) + y(t)Ty(t) + u(t)Tu(t)) dt min!

s.t. it(t) A(t)x(t) + B(t)u(t) + f(t), x(a) O,
y(t) C(t)x(t) + g(t)

possesses a unique solution x e Cl([a, b],d), y e C([a, b],t), u e C([a, b],k). This
solution coincides with the corresponding part of the unique solution of the boundary
value problem

(t) (I + C(t)TC(t))x(t) A(t)TA(t) + C(t)Tg(t), A(b) O,

(30) (t) A(t)x(t) + B(t)u(t) + f(t), x(a) O,
y(t) C(t)x(t) + g(t),
u(t) B(t)T(t)

which can be obtained by the successive solution of the initial value problems

()
(t) I + C(t)Tc(t) P(t)A(t) A(t)Tp(t) P(t)B(t)B(t)Tp(t), P(b) O,
i(t) C(t)Tg(t) P(t)f(t) A(t)Tv(t) P(t)B(t)B(t)Tv(t), v(b) O,
it(t) A(t)x(t) + B(t)B(t)T(p(t)x(t) + v(t)) + f(t), x(a) O,
(t) P(t)x(t) + v(t),
y(t) C(t)x(t) + g(t),
u(t) B(t)T(t).

Proof. Eliminating y with the help of the algebraic constraint and using a La-
grangian multiplier A (see, e.g., [13]), problem (29) is equivalent to (omitting argu-
ments)

ab I (xTx+(Cx+g)T(Cx+g)+uTu)+/T(c--Ax--Bu-- f)] dt =min’J[x, ic, u, i]

with x, A E C([a, b], ]Rd), and u C([a, b],lk). Variational calculus then yields

J[x + hx, 2 + 5, u + hu, +

((x + ex)(x + ex)+ ( +)(+))

+ (C(x + x) + )(C(x + x) + )-- ( -- 5))T (( -- 5) A(x + shx) B(u + ehu) f)] dt
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J[x, 2, u, ]

+ e ,xrzl b + (z + (Cz + )C ,XrA T),sZ dt

+ ( r)e at + er( : - J’) at

+s 1
b ]ib ]- (SxT(I + cTC)Sx + 5uTSu) dt+ 5AT(52 ASx BSu) dt

after sorting and integration by parts.
For (x, u, A) to be a minimum, a necessary condition is that for all variations the

coefficient of vanishes. This at once yields (30).
Now let (x+Sx, u+Su, )+5,k) be a second minimum. Without loss of generality

we have s > 0. Then (Sx, 5u, 5,k) must solve the corresponding homogeneous problem.
In particular, we must have

52 ASx + BSu.

Thus, in this case,

J[x + sSx, 2 + 52, ,k + 5), u + sSu]

J[x, 2, u] + 2 (SxT(I + cTC)Sx + 5uTSu) dt.-It follows that 5x 0, 5u 0, and consequently 5A 0. Hence, there is at most one
solution of the linear quadratic control problem (29) and thus also of the boundary
value problem (30).

To determine the unique solution of (30) we set

,k Px + v, J P2 + x + i,

with some P E Cl([a, b],d’d), V Cl([a, b],d). Inserting into (30), we obtain

P2 + x + i (I + cTC)x AT(px + v) + CTg

PAx + PBBT(px + v) + Pf.

Combining these equations, we obtain

(PA + ATp + PBBTp (I + cTc) + :)X
+ (PBBTv + Pf + ATv CTg + i) O.

Now we choose P and v to be the solutions of the initial value problems

I + CTC PA ATp PBBTp, P(b) O,
i-- CTg Pf ATv PBBTv, v(b) O.

This choice is possible because the second equation is linear and the first equation
is a Riccati differential equation of a kind for which one can show that a symmetric
solution exists for any interval., of the form [a, b]; see, e.g., [15, Chap. 10].
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It remains to show that (31) indeed solves (30). This is trivial for the third and
fourth equations. For the second equation we of course have x(a) 0 but also

5c-Ax- Bu- f
Ax + BBTpx + BBTv + f Ax BBTpx BBTv f O.

For the first equation we have A(b) P(b)x(b) + v(b) 0 and also- (I + CTC)x + ATA- CTg
P, + x + i (I + CTC)x + ATpx + ATv CTg
PAx + PBBTpx + PBBTv + Pf
+ (I + CTC)x PAx ATpx PBBTpx
+ CTg Pf ATv PBBTv (I + CTC)x + ATpx + ATv cTg O.

We remark here that the objective functional in a standard linear quadratic con-
trol problem often contains pointwise symmetric and positive definite matrix functions
as additional parameters. Problem (29), however, represents no loss of generality be-
cause using the Cholesky decomposition of such matrix-valued functions, which is
smooth, we can rescale the unknowns by linear transformations such that these
trix functions become pointwise identities.

4.2. The Moore-Penrose inverse of differential-algebraic operators. We
now apply the results obtained for linear quadratic control problems with inhomo-
geneities to construct the Moore-Penrose inverse of a differential-algebraic operator.

COROLLARY 4.2. Problem (23) with constraints (26) and (27) has a unique solu-
tion 2 E f.

Proof. The claim follows from Theorem 4.1 by the following substitutions (again
without arguments)

A EI(All -A12E1A21), B- EIA13, C- -EIA21,
f E(] AIE]), g _E]e.

The unique solution is then given in the form 2 (x, y, u). [:!

We are now ready to define an appropriate operator/+" ] - 5 as follows. For- (fl, 2, 3) E ], the image 2 (21,22, 23) -/+ shall be the unique solution
of (23) with (26) and (27). Note that /+] because 21 as part x of (31) is
continuously differentiable and 21 (a) 0. Moreover, because the Riccati differential
equation in (31) does not depend on the inhomogeneities, the operator D+ is linear,
hence a homomorphism.

THEOREM 4.3. The operator D+, defined as above, is the Moore-Penrose pseu-
doinverse of [9; i.e., the endomorphisms [9[9+ and D+[9 have conjugates such that
(13) holds for D and D+.

Proof. Let - (1,2,3) ] and //+- (1,2,3). With (19) and the
notation of Theorem 4.1 and Corollary 4.2 (for simplicity) we get

}1 EEl1 All21 A1222 A1323
EL2 AllX- A12Y- A13u
EE(Ax + BBT(px + v) + f) A11x A12(Cx + g) A13BT(px + v)
AllX n1241A21x - EBBT(px -- v) -+- ]1 A12El]2

AllX + AEAlx + A12112 EBBT(px -- v) ]1,
]2 -A2121 EA22 -A21x- LAy

r. (Cx r, (Cx Cx
]3-0,
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and DD+ is obviously conjugate to itself. Since DD+ projects onto the first two
components and, because f3 has no influence on the solution of (23), we also have
/+//+ /+. Because D2 has a vanishing third component for all 2 E J, the
projector //+ acts as an identity on /; i.e., //+/ D. The rest of the proof
deals with the fourth Penrose axiom.

Let 2 (x, y, u) e J and /+D2 (2, ), t). We must now apply/+ to the
inhomogeneity

[ Y]E- AllX- A12y- A3u 1
D [ -A21x AY ]0

Therefore we must set

f= Y]I (Y]E- A11x- Aley- A13u + A12E41(A21x -t- EAy))
ic- Ax- Bu,

g E(A21x + EAy)
-Cx + y.

Recalling that the solution P of the Riccati differential equation does not depend on
the inhomogeneity, we must solve

i CT(-Cx + y) ATv PBBTv P(ic Ax Bu), v(b) O,
A + BBT(P + v) + (ic Ax Bu), (a) 0,

fi= C2-Cx + y,
t BT(p -+-v).

Setting v w Px, i (v P2 x, we obtain

(v P2 + (I + CTC)x PAx ATpx PBBTpx
CTCx -- CTy ATw -- ATpx PBBTw -- PBBTpx(32) Pic + PAx + PBu

-(AT + PBBT)w + (x + CTy + PBu), w(b) O.

Let W(t, s) be the Wronskian matrix belonging to A + BBTp in the sense that

IiV(t,s) (A + BBTp)w(t,s), W(s,s) I.

Then W(t, s)-T is the Wronskian matrix belonging to -(A + PBBT). With the help
of W(t, s) we can represent the solution of the initial value problem (32) in the form

w W(t, s) -T (x + CTy + PBu) ds,

or

V -Px + W(t, s) -T(x + CTy + PBu) ds.

Here, and in the following, the arguments which must be inserted start with t, and a
Wronskian matrix changes it from the first to the second argument.

Setting 2 x + z, we obtain

-5 + Ax + Az + BBTpx + BBTpz
+ BBTw BBTpx + Ax Bu

(A + BBTp)z + (BBTw Bu), z(a) O,
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or

z W(t, s)(BBTw Bu) ds.

Thus we get (&, ), t) according to

2 x + z, ] y + Cz, t BT(Pz + w).

In addition, now let (2, 9, ) e ) be given and +(2, $, ) (, , ). Then we
have

By transposition and changing the order of the integrations, we finally find

]ab fab(T& + Tf] + tTt) dt (XT + yT] + uTu) dr,

which is nothing else than that +/ is conjugate to itself. [:]

It follows immediately that (22) yields the Moore-Penrose pseudoinverse of D.
That is, we have shown the existence and uniqueness of an operator D+ satisfying
(13) and thus fixed a unique classical least squares solution for a large class of DAEs
(inculding higher index problems) with possibly inconsistent initial data or inhomo-
geneities or free solution components.

4.3. A (1,2,3)-inverse. Using D+ for solving DAEs with undetermined solu-
tions components, however, bears at least two disadvantages. First, the undetermined
component 3 need not satisfy the given initial value and, second, instead of an initial
value problem we must solve a boundary value problem, which means that values of
the coefficients in future times influence the solution at the present time.

A simple way out of this problem is to choose the undetermined part to be zero. In
the following we shall investigate this approach in the context of generalized inverses.
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(33)

and

To do this we consider the matrix functions given by

F(t) (I- E(t)E(t)+)A(t)(I- E(t)+E(t))

(34) Ii(t) E(t)+E(t) + F(t)+F(t).

Transforming to standard form, we then find (omitting arguments)

(I- PEQQTE+pT)(pAQ- PE()(I- QTE+pTpEQ)
P(I- EE+)(A- E(QT)(I- E+E)Q
P(I- EE+)A(I- E+E)Q PFQ.

Thus F transforms like E and therefore

fi=k+k+k+k
QTE+pTpEQ + QTF+pTpFQ
QT(E+E + F+F)Q QTHQ.

A simple calculation now yields

H= 0 I 0
0 0 0

This in particular shows that H is pointwise an orthogonal projector. Note that
I- II indeed projects onto the undetermined component &3. Hence, we are led to the
problem

(35)
II(I- II(t))x(t)][ dt min!

s.t. IlE(t)ic(t) A(t)x(t) f(t)ll. dt min!

replacing (16). The preceding results say that again the problem transforms covari-
antly with the application of P and Q so that we only need to solve (35) for DAEs
in standard form. Because (35) here implies &3 0 by construction, we remain with
a reduced DAE that is uniquely solvable. We can therefore carry over all results ob-
tained so far as long as they do not depend on the specific choice of 3. Recognizing
that this choice was utilized only for the fourth Penrose axiom, we find that (35) fixes
a so-called (1,2,3)-inverse D- of D satisfying the axioms (13 a, b, c). Keeping the
spaces as before, we arrive at the following result.

THEOREM 4.4. The operator D- defined by (35) is a (1,2,3)-inverse of ; i.e.,
the endomorphism D)- has a conjugate such that (13 a, b, c) hold for and

Again defining the operator D- by D- QD-P then gives a (1,2,3)-inverse of
the operator D. We finish this part with a number of remarks and an example for
the application of the presented theory.

Remark 1. In the case A13 0 (including A13 empty, i.e., no corresponding block
in the standard form), we immediately have D- D+. Observing that for E 0
the existence of a standard form (8) requires rank A(t) to be constant on [a, b], we
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find D+ D- -A+. In particular, this shows that both D+ and D- are indeed
generalizations of the Moore-Penrose pseudoinverse of matrices.

Remark 2. The boundedness of the linear operators D: X Y and D+, D-: Y
X where X and Y are seen as the given linear spaces equipped with the norms

IIX[IX IIX[IL2 -- IId/dt(E+Ex)llL and I[YlIY [lY[[L. allows for their extension to
the closure of X and Y with respect to these norms; see, e.g., [9, Lemma 4.3.16]. In
particular, Y becomes the Hilbert space L2([a, b], ’). Other choices of the norms
are possible as well.

Remark 3. For the numerical calculation of a solution of a given DAE represented
by the operators D+ or D-, one has to discretize (16) or (35). Using fixed stepsize
h (b-a)/N, N E N, one would choose discrete spaces Xh and Yh of finite sequences
{xv}g and {fv N}=0 Thus by discretization we come back to a finite dimensional--0

problem of the form (3) where we know how to compute generalized inverses. But any
numerical scheme will couple X+l at least with x due to replacing the derivative by
some difference approximation. Because a (1,2,3)-inverse of a lower block triangular
matrix is in general not lower block triangular, it is not clear whether there is a

(1,2,3)-inverse such that x does not depend on vMues of the coefficients at points in
the future.

Example 4.5. Consider the initial vMue problem

[-t t2] l(t) ] [ 1 0 J xl(t) + [ fl(t) ] [xl(to)_[Xlo]-1 t 22(t) -1 x2(t) f2(t) x2(t0) x20

The DAE of this problem has strangeness-index one (note that in contrast the differ-
entiation index is not defined); see [17]. To obtain a strangeness-free DAE with the
same solution space according to [19], we compute

M= -A E N=

and obtain (with shifted initial values)

--t t2 0 0 -1 0
-1 t 0 0 0 -1

M(t) 0 2t -t t2 N(t)= 0 0
0 t -1 t 0 0

0

0 0 fl(t)-xl0
o o f (t)
0 0 ,g(t)-- fl(t)
o o

Because rank M(t) 2 for all t e , the procedure in [19] reduces to the computation
of an orthogonal projection onto the corange of M(t) given, e.g., by

Z(t)T_ 1 [1--tO 0t]v/1 + t2 0 0 1

Now replacing E, A, and f by ZTM, ZTN, and ZTg yields the strangeness-free DAE
1

0
v/1 + t2

(Xl (t) + tx2(t) + fl (t) x01 tf2(t) + tx20),
1 (?1 (t) t]2(t))0

x/l+ t2

together with homogeneous initial conditions. Denoting the coefficient functions again
by E, A, and f, we have E(t) 0 and

1 [ 1 t ] 1 fl(t)-xol-tf2(t)+tx20 ]A(t)
v/1 +.t2 - 0 f(t)

v/1 + t2 ]1 (t) t]2(t)
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According to Remark 1, the least squares solution of the latter DAE is given by
x -A+f. Shifting back we obtain as the least squares solution of the given original
problem

x(t)
v/1 + t t 0 V/1 -[- t2 )l(t) tf2(t) +

X02

or

x(t)
l + t2 -t(fl(t) xol tf2(t) + tx20) +

x02

5. Conclusions. Considering linear DAEs as common generalization of linear
ordinary differential equations and linear algebraic equations, our aim in this paper
was to define a counterpart of a least squares solution in the case of inconsistent
data and/or nonuniquely solvable problems. For this, we followed the approach taken
for linear algebraic equations. In particular, we embedded DAEs of a certain type
into a minimization problem which was then shown to be uniquely solvable. The
corresponding solution operator turned out to satisfy axioms of Penrose type in a
general setting of conjugates with respect to some dual systems. In this sense we
defined least squares solutions of a large class of DAEs or, in other words, Moore-
Penrose pseudoinverses of the corresponding differential-algebraic operators.
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SOME RESULTS ON STRUCTURE PREDICTION IN SPARSE QR
FACTORIZATION*

ESMOND G. NGt AND BARRY W. PEYTONt

Abstract. In QR factorization of an m n matrix A (m _> n), the orthogonal factor Q is often
stored implicitly as an rn n lower trapezoidal matrix W, known as the Householder matrix. When
the sparsity of A is to be exploited, the factorization is often preceded by a symbolic factorization
step, which computes a data structure in which the nonzero entries of W and R are computed and
stored. This is achieved by computing an upper bound on the nonzero structure of these factors,
based solely on the nonzero structure of A. In this paper we use a well-known upper bound on the
nonzero structure of W to obtain an upper bound on the nonzero structure of Q.

Let U be the matrix consisting of the first n columns of Q. One interesting feature of the new
bound is that the bound on W’s structure is identical to the lower trapezoidal part of the bound on
U’s structure. We show that if A is strong Hall and has no zero entry on its main diagonal, then the
bounds on the nonzero structures of W and U are the smallest possible based solely on the nonzero
structure of A. We then use this result to obtain corresponding smallest upper bounds in the case
where A is weak Hall, is in block upper triangular form, and has no zero entry on its main diagonal.
Finally, we show that one can always reorder a weak Hall matrix into block upper triangular form
so that there is no increase in the fill incurred by the QR factorization.

Key words, structure prediction, QR factorization, Hall property, block upper triangular form,
elimination tree, sparse matrix computations

AMS subject classifications. 15A23, 65F05, 65F50

1. Introduction. Let A [aij] be an m n matrix with m _> n, and assume
that A has full column rank. Consider the reduction of A to upper triangular form
using orthogonal factorization:

(1) A=Q

where Q is rn m orthogonal and R is n n upper triangular. Assume that both Q
and R are needed and that Householder transformations [11] are used to compute the
factorization. The orthogonal factor Q can then be stored implicitly in the House-
holder matrix W, which is an m n lower trapezoidal matrix, each column of which
contains a vector used to construct a Householder transformation [2].

If A is sparse and its zero entries are to be exploited, the factorization is often
preceded by a symbolic factorization step, which computes a data structure in which
first the nonzero entries of A are inserted and subsequently the nonzero entries of R
and W are computed and stored. The primary purpose of the symbolic factorization
step is to predict which factor entries will be zero and which will be nonzero, based
solely on the nonzero structure of A. George and Ng [9] predict the nonzero structure
of W and R by applying a symbolic Householder procedure to the nonzero structure
of A.

Consider the 7 5 matrix A in Figure 1, with each nonzero entry represented
by an "" and each zero entry represented by a blank. The predicted fill due to
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x x x x
xx x xx+x
xxx xxx/

A= xx F= xx
x x x x

xx xx
x x

FIG. 1. A is the original matrix F is the filled matrix generated by the symbolic Householder
procedure. (A filled entry is denoted by +.)

the first Householder transformation is obtained by (1) determining the rows of A
with a nonzero entry in column one and then (2) replacing the nonzero structure
of each of these rows with the union of these sets. The first symbolic Householder
transformation thus replaces rows one and five with the union of {1, 5} from row one
and { 1, 5} from row five, producing no change in the nonzero structure. The predicted
fill due to the second Householder transformation is obtained by removing the first
row and column from the matrix and then applying the same row-merge operation
to the remaining 6 4 matrix. This replaces {2, 3, 5} in row two and {2, 3, 4} in row
three with {2, 3, 4, 5}, thus introducing a "+" into positions (2, 4) and (3, 5) of the
matrix. (The row and column numbers refer to the original matrix, not the reduced
matrix.) The reader should verify that recursive application of this process to the
remaining 5 3 submatrix predicts no additional fill. The final result of the symbolic
Householder procedure is the filled matrix F in Figure 1. The lower trapezoidal part
of F predicts the nonzero structure of W; the upper triangular part of F predicts the
nonzero structure of R. For further details consult George and Ng [9].

We will now make the notion of "predicted nonzero structure" more precise. For
any p q matrix M let

Struct(M) := {(i,j)’m# 0}.

Let / and be the sets of nonzero positions predicted by the symbolic House-
holder procedure (as described in [9]) for W and R, respectively. The usefulness of
the symbolic Householder procedure comes from the fact that Struct(W)

_
14 and

Struct(R)

_ , no matter what values occupy the nonzero positions of A. For any
factor we will refer to a predicted set of nonzero positions with this property as an
upper bound on the nonzero structure of the factor.

In 2 we extend / in a fairly straightforward manner to obtain an upper bound
on Struct(Q). This is done by forming the appropriate "symbolic product" of

the Householder transformations, with the nonzero structure of each transformation
based directly on /. George, Liu, and Ng [8] introduced an implicit representation of
1/ in terms of Struct(A) and the elimination forest of 7. In 2 we show that a simple
extension of this implicit representation of 14 results in an implicit representation of. To incorporate columns n + 1, n + 2,..., m into , we extend the elimination
forest of T to include nodes n + 1, n + 2,..., m.

Let U be the matrix consisting of the first n columns of Q, and let be the upper
bound on Struct(U) consisting of the first n "columns" of Q. The following is an
immediate and interesting consequence of the main result in 2: the lower trapezoidal
pattern / and the lower trapezoidal part of l are identical.

For each of the matrices W, U, and R, there exists a unique upper bound on
its nonzero structure which is the smallest possible bound based solely on Struct(A).
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Consider the Householder matrix W. Let A be the set of m n full-rank matrices M
for which Struct(M) Struct(A), and let WM be the Householder matrix of M E A.
The least upper bound on Struct(W) is given by [JMeh Struct(WM). It should be
readily apparent that this is the unique smallest upper bound on Struct(W) that can
be obtained based solely on Struct(A). We can obtain unique least upper bounds on

Struct(U) and Struct(R) in a similar fashion.
In 3 and 4 we are concerned with conditions under which the symbolic House-

holder procedure can be used to obtain least upper bounds on Struct(W) and Struct(U).
It is well known that A can be reordered into block upper triangular form by row and
column permutations [5, 18], where the diagonal blocks are square, except for the
last, which may be rectangular. We will call A a strong Hall matrix if its block upper
triangular form is trivial (i.e., has one block). We will call A a weak Hall matrix if
its block upper triangular form is nontrivial (i.e., has more than one block). It is also
well known that the reordering into block upper triangular form can be chosen so that
the resulting matrix has no zero entries on its main diagonal [4, 5].

Coleman, Edenbrandt, and Gilbert [1] showed that 7 is the least upper bound
on Struct(R) whenever A is in block upper triangular form. (Their result is based on
a symbolic Givens procedure, which also produces T whenever A is in block upper
triangular form.) Using results from Hare et al. [13], we show in 3 that if A is strong
Hall and has no zero entry on its main diagonal, then 1/ and/ are least upper bounds
on Struct(W) and Struct(U), respectively. In 4 we deal with the case where A is weak
Hall, is in block upper triangular form, and has no zero entries on its main diagonal.
We show that for such a matrix the least upper bounds on Struct(W) and Struct(U)
have a block diagonal form, each block of which can be obtained by applying the
symbolic Householder procedure to the corresponding strong Hall submatrix on the
block main diagonal of A. We contend that from the practitioner’s point of view,
restricting our attention to matrices having this special form is both adequate and
quite natural. To further strengthen our case, we show in 4 that one can always
reorder the rows and columns of A into block upper triangular form so that there is
no increase in the fill incurred by the (R factorization.

2. The nonzeros of Q predicted by symbolic Householder. A well-known
algorithm for computing the orthogonal factorization in (1) uses a sequence of House-
holder transformations [11] to reduce the m n matrix A to upper triangular form:

HnHn-1 HIA 0

Since each Householder transformation Hk is symmetric and orthogonal, the ortho-
gonal factor can then be expressed as the product

(2) Q H1H2 Hn.
T for some m-vector WkEach Householder transformation Hu has the form I- WkWk

of the form

[0]Ok

Xk

We could let A contain all full-rank m n matrices M for which Struct(M) C_ Struct(A), since
removing pairs from Struct(A) may remove pairs from, but will never add pairs to, the least upper
bound on Struct(W).
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where ak is a nonzero scalar, Xk is an (m- k)-vector, and the first k- 1 entries of wk
are zero.2 The vector wk is often called a Householder vector. The orthogonal factor
Q can therefore be represented implicitly by the rn n lower trapezoidal matrix

W wl w2 wn

commonly called the Householder matrix.
In this section we compute an upper bound Q on Struct(Q) by forming a symbolic

product based on (2). To make the notion of a symbolic product more precise we need
the following notation. For any p q matrix M, its ith row and jth column are
denoted by Ms, and_ M,j, respectively. Let A/ be an upper bound on Struct(M), so
that Struct(M) c_ A/. "Row i" of A is the set

A/i, := {j’(i,j) E A/};

similarly, "column j" of Q is the set.

JO,j {i" (i,j) e

Suppose that M is a p q matrix and N is a q r matrix, and let jQ and Jff be upper
bounds on Struct(M) and Struct(N), respectively. We define the symbolic product of
A4 and jff as

AAAf "= {(i, j)’(i, k) e JO and (k, j) e Jf for some k, 1 k _< q}.

Observe that A/Af is an upper bound on Struct(MN).
In this section we form a symbolic product bed on (2), namely,

(3) .= 12...,
where k, 1 k n, is the upper bound on Struct(Hk) obtained directly from
column ,k, that is,

(4) k := Struct(I) (,k ,k).

It should be readily pprent that Q is n upper bound on Struct(Q).
2.1. Background. An m n matrix A, with m n, hs full structural rank n if

there exists a full-rank m n matrix M for which Struct(M) Struct(A). The matrix
A is a Hall matrix if every subset of k columns h nonzero entries in at least k rows.
It is well known that A has structurM rnk n if and only if it is a Hall matrix [4, 6];
we therefore restrict our attention to Hall matrices in this paper.

For any m n HM1 matrix A, there exists an m m permutation matrix Pm for
which every diagonal entry of PmA is nonzero [4, 12, 16]. Since PmA PmQR, it
follows that reordering the rows of A merely reorders the rows of the orthogonM factor.
George, Liu, nd Ng [8, 9] apply the symbolic Householder procedure to Struct(A)
only aer the rows of A have been permuted to obtain a zero-free diagonM. One
reason for this restriction is that a zero on the diagonal of A may create needless fill
in W or (or both). This problem can be avoided by incorporating "row pivoting"
into the symbolic Householder procedure, which, however, makes the procedure more
complicated. rther details on the desirability of a zerfree diagonal can be found

2 It is convenient to include H in all cases, even though wnT 0 an whenever m n.
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in George, Liu, and Ng [8, 9]. Henceforth we shall assume that A is an m n Hall
matrix (m _> n) with a zero-free diagonal.

In 2.3 we introduce an implicit representation of Q that is similar to the implicit
representation of V introduced in George, Liu, and Ng [8]. For 1 _< k _< n, if
Tk. {k} , then we let

p(k)-= min{j j E 7k. {k}};
otherwise, p(k) will be undefined. It is easy to see that p is the parent function
of a forest. We shall call this forest the elimination forest of T. (Liu [15] surveys
elimination forests in detail.) The elimination forest of 7 may consist of one or more
trees. For each tree there is exactly one node r for which p(r) is undefined, and it
is called the root of the tree. Note that the nodes of the forest are numbered by a
topological ordering, so that k < p(k) for each nonroot k in the forest.

If Ai. is a nonzero row, then we let f(i) be the column index of the first nonzero
entry in that row, that is, we let

f(i) "= min{j aj 0};

otherwise, we let f(i) m + 1.3 Note that f(i) <_ i whenever 1 _< i _< n because A
has a zero-free diagonal. Furthermore, whenever n + 1 <_ i _< m we have f(i) <_ n if
and only if Ai, is a nonzero row. It is straightforward to show that if Ai, is a zero
row (i.e., if f(i) m+ 1), then Wi, is a zero row and 14;i, . Theorem 2.1 identifies
each nonempty /Yi, with a path in the elimination forest of T.

THEOREM 2.1 (see George, Liu, and Ng [8]). Let A be an m x n Hall matrix
(m >_ n) with a zero-free diagonal, and let p be the parent function of the elimination

forest of T. Assume that Ai, is a nonzero row, and let f(i) be the column index of
the first nonzero entry in Ai,. Whenever 1

_ _
n, we have

V;i, { f(i),p(f(i)),p(p(f(i))),...ii };
whenever n + 1 <_ <_ m, we have

)Yi, { f(i), p(f(i)), p(p(f(i))),..., r },
where r is a root in the elimination forest of T.

2.2. Extending the elimination forest. The nodes in the elimination forest
of 7 are labeled from 1 to n. To include columns n + 1, n + 2,..., m in our implicit
representation of Q, we need to add nodes n+ 1, n+ 2,..., m to the elimination forest.
We first prove a lemma needed to ensure that the modifications result in a well-defined
forest and that the modified forest indeed extends, rather than merely replaces, the
original forest.

LEMMA 2.2. Let A be an m n Hall matrix (m >_ n) with a zero-free diagonal,
and let r and s be two distinct roots in the elimination forest of T. It then follows
that column VI;,r is disjoint from column )/Y,s. Moreover, for every root r in the
elimination forest of T, we have 14;,r {r} C_ {n + 1, n + 2,..., m}.

Proof. Without loss of generality, assume that r < s. By way of contradiction,
assume that ,r N 1;,8 q}, and choose i E Y;, N 1/,8. We then have r, s
hence by Theorem 2.1 row )/Vi, has the form

{ f(i), p(f(i)),..., r, p(r),..., s,..., t },
3 The reason for this particular choice of a "null" value for f(i) will become apparent in 2.3.



448 ESMOND G. NG AND BARRY W. PEYTON

with f(i) <_ r < p(r) <_ s <_ t. Contrary to hypothesis, the node r clearly is not a
root in the elimination forest of 7. This contradiction suffices to prove the first part
of the result.

To prove the second part, again let r be the root of a tree in the elimination forest
of 7. Suppose that column VY,r is given by

(5) V,r {il, i2,..., ip},

where i < i2 <... < ip and p _> 1. Clearly -r and ip

_
m. Furthermore,

whenever p _> 2, we have i2 > n, for were it the case that r il < i2

_
n, the

action of the rth row-merge step on the zero-free diagonal would place i2 > r in
row 7r,, which is impossible since r is the root of a tree in the elimination forest
of 7. Consequently, every row index other than r in column ,r is taken from
{n + 1, n + 2,...,m}.

We extend the elimination tree rooted at r by adding a chain from the old root
r il E V;,r to the new root ip l;, (see (5)). That is, the parent of the new
root ip will be undefined, and for 1 _< s _< p- 1 we define the parent of is to be s+l.
Each tree in the elimination forest is modified in this manner. Lemma 2.2 ensures
that these chains are disjoint, and the modified forest thus remains a forest. Note
that node k (n + 1 _< k _< m) is not yet included in the modified forest if and only if
Ak, is a zero row; whenever Ak, is zero the parent of k remains undefined, and this
completes the extended elimination forest of 7.

For convenience, the path in the (original or extended) elimination forest from a
vertex k to the root of the tree to which it belongs will be called the root path from
k.

2.3. Forming the symbolic product. In this section we will introduce an
implicit representation of the symbolic product := 172...n in terms of the
"first nonzero" indices f(i), 1 <_ <_ m, and the extended elimination forest of 7.
Specifically, we will prove the following theorem.

THEOREM 2.3. Let A be an m x n Hall matrix (m >_ n) with a zero-free diagonal.
If Ai, is a zero row, then Qi, {i}. If on the other hand Ai, is a nonzero row, then
Qi, is the root path from f(i) in the extended elimination forest of T.

Let M be an m x p matrix, and let 2Q be an upper bound on Struct(M). Based
on (4), the upper bound/-- kA on Struct(HkM) can be obtained by performing
a row-merge step on jQ that forms row Bi, as follows" if Y;,k then i, {i},
whence Bi, JQi,; if on the other hand i ;,k then -k?-/i, ;,k, whence

g, Uew,A/[,

To prove Theorem 2.3 we will examine the sequence of symbolic products

k kk-l fn, k n, n 1,..., 1.

This approach requires a sequence of "first nonzero" index sets, defined as follows.
Given k, 1 _< k _< n, choose for which k _< i _< m. Whenever

Yi, N (k,k + 1,...,n} ,
we write

fk(i) :- min(j’j e i, N (k,k + 1,...,n}};
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otherwise, we write fk(i) := rn + 1. (When fk(i) <_ n, it identifies the "first House-
holder vector" ,j used in forming k that has a nonzero entry in the ith position.)
The following theorem expresses each symbolic product k, 1 _< k _< n, in terms of
the first nonzero indices fk(i) and the extended elimination forest of 74.

THEOREM 2.4. Let A be an rn n Hall matrix (m >_ n) with a zero-free diagonal.
Choose indices k and for which 1 <_ k <_ n and k <_ <_ m. If fk(i) rn + 1, then
/, {i}. If on the other hand fk(i) <_ n, then , is the root path from fk(i) in the
extended elimination forest of T4.

Proof. We prove the result by induction on k, where k n, n 1,..., 1. For the
base step k-n we have

Qn _/_/n Struct(I)U (W,n X W,n).

Choose a row Q. where n < i < m. There are two cases to consider: W,n and
i E Y2,. If i Y2,, clearly fi(i) rn + 1 and Q, {i}, giving us the result in this
case. If E 1/2,, then f(i) n and Qp, 1/2,. Since n is necessarily a root in the
elimination forest of/, it follows from the definition of the extended forest that Qp,
is a root path from f(i) in the extended elimination forest of/. This completes the
argument for the base case.

Before proceeding with the induction step, note that for each pair of indices and
k such that 1 _< i < k _< n, we have/-/i,-k =/-/,i-k {i}. We leave it for the reader to
verify that as a consequence of the preceding observation we have , ,- {i}
for 1 _< i < k _< n. We thus restrict our attention to k {k,..., m} {k,..., m}.

Assume that the result holds for k+ and consider the symbolic product k
kk+. Choose a row ik, where k _< _< m. There are two cases to consider:
i ,k and ]/;,k. Assume that ,k. Since l/;,k, applying the appropriate

k cSk+ There are two subcasesrow-merge step to k+ to obtain k gives us Qi, i,

to consider: fk+l (i) zn + 1 and fk+l(i) _< n. Let fk+(i) rn + 1. Since i kV,k,
it follows that fk(i) rn + 1 too. From the induction hypothesis, we have Q,-k

{i} which completes the proof for this subcase. Now let fk+l(i) < n. Since
,k, it follows that f(i) fk+(i) Since -k -k+Qi, Q, it follows from the

induction hypothesis that the result holds for this subcase.
Now we consider the more interesting case where Y2,k. There are three

subcases to consider:
1. i > k and fk+(i) m + 1,
2. i > k and fk+l(i) _< n, and finally
3. i--k.

Suppose that i > k and fk+l(i) rn + 1. Note that fk(i) k; moreover, from
the induction hypothesis, we have Ok+1., {i}. The fact that fk+(i) --m + 1 and
fk(i) k implies that k is maximum among the members of Wi,. It follows from
Theorem 2.1 that k or k is a root in the elimination forest of T4, and since
> k, the latter must hold true. Choose g W, {k}. From Lemma 2.2 it follows

that n + 1 _< g _< m. Now, the forest path in Theorem 2.1 which characterizes We,
must terminate at a root, and since k We,, that root must be k. It follows that

fk+l (g) rn + 1, and consequently by the induction hypothesis, (3k+l, (g}. Recall
moreover that k, {k}. Applying the appropriate row-merge step to .+ to
obtain Qk thus gives us Qi, Yd,k. By the definition of the extended forest, Qi, is
a root path from fk(i). This completes the proof for this subcase.

Now suppose that > k and fk+ (i) <_ n. It follows from the induction hypothesis
that c)k+ is the root path from fk+(i) Note that k fk(i) < fk+(i) < n.
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Consequently, from Theorem 2.1 and the definition of fk+l (i) it follows that fk+l (i)
-k+lp(k). The key observation is that fk+l(i) is independent of i; we thus have Q,

-k+l-i,k+l for every g E ,k- {k}. Recall moreover that Qk, {k}. Applying the
appropriate row-merge step to k+l to obtain k establishes that -kQi, is the root
path from fk(i) k in the extended forest, which proves the result for this case.

-k+lFinally, assume that i k. We know that k E /Y,k, Qk, {k}, and fk(k) k.
From the argument in the preceding paragraph, applying the appropriate row-merge
step to k+l to obtain k establishes that , is the root path from fk(k) k in
the extended forest, which completes the proof. [:]

Since , Theorem 2.3 follows from Theorem 2.4: the case of a zero row
Ai, in Theorem 2.3 is covered by the case fl (i) rn + 1 in Theorem 2.4; the case of
a nonzero row Ai, in Theorem 2.3 is covered by the case f (i) _< n in Theorem 2.4.
Furthermore, whenever f (i) <_ n we have f(i) f(i), as required.

Recall that the matrix U consists of the first n columns of Q. The first part of
the next theorem describes the upper bound/ on Struct(U) given by Theorem 2.3;
the second part states a relationship between l/ and/ which follows directly from
Theorems 2.1 and 2.3.

COROLLARY 2.5. Let A be an rn n Hall matrix (m >_ n) with a zero-free
diagonal, and let p be the parent function of the elimination forest of T.

(a) If A, is a zero row, then l, O. If Ai, is a nonzero row, then ll, is the
root path of f(i) in the elimination forest of 7.

(b) The lower trapezoidal pattern and the lower trapezoidal part of l are
identical, that is,

=/-{(i,j)’l<_i<_n and + l <_ j <_ n}. D

3. Least upper bounds: The strong Hall case. The bounds l/,/, and 7
may not be least upper bounds on Struct(W), Struct(U), and Struct(R), respectively.
Coleman, Edenbrandt, and Gilbert [1] showed that 7 is the least upper bound on
Struct(R) whenever A is either (1) strong Hall or (2) weak Hall, but in block upper
triangular form. (Strong Hall and weak Hall matrices are defined below.) In this
section we prove analogous results for V and b/in the case where A is strong Hall.
We will look at the weak Hall case in 4.

The following defines a strong Hall matrix: an m n Hall matrix A with m _> n
is strong Hall if every m k submatrix, 1 _< k < n, has at least k + 1 nonzero rows.
It is well known that strong Hall matrices are precisely those that have trivial block
upper triangular form. (A Hall matrix that does not satisfy the strong Hall property
is called weak Hall.) In 3.1 we give a result due to Hare et al. [13], which describes
the least upper bound on Struct(U) for any Hall matrix A. In 3.2 we use their result
to show that if A is strong Hall and has a zero-free diagonal, then /Y and b/are least
upper bounds on Struct(W) and Struct(U), respectively.

3.1. A previous sparsity analysis for Hall matrices. Let/gub denote the
least upper bound on Struct(U). To determine L/ub, Hare et M. [13] found it most
useful to consider QR factorization obtained via the Gram-Schmidt procedure. As a
natural consequence they examined /u one column at a time, starting with the first
and ending with the last.

A key concept used in their analysis is the notion of a Hall set. Let A be an m n
Hall matrix (m >_ n). A Hall set of size p is a set of p columns from A such that the
m p matrix formed by these columns has exactly p nonzero rows [13]. It is easy to
show that the union of two distinct Hall sets is also a Hall set. It follows that every set
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of columns from A has a unique Hall set (possibly empty) of maximum cardinality. Let
C be the maximum cardinMity Hall set associated with the submatrix consisting of
the first k columns of A, where 1 _< k <_ n; let R be the set of nonzero rows associated
with C. The two sets C and R will be referred to as a set of Hall columns and a
set of Hall rows, respectively.4 Henceforth we will use A[k] to denote the submatrix
containing the first k columns of A.

Hare et al. associate with each submatrix A[k] a bipartite graph Bk (Xk, Y, E)
that describes the nonzero structure of A[k] with the Hall rows Rk

_
and Hall columns

Ck

_
removed. More specifically, the graph B is defined as follows:

Yk := {j" 1 _< j _< k and j C_1)
Xk := {i" 1 _< i _< m, i Rk_, and 3 j E Yk such that aij 0},
E:={{i,j}.ieX,jeY, andaj0}.

Now, consider the set of row indices F := {1, 2,..., m} Xk R_. It follows
that i Fk if and only if row i of A[k] is zero. The sets Fk, R_, and Xk clearly
partition the set of row indices {1, 2,..., rn} into three sets. We further partition the
vertex set Xk into two sets, as follows. Let P be the subset of Xk that lies in the
connected component of B to which column vertex k belongs, and let Dk X-P.
That is, D contains the row vertices in Xk that are disconnected from the last column
vertex k, while Pk contains the row vertices in Xk that are connected by a path to
the column vertex k.

The following result describes how this four-way partition characterizes column k
of/.b. It is worth noting that possession of a zero-free diagonal plays no role in the
result.

THEOREM 3.1 (see Hare et al. [13]). Let A be an rn n Hall matrix with rn >_ n.
For i <_ k <_ n, let Rk

_
be the set of Hall rows associated with the first k- 1 columns

of A, and let F, Dk, and Pk be defined as above. We then have (i, k) blurb if and
only if Pk; equivalently, (i, k) lub if and only if Fk t2 Dk [2 RkH_I

Theorem 3.1 places each row index for which (i,k) /4. into one of three
categories. First, observe that if i Fk, then aij 0 for 1 <_ j _< k. The Gram-
Schmidt procedure ensures that column U, is a linear combination of the columns
of A[k]; hence u 0 for Fk, as the theorem asserts.

Second, consider nRk_ The Gram-Schmidt procedure also ensures that
column U,k must be orthogonM to every column of A[k- 1]; in particular, it is or-
thogonal to the columns in Ck

_
1. Now, the Hall columns in C_ span a subspace of

Hdimension Ck_l= Rk-1 I, and for every vector x in this space we have xi 0 for
i Rk_1. In consequence, any vector y such that y 0 for some Rk_ cannot be

Horthogonal to every vector in this space. Thus, uk 0 for E R_, as the theorem
states. This is perhaps the key insight in Hare et al. [13].

Finally, for Dk we will not argue that u 0, as we did for the previous two
cases. The argument is longer and more technical, and we thus refer the reader to
Hare et M. [13] for these details. However, we do prove that u 0 for i Dk under
the restrictions imposed on A in the next subsection.

To complete the proof of Theorem 3.1, Hare et al. showed that for each i Pk,
there exists an assignment of values to the nonzero positions of A such that ui 0,
and consequently (i,k) -lub if and only if i E P. Pothen [17] later proved that

4 It is sometimes convenient to treat R and C as sets of row and column indices, respectively.
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there exists an assignment of values to the nonzero positions of A such that uij 7 0
for every (i, j) E

Hare et al. [13] also describe Tub, the least upper bound on Struct(R).
THEOREM 3.2 (see Hare et al. [13]). For any m n Hall matrix A with m >_ n,

we have ’lub TiubAt where .4 Struct(A) and bliuTu {(j, i) (i,j)

3.2. Least upper bounds from symbolic Householder. Let A be an m n
strong Hall matrix (m > n) with a zero-free diagonal. To prove that b/is the least
upper bound on Struct(U), it suffices to show that L/c_/,ub. Toward that end, choose

H(i, k) /4,b, so that by Theorem 3.1, Fk J Dk U Rk_1. Since A is a strong Hall
n 0. Consequently, the following two resultsmatrix, it follows that Rk_l_- Ck_

suffice to show that (i, k)
LEMMA 3.3. Let A be an m n strong Hall matrix (m >_ n) with a zero-free

diagonal. Suppose (i,k) b/ub and let Fk be as defined in 3.1. If e Fk, then
k)
Proof. Suppose that i Fk. It then follows that aij 0 for 1 _< j _< k.

Consequently, k < f(i), which by Corollary 2.5 ensures that (i, k) b/. [:l

LEMMA 3.4. Let A be an m n strong Hall matrix (m >_ n) with a zero-free
diagonal. Suppose (i,k) L/.b and let Dk be as defined in 3.1. If i Dk, then

k)
Proof. Suppose that E D. It follows that i Xk, and thus we have f(i) <_ k;

moreover, since is disconnected in Bk from k Yk, it follows that f(i) 7 k, whence
f(i) < k. To show that (i, k) f/, it is sufficient, according to Corollary 2.5, to show
that k is not an ancestor of f(i) in the elimination forest of 7.

Consider the symmetric positive definite matrix M ATA and its Cholesky factor
L. Let 1: denote the upper bound on Struct(L) computed by the symbolic Cholesky
procedure (see George and Liu [7]). Coleman, Edenbrandt, and Gilbert [1] showed
that if A is strong Hall, then 7 /T, where /T {(j, i) (i, j) 1]}. It follows
that the elimination forest of 7 and the elimination forest of/2 are identical. Let
G(M) (Yn, E’) be the adjacency graph of M, i.e., the graph for which there is an
edge joining s, t Y if and only if mst 0.5 Liu has shown [14, Lem. 2.3] that for
s < t, vertex t is an ancestor of s in the elimination forest of/2 if and only if they are
connected by a path in the subgraph of G(M) induced by Yt {1, 2,..., t}.

Now, membership of i in D implies that there exists no path in Bk from k Yk
to i Xk. Since {f(i), i} Ek, there is also no path in Bk from k Yk to f(i) Yk.
Thus, to prove the result it suffices to show that the absence of a path in Bk from k
to f(i) implies the absence of a path from k to f(i) in the subgraph of G(M) induced
byY .

Toward that end, suppose that there is a path

f(i),jl,j2,...,jr, k

in G(M) such that jt < k for 1 _< t _< T. (Recall that f(i) < k, as well.) It is trivial to
verify that G(M) is the graph on Yn with edge set E consisting of precisely the edges
necessary to make each vertex set {j arj 7 0}, 1 _< r N m, a clique in the graph
(i.e., pairwise adjacent in the graph). Consequently, if {j, j’} e E’ with j < j’ _< k,
then there exists some i Xk for which aij 7 0 and aij, 7 0, and therefore (j, i, j/) is

5 Here, since A is strong Hall, and thus CnH q}, we can use the same vertex set Yn in both graphs
G(M) and Bn.
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a path in Bk. It follows that there exists a path

(/(i), i1,jl, i2,j2,..., ir,jr, it+l, k

inBksuchthatjtEYk andjt<kfor l_<t<_TanditEXk forl_<t<_T+l. This
concludes the proof. [1

With these two results and the discussion preceding them we have proven the
following result.

THEOREM 3.5. If A is an m n strong Hall matrix (m >_ n) with a zero-free
diagonal, then bl is the least upper bound on Struct(U). [:]

Having shown that b/ b/ub in the strong Hall case, we can now compare the
characterization of this set given in Theorem 3.1 with that given in part (a) of Corol-
lary 2.5. The following result shows how the classification of zero entries in Theo-
rem 3.1 can be expressed in terms of the first nonzero indices f(i) and the elimination
forest of .

COROLLARY 3.6. Suppose that A is an m n strong Hall matrix (m >_ n) with a

zero-free diagonal, and let Fk and Dk be as defined in 3.1. Moreover, let f(i) be the
column index of the first nonzero in row of A. The following statements then hold
true:

1. i Fk if and only if k < f(i).
2. Ok if and only ill(i) < k and k is not an ancestor off(i) in the

elimination forest of.
Proof. The result follows immediately from Theorem 3.5 and the proofs of Lem-

mRs 3.3 and 3.4.
Finally, we show that ]/Y is the least upper bound on Struct(W) whenever A is a

strong Hall matrix with a zero-free diagonal.
COROLLARY 3.7. If A is an m n strong Hall matrix (m >_ n) with a zero-free

diagonal, then 14] is the least upper bound on Struct(W).
Proof. Let /Yub be the least upper bound on Struct(W). As in (3), we can obtain

an upper bound Q* on Struct(Q) by forming a symbolic product of upper bounds
on the nonzero structures of Householder transformationsmupper bounds obtained
directly from ]/Yu rather than /Y. Let b/* comprise the first n columns of Q*. For
the same reasons that the lower trapezoidal pattern /Y matches the lower trapezoidal
part of b/(part (b) of Corollary 2.5), 1/Y matches the lower trapezoidal part of b/*.

Since }/Y c_ /Y it suffices to show that Y C_ V. By way of contradiction,
assume that (i, j) ]/Y- ]/Yub. Since }V matches the lower trapezoidal part of 5/

and 4b matches the lower trapezoidal part of b/*, we have (i, j) b/- he*. By
Theorem 3.5, b/is the least upper bound on Struct(U), whence b/C_ 5/*, contrary to
L/-/* = . From this contradiction we thus have V _c ub, which gives us the
result.

4. Least upper bounds: The weak Hall case. Let A be an rn n Hall
matrix with m >_ n and assume that A is a weak Hall matrix, so that it has a
nontrivial block upper triangular form (i.e., more than one block) [18]. Weak Hall
matrices are precisely the matrices for which nonempty Hall sets play a key role in
the sparsity analysis of their QR factorizations. The impact of Hall sets on Struct(Q)
(and hence Struct(U)) can be described in very simple terms whenever A is in block
upper triangular form.

In 4.1 we show that for any weak Hall matrix that has a zero-free diagonal
and is in block upper triangular form, the least upper bounds on Struct(W) and
Struct(U) have a block diagonal form, each block of which can be obtained by applying
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the symbolic Householder procedure to the corresponding strong Hall diagonal block
(i.e., submatrix) in A. It is natural then to consider how reordering into block upper
triangular form influences the fill incurred by the QR factorization. In 4.2 we show
that one can always reorder the rows and columns of A into block upper triangular
form so that there is no increase in the fill incurred by the QR factorization.

4.1. Least upper bounds from symbolic Householder. Assume that the
m n weak Hall matrix A (m _> n) is in block upper triangular form

(6) A

All A12
O A22

O O App

where p _> 2, and for 1 _< k _< p- 1 the submatrix Akk is an nk nk matrix that has
the strong Hall property. The submatrix App is an (np+ rn n) np matrix that
also has the strong Hall property. (Whenever A is square, App is square; whenever
A is strictly rectangular, App is strictly rectangular.) Again we assume that A has a
zero-free diagonal.

For each k, 1 _< k _< p, let the QR factorization of the strong Hall submatrix Ak
be given by

Ak Qt:kRkk.

(Note that Rvp may be upper trapezoidal.) Let Ut:k Q for each k, where 1 _< k _<
p- 1, and let Upp comprise the first np columns of Qpp. Consider A (in (6)) and the
block diagonal matrix

All O O
O Aee O

0 0 App

The QR factorization of A is given by

A=QR=

Qll o o
o Qe. 0

O O Q

Rll QT11A12
R22

0

QT11A1p
TQA.,

Rpp

and the QR factorization of D is given by

D QRD

QI o o RI 0 0
0 Qe. o o R: 0

0 0 Q,, 0 0

The key observation is that the block diagonal matrix Q is the orthogonal factor of
both A and D.
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Let Wkk be the Householder matrix associated with Akk.
reader to verify that the matrix

We leave it for the

Wll 0 0
0 W 0

O O W

is the Householder matrix associated with both A and D.
Now we will use the preceding observations to describe least upper bounds on

Struct(U) and Struct(W), which are furthermore obtained via the symbolic House-
holder procedure. Consider the upper bound /kk on Struct(W) obtained by apply-
ing the symbolic Householder procedure to Struct(Akk); let k (/) be the upper
bound on Struct(Qkk) (Struct(Ukk)) obtained by forming the appropriate symbolic
product based on }/Y. Taking advantage of the block diagonal form of Q, we can
obtain an upper bound on Struct(Q) by using Qkk as an upper bound on Struct(Qk)
for each k, 1 _< k _< p. Since each submatrix Akk is strong Hall, by Theorem 3.5 we
can obtain the least upper bound on Struct(U) by using b/k as an upper bound on

Struct(Ukk) for each k, 1 _< k _< p, nd by Corollary 3.7 we obtain the least upper
bound on Struct(W) by using k as an upper bound on Struct(Wk) for each k,
l<_k<_p.

It is worth noting that the block diagonal form of Q and U can also be argued
from Theorem 3.1, the second paragraph after Theorem 3.1, and the following lemma.
(We leave the details to the reader.)

LEMMA 4.1. Let A be in block upper triangular form as in (6), and let column
A,j be a column in the kth block column of A, where 1 <_ k <_ p. Ilk 1, then
C_ R_ O. If 2 <_ k <_ p, then C_ R_ {1,2,... ,t- 1}, where A, is
the first column in the kth block column of A.

Proof. Let k 1. Since All is strong Hall, any set of columns S c_ A[j 1] has
nonzero entries in at least ISI + 1 rows in All, whence C_ R_ .

Now consider k where 2 _< k _< p, and let A,l be the first column in the kth block
column in A. Due to the block upper triangular form of A, the set S { 1, 2,..., t- 1}
is clearly a Hall set contained in A[j- 1]. Since any Hall set contained in A[j- 1]
is also contained in its largest Hall set C_1, it follows that S c_ C3-1" Let T be a
nonempty subset of {t, t + 1,... ,j 1}. The columns in S have nonzero entries in
rows 1, 2,..., ISI of A. Because Akk is strong Hall, the columns in T have nonzero
entries in at least ITI / 1 rows in Akk. Consequently, the columns in IS t2 T have
nonzero entries in at least IS t2 T + 1 rows in A. It follows that C_ S. Due to the
block upper triangular form of A, it is clear that Rj-1 C-1 S. This completes
the proof. [:]

4.2. Obtaining a block upper triangular form that limits fill. In this
subsection we look at how reordering a weak Hall matrix into block upper triangular
form influences the number of nonzero entries in the triangular and orthogonal factors.
Assume that A is an rn n weak Hall matrix (m >_ n) with a zero-free diagonal. Let

be the same matrix after its rows and columns have been reordered so that it has a
zero-free diagonal and is in block upper triangular form. The matrix will have the
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following form:

A

where p _> 2, and .kk is square whenever 1 _< k _< p- 1. Let ( and/, respectively,
be the orthogonal and triangular factors of , and let comprise the first n columns
of (. In this subsection we show that if the column order in . is "consistent" with
the column order in A, then

1. [/ubl <_ [Hubl, where/ is the least upper bound on Struct(r) and Hu is
the least upper bound on Struct(U), and

2. I,u[ _< Incubi, whereb is the least upper bound on Struct(/) and 7u is
the least upper bound on Struct(R).

We now define what we mean by the term "consistent." Let a" {1, 2,..., n} --+

{1, 2,..., n} be the permutation that maps the position of each column in A to its new
position in ., and likewise let " {1,2,...,m} - {1,2,...,m}^be the permutation
that maps the position of each row in A to its new position in A. The column order
in is said to be consistent with the column order in A if the individual columns
within a block column of A occur in the same order in which they are found in A.
For example, for the first block column in A we must have

O-1(1) < O-1(2) < O-1(3) < < o--l(Ttl),

where n is the number of columns in the first block column of .
Our first goal is to prove that I/u -< IHu I. We will use the following relationship

between Hall sets and block upper triangular form in our proof.
LEMMA 4.2. Let i be in block upper triangular form as shown in (7), and let S

be a set of Hall columns in . If S contains a column in the kth block column of
then S contains every column in the kth block column of

Proof. For a set of Hall columns S in , let Sk, 1 <_ k <_ p, contain the columns
of S taken from the kth block column of . Note that $1, $2,..., Sp form a partition
of S. We argue that Sk is either empty or contains every column in the kth block
column of . Suppose, to the contrary, that Sk contains some, but not all, columns in
the kth block column of . To prove the result it suffices to show that S has nonzero
entries in at least IS[ + 1 rows of ..

Consider the columns in Se where 1 _< t _< p and t : k. Since e is (strong)
Hall, the columns in S will have nonzero entries in at least ISe[ rows of ee. Since S
contains some, but not all, columns in the kth block column, the columns in Sk will
have nonzero entries in at least ISkl + 1 rows of Ak. The columns in S consequently
have nonzero entries in at least IS[ + 1 rows of , and this concludes the proof. [3

THEOREM 4.3. Let A be a weak Hall matrix with a zero-free diagonal, and let
be the same matrix after it has been reordered so that it has a zero-free diagonal and
is in block upper triangular form. Moreover, assume that the column order in fi is
consistent with the column order in A. It follows then that [/ul <_

Proof. Assume that (r,s) ll, and let =/-(r) and j a-(s). To prove
the result, it suffices to show that (i, j) H.

Recall the bipartite graph By (Xj, Yj,Ej) associated with A[j] in 3.1, and
recall the row index set Py which specifies the pairs (g, j) included in column j of Hu
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(see Theorem 3.1). Let/8 (8, ]8,/8) be the bipartite graph associated with A[s],
and let/58 be the row index set which specifies the pairs (t, s) included in column s of
/ub. Since (r, s) e/ub, it follows from Theorem 3.1 that r e/8; hence there exists a
path from s E Y8 to r E )8 in/8. To show that (i, j) /ub it SUffices to show that
/8 is isomorphic to a subgraph of Bj under the row permutation and the column
permutation a, for if this were the case there then would exist a path from j Y to
i Xj in Bj, which would imply that Pj. It would then follow from Theorem 3.1
that (i, j) E/gub, as desired.

Suppose column ,8 lies in the kth block column of , where 1 _< k <_ p. Let
,t be the first column in the kth block column of .. If follows from Lemma 4.1
that the Hall columns and Hall rows of .[s- 1] are -1 8-1 {1,2,... ,t- 1},
and consequently we have ]Y8 {t, t + 1,..., s}. To show that/8 is isomorphic to
a subgraph of Bj under the reordering, it then suffices to show that a-l(q) Yj for
every q ]Y8 and -l(q) Xj for every q 8. Equivalently, it suffices to show that
a-l(q) C_ for every q e ]Y8 and/-l(q) R_ t2 Fj for every q e 8. (Recall
that Yj {1,2,...,j}-C_ and Xy {1,2,...,m}- R_

Clearly, a set S of columns taken from A is a set of Hall columns if and only
if a(S) is a set of Hall columns in ft,. Now let S be a set of Hall columns taken
from A[j- 1]. Since the column A,j is excluded from S, clearly the column ,8 is

excluded from the set of Hall columns a(S). Hence, by Lemma 4.2, every column
t _< q < s, is excluded from a(S). In consequence, a-(q) S for every q ]Ys. In
particular, a-l(q) does not belong to the set of Hall columns C_ for every q e
Hence a-(q) Yj for every q E ]Ys, as required.

Using a similar argument, /-l(q) R]_I for every q 8. It remains to show

that/-l(q) Fj for every q 8. By way of contradiction, assume that there exists
a q 8 such that/-l(q) Fj. The consistent ordering implies that row q, has
zero entries from column 1 through column s, which means that q E /8, and hence
q 8, contrary to the assumption. This concludes the proof. [:]

COROLLARY 4.4. Let A be a weak Hall matrix with a zero-free diagonal, and let. be the same matrix after it has been reordered so that it has a zero-free diagonal
and is in block upper triangular form. Moreover, assume that the column order in
is consistent with the column order in A. It follows then that 17ul <_

Proof. Choose nd j for which 1 _< i,j <_ n, nd let r c(i) and s a(j).
Moreover, choose i and j so that (r,s) 7. It follows from Theorem 3.2 that
’lub ^TL/iub4 where A Struct(A) and ^T//iub {(q,t): (t,q)e /ub}. Thus, there
exists k, 1 _< k _< m, so that for t (k) we have (r, t) G/T and (t, s) ft.. Clearly

^Tthen (k, j) 4, where .4 Struct(A). By the proof of Theorem 4.3, (r, t)
T Timplies that (i, k) G L/iu. Since by Theorem 3.2 we have 7u itb/ibA follows that

(i, j) 7ub, which proves the result.

5. Concluding remarks. In this paper we used a recent sparsity analysis of the
QR factorization [13] to better understand the structural upper bounds generated by
the symbolic Householder procedure--especiMly the upper bound V on Struct(W),
where W is the m n Householder matrix associated with an m n matrix A [8,
9]. To bridge the gap between the recent analysis and the symbolic Householder
procedure, we used a symbolic product based on 14] to compute a new upper bound
Q on Struct(Q), where Q is the m m orthogonM factor. Moreover, by extending the
representation of 14] introduced in George, Liu, and Ng [8], we obtained an implicit
representation of Q in terms of an extended elimination forest of and a set of "first
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nonzero" parameters f(i) associated with Struct(A).
We then let U be the matrix comprising the first n columns of Q, and we let

/ be the upper bound on Struct(U) obtained directly from . We showed that
the lower trapezoidal pattern /Y and the lower trapezoidal part of L/ coincide. As
a result, we can better quantify the added costs incurred by computing and storing
the orthogonal factor Q (or U), rather than computing and storing the Householder
matrix W. Gilbert, Ng, and Peyton [10] have analyzed these added costs for certain
standard finite element matrices.

Coleman, Edenbrandt, and Gilbert [1] showed that the upper bound generated
by the symbolic Householder procedure is the least upper bound on Struct(R) when-
ever A is strong Hall. As might be expected, we were able to show that L/is the least
upper bound on Struct(U) and )/Y is the least upper bound on Struct(W) whenever
A is strong Hall and has a zero-free main diagonal.

We showed how to use the symbolic Householder procedure to obtain least upper
bounds on the block diagonal patterns Struct(W) and Struct(U) that arise when-
ever A is weak Hall, has a zero-free main diagonal, and is in block upper triangular
form. Finally, we showed how to reorder the rows and columns of A into block upper
triangular form without increasing the fill incurred by the QR factorization.

We contend that, from the practitioner’s point of view, focusing our attention on
weak Hall matrices in block upper triangular form and with a zero-free main diagonal
is adequate and quite natural. Efficient algorithms for finding a zero-free diagonal [3]
and for reordering a matrix into block upper triangular form [5, 18] have long been
used by the sparse matrix research community. It is interesting to consider whether
these tools might provide the basis for a more sophisticated variant of the symbolic
Householder procedure which retains the efficiency of the original and computes least
upper bounds on Struct(W), Struct(U), and Struct(R) for any m n Hall matrix A
with m :> n. If such an algorithm is possible, we believe that it would further clarify
the connections between the analysis in Hare et al. [13] and the efficient techniques
and data structures used in practice.

Acknowledgment. This paper has been improved a great deal by suggestions
and constructive criticism provided by the referees.
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IN MEMORIAM
ROBERT C. THOMPSON

1931-1995

The matrix theory community was shocked and deeply saddened by the untimely
death of Bob Thompson on December 10, 1995. He was awaiting a heart transplant
that had recently become necessary.

After growing up near Vancouver, British Columbia and receiving his bachelor’s
and master’s degrees from the University of British Columbia (UBC), Bob received
his Ph.D. from Caltech in 1960. He was Olga Taussky Todd’s first official student.
After returning to the faculty at UBC for three years, Bob moved to the University of
California at Santa Barbara (UCSB), where he spent the remainder of his career. At
Santa Barbara, he began a long-term professional relationship with Marvin Marcus
that included collaborative research, the founding of the journal Linear and Multilinear
Algebra (now one of the three main journals of matrix theory), and the founding
of the Institute for the Interdisciplinary Application of Algebra and Combinatorics.
With the arrival of other prominent colleagues, including Ky Fan, Eugene Johnsen,
Henryk Minc, and, later, Morris Newman, Santa Barbara became for several years
the world’s mecca for research in matrix theory. During this period, Santa Barbara
did much to focus attention upon the subject of matrix theory and to promote the
high-level research that has been the foundation of the subject’s vigorous, world-wide
renaissance. Important meetings and other special activities were hosted, and UCSB
was a place for sabbaticals and other visits; assistance and inspiration were given to
young researchers (such as this author), and many of the Ph.D. students trained at
UCSB (Bob himself had 11) have become important contributors to the field. Several
newer, strong centers of matrix research in other countries, such as Israel, Hong Kong,
Portugal, and Spain, can trace their intellectual roots to Santa Barbara.

Bob published more than 120 papers and a number of other items (including four
undergraduate textbooks) during his career. He was serving as an editor of this journal
at the time of his death. His interests were very broad and, like many researchers,
his work went through stages and changes in taste, so much so that it is impossible
to briefly categorize in any accurate way. Bob read a great deal of matrix theory and
actually listened carefully to virtually all talks at the meetings he attended, so he
knew the subject very broadly. He was often able to make helpful suggestions, even
about topics on which he had no interest in working. His early work was especially
algebraic, often dealing with his thesis area (a favorite of Taussky Todd’s), which was
multiplicative matrix commutators (and their products) over arbitrary fields. This
very detailed work answered nearly all major questions in the subject and showed a
hallmark of Bob’s work: a willingness and ability to make unusually elaborate algebraic
calculations in order to answer a question. It was not that he didn’t appreciate external
or efficient, implicit tools if they were available. Quite the contrary--Bob was a major
proponent of employing other parts of mathematics useful in matrix theory. But
he almost always discovered or convinced himself of important ideas through very
complicated calculations.

A unifying theme of the broad middle part of Bob’s publishing career was the drive
to discover and understand the exact relationship among particular fundamental ma-
trix parameters. If necessary conditions were obvious or known, a proof of sufficiency
often involved very intricate constructions. For example, Bob’s work on invariant
factors, including the S-Thompson inequalities (separate papers), became very well
known and attracted attention to his work in the systems and control community.
This period included a major influence from and collaboration with Morris Newman,
often involving number theoretic issues in integral matrices. Other examples included
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the relationship between diagonal entries and singular values, the diagonal entries
of normal matrices, and a major effortnmotivated by Lidskii’s claims--to prove A.
Horn’s conjectures about the eigenvalues of a sum of two Hermitian matrices. It was
most intriguing to Bob when an unusual condition turned up, such as the possibility
of a subtracted smallest term in what otherwise appeared to be a majorization rela-
tionship. He wrote multiple numbered series of papers in this period, and there is still
a wealth of not-well-enough-known information to be found in his nine-paper series
on "principal submatrices." Readers can get to know Bob by reading his amusing and
thought-provoking American Mathematical Monthly piece (Amer. Math. Monthly, Vol.
90, pp. 661-668) "Author vs. Referee It contains professional, as well as mathe-
matical, insights and is a good example of some of Bob’s interests, described above.

Most recently, Bob returned to one of his favorite areas: generalizations of the field
of values/numerical range. Inspired in part by the many questions raised by a 1950
paper of Kippenhahn, he was working very hard on the quaternionic field of values.
Bob rarely spoke about the same piece of work twice, but his fascination with the
quaternionic field was evidenced by the fact that he spoke about this subject frequently
in the last several major talks that he gave. Among the many services Bob did to
research was to help dispel the misinformed view that linear algebra is simple and
uninteresting. He often worked on difficult problems and, as much as anyone, showed
that core matrix theory is laden with deeply challenging and intellectually compelling
problems that are fundamentally connected to many parts of mathematics, perhaps
more so than other subfields of mathematics. The body of Bob’s work was honored
with his 1988 Johns Hopkins Summer Lecture Series and his recent (unfortunately
posthumous) ILAS Hans Schneider Prize in Linear Algebra.

Bob will surely be missed as an innovative researcher and expert resource, but
his grace and style in the community will be missed just as much. He was always
encouraging to others and never jealous; he simply worked hard to solve difficult
problems--not just to publish--and he was always happy to acknowledge the role of
others. His talks were fresh and informative and, though quiet, Bob always maintained
a good sense of humor in matters both casual and professional.

Bob embodied a tradition of cooperation, respect, and the desire to advance knowl-
edge in all aspects of matrix theory. In Bob’s memory, let’s hope that tradition will
continue to prevail.

Charles R. Johnson
College of William and Mary
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ANY NONINCREASING CONVERGENCE CURVE IS POSSIBLE
FOR GMRES*

ANNE GREENBAUM, VLASTIMIL PT/K$, AND ZDENtK STRAKO$

Abstract. Given a nonincreasing positive sequence f(0) >_ f(1) >_ _> f(n- 1) > 0, it is
shown that there exists an n by n matrix A and a vector r with IIrll f(0) such that f(k) Ilrkll,
k- 1,..., n- 1, where rk is the residual at step k of the GMRES algorithm applied to the linear
system Ax b, with initial residual r b- Ax. Moreover, the matrix A can be chosen to have
any desired eigenvalues.

Key words. GMRES, Krylov subspace, Krylov residual space

AMS subject classifications. 65F10, 65F15

1. Introduction. The GMRES algorithm [2] is a popular iterative technique
for solving large sparse nonsymmetric (non-Hermitian) linear systems. Let A be an n
by n nonsingular matrix and b an n-dimensional vector (both may be complex). To
solve a linear system Ax b, given an initial guess x for the solution, the algorithm
constructs successive approximations xk, k 1, 2,..., from the affine spaces

(i) x + span{r, Ar,..., Ak-lr},

where r b-Ax is the initial residual. The approximations are chosen to minimize
the Euclidean norm of the residual vector r b- Ax, i.e.,

(2) Ilrkll min IIr ull
uEAKk(A,r)

where Kk(A, r) span{r,Ar,... ,Ak-ir} is the kth Krylov subspace generated
by A and r. We call AKk(A, r) the kth Krylov residual subspace.

In a previous paper [1] it was shown that any convergence curve that can be gener-
ated by the GMRES algorithm can be generated by the algorithm applied to a matrix
having any desired eigenvalues. This is in marked contrast to the situation for normal
matrices, where the eigenvalues of the matrix, together with the initial residual, com-
pletely determine the GMRES convergence curve. This dramatically illustrates the
fact that when highly nonnormal matrices are allowed, eigenvalue information alone
cannot guarantee fast convergence of GMRES.

The residual norms of successive GMRES approximations are nonincreasing since
the residuals are being minimized over a set of expanding subspaces. The ques-
tion arises, however, as to whether every nonincreasing sequence of residual norms
is possible for the GMRES algorithm applied to some linear system. The question
from [1] is extended in the following way: Given a nonincreasing positive sequence
f(0) _> f(1) _>... _> f(n- 1) > 0 and a set of nonzero complex numbers {A1,..., An},
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is there an n by n matrix A having eigenvMues /1,..., ,n and an initial residual
r with IIrll f(0), such that the GMRES algorithm applied to the linear system
Ax b, with initial residual r, generates approximations xk such that Ilrkl] f(k),
k 1,..., n- 1? In this paper we answer this question affirmatively and show how
to construct such a matrix and initial residual. The presented construction is very
simple; it is not derived from the considerations described in [1]. Moreover, for a
given convergence behavior, we characterize all the matrices and initial residuals for
which GMRES generates the prescribed sequence of residual norms.

Note that the assumption f(n- 1) > 0 means that the related GMRES procedure
does not converge to the exact solution until the step n and the dimensions of both
K(A, r) and AKn(A, r) are equal to n. Using that assumption will simplify the
notation; the modification of the results to the general case is straightforward.

Throughout the paper we assume exact arithmetic.

2. Constructing a problem with a given convergence curve and any
prescribed nonzero eigenvalues. In this section, we construct a matrix A and a
right-hand side b, solving the question formulated in the introduction without using
the results from [1].

We start with a simple analysis of some properties of the desired solution. Since
the residual vectors generated by the GMRES algorithm applied to a linear system
Ax b, with initial guess x, are completely determined by the matrix A and the
initial residual r, we can assume without loss of generality that the initial guess x
is zero and the right-hand side vector b is the initial residual. We will refer to this
procedure as GMRES (A, b). Suppose that A and b represent the unknown matrix
and right-hand side. Let Y; {wl,..., w} be an orthonormM basis for the Krylov
residual space AK,(A, b) such that span{w,...,wj} AKj(A,b), j 1,2,...,n,
and let W be the matrix with the orthonormal columns (wl,...,w). From the
minimization property (2) it is clear that b can be expanded as

n

j=l

where I(b, wJ}l V/llrJ-lll 2 IlrJll 2, r b, Ilrnll 0. Given a nonincreasing positive
sequence f(0) _> f(1) _>... _> f(n- 1) > 0, define f(n) =_ 0 and the differences g(k)
by

(4) g(k) v/(f(k 1))2 (f(k)) 2, k 1,..., n.

The conditions I[b[I f(0), [[rJ[I f(j), j 1,2,... ,n-1, will then be satisfied if the
coordinates of b in the basis )/Y are determined by the prescribed sequence of residual
norms,

(5) W*b=(g(1),...,g(n))T.
Let A {A1,A2,...,/}, Aj : 0, j 1,2,...,n, be a set of nonzero points in the
complex plane. Consider the monic polynomial

n--1

(6) zn E Ojzj (Z /l)(Z ,2)... (Z
j=0

Clearly, s0 -0.



CONVERGENCE CURVES FOR GMRES 467

Construction of the matrix A and the right-hand side b is straightforward. The
idea is the following. Matrix A can be considered as a linear operator on the n-
dimensional Hilbert space Cn. We denote this operator by A; its matrix representation
in the standard basis (el,..., en) gives the desired matrix A:

Ae=A.
.A is uniquely determined by its values on any set of basis vectors.

Let ]? (v1,..., vn} be any orthonormal basis in Cn, and let V be the matrix
with the orthonormal columns (vl,..., vn). Let b satisfy

v*

(note that given any b with IIbll- f(0), V can be chosen or, alternatively, given V,
b can be chosen). Since g(n) is nonzero, the set of vectors B {b, vl,..., vn-} is
linearly independent and also forms a basis for Cn. Let B be the matrix with columns
(b, v,..., vn-1). Then the operator .A is simply determined by the equations

(8)

Ab d vl
Av v

.Avn_ cob + Oil vl -- -- on-1vn-1Its matrix representation in the basis B is

(9) As
0 0 a0
1 0 al

1 OZn_

which is the companion matrix corresponding to the set of eigenvalues A. Finally, the
matrix A is given by

(10) A Ae BABB-1.

Summarizing, we have proved the following theorem.
THEOREM 2.1. Given a nonincreasing positive sequence f(O) >_ f(1) _> _>

f(n- 1) > 0 and a set of nonzero complex numbers {A1,A2,...,An}, there exists
a matrix A with eigenvalues i1,i2,..., ikn and a right-hand side b with IIb[I f(O)
such that the residual vectors r at each step of GMRES (A, b) satisfy IIrll f(k),
k 1,2,...,n- 1.

It is obvious that the whole subject can be formulated in terms of linear operators
and operator equations on a finite-dimensional Hilbert space.

For any chosen orthonormal basis l?, the matrix A and the right-hand side b can
be constructed via (6), (9), (10) and (4), (7).

3. Characterization of all the matrices and right-hand sides for which
GMRES generates the prescribed sequence of residual norms. In [1] it was
shown that many different matrices can generate the same Krylov residual spaces.
We start with a slightly generalized formulation of the theorem from [1].



468 A. GREENBAUM, V. PT.K, AND Z. STRAKO

THEOREM 3.1. Let E1 C E2 C C En be a sequence of subspaces of Cn,
where Ej is of dimension j, j 1,2,...,n, and let b be any n-dimensional vec-
tor. By 14; {wl,...,wn} we denote an orthonormal basis of En such that span
{wl,..., wj} Ej, j 1,2,... ,n and by W we denote the matrix with orthonormal
columns (w,..., wn). Let 4 be any nonsingular linear operator on En represented by
its matrix A in the standard basis , A 4. Then AKj(A, b) Ej, j 1, 2,..., n,
if and only if (b, wn} 0 and the operator ,4 has in the basis 14; matrix

A R[-I,

where R is any nonsingular upper triangular matrix and

(11)

0 0 1/(b,wn)
1 0 -(b, wn

0

Proof. See Theorem 2.2 of [1]. [:]

As a consequence we obtain the following theorem.
THEOREM 3.2. Given a nonincreasing positive sequence f(O) > f(1) >_ >_

f(n-1) > 0, the residual vectors rk at each step of GMRES (A, b)^satisfy [Irkll f(k),
k 1,2,...,n- 1, if and only if A is of the form A WRHW* and b satisfies
W*b (g(1),... ,g(n))T, where W is a unitary matrix, R is a nonsingular upper
triangular matrix, H is defined in (11), and g(1), ,g(n) are defined in (4).

Proof. It is easy to see that for any nonsingular matrix C and orthonormal matrix
Q, GMRES (QCQ*, b) generates the same sequence of residual norms as GMRES
(C, Q’b). Combining this observation with Theorem 3.1 finishes the proof. [:]

Thus, all matrices A and right-hand side vectors b for which GMRES IA, b) gener-
ates the required residual norms must be such that A is of the form WRHW*, where
/:/is given by (11) and b satisfies (5) for some orthonormal matrix W. Conversely, for
all matrix-vector pairs A, b of this form, GMRES (A, b) does indeed generate residual
vectors with the required norms.

If we take, using the notation from (4), (6),

(12)

1 0 0 a+a0g(1)
0 1 0 a. +a0g(2)

0 1 Oln-1 + aog(n- 1)
0 0 0 aog(n)

then/:/R is a companion matrix c?rresponding to the eigenvalues {,2,... ,An}.
Since the matrix HR is similar to RH, it follows that, with this choice of R, the matrix
A WRW* has eigenvalues ,... ,An, and so such a matrix can be constructed
with any desired eigenvalues.

Note that for the simplest choice W I, b (g(1), g(2),..., g(n))T, the matrices
/:/(11), resp. R (12), are identical to the matrices B-1, resp. BA, from the previous
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section,

(13) B-1 -/2/=

0 0 0 1If(n-l)
1 0 0 -g(1)/f(n-1)

1 0 -g(n- 2)/f(n- 1)
1 -g(n-1)/f(n-1)

and A is given by R/:/. Emphasizing the fact that any nonincreasing convergence
curve can be considered, these simple formulas form a useful tool for constructing
numerical examples.

4. Conclusions and open questions. The results of this paper and [1] clearly
demonstrate that eigenvalues are not the relevant quantities in determining the behav-
ior of GMRES for nonnormal matrices. Any nonincreasing convergence curve can be
obtained with GMRES applied to a matrix having any desired eigenvalues. Different
quantities on which to base a convergence analysis have been suggested by others (for
example, [4], [5]). It remains an open problem to determine the most appropriate set
of system parameters for describing the behavior of GMRES. Another open problem
is to determine what convergence curves are possible for the envelope of GMRES [3].
That is, if one does not consider a particular initial residual but instead considers
the worst possible initial residual for each step k, maxllr011= Ilrkl], k 1,... ,n- 1,
where the vectors rk are generated by GMRES(A,r), then the sequence of norms
must again be nonincreasing, but not every nonincreasing sequence is possible. It
remains an open problem to characterize the possible sequences.
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A BLOCK-GTH ALGORITHM FOR FINDING THE STATIONARY
VECTOR OF A MARKOV CHAIN*

DIANNE P. O’LEARY AND YUAN-JYE JASON WU$

Abstract. Grassman, Taksar, and Heyman have proposed an algorithm for computing the
stationary vector of a Markov chain. Analysis by O’Cinneide confirmed the results of numerical
experiments, proving that the GTH algorithm computes an approximation to the stationary vector
with low relative error in each component. In this work, we develop a block form of the GTH
algorithm, more efficient on high-performance architectures, and show that it too produces a vector
with low relative error. We demonstrate the efficiency of the algorithm on vector processors and on
workstations with hierarchical memory.

Key words. Markov chain, GTH algorithm, stationary vector, relative error bounds

AMS subject classifications. 65F15, 60J10, 65G05

1. Introduction. We consider the problem of computing the steady state dis-
tribution of a finite, discrete time, irreducible Markov chain. Equivalently, we seek
the left eigenvector r corresponding to the eigenvMue 1 of a stochastic matrix P:

(1) P =r, e= 1, Pe=e, 0 <_ pij, i,j 1,2,...,n,

where e is the column vector of ones.
Grassman, Taksar, and Heyman [3] used probability theory to develop an algo-

rithm (the GTH algorithm) for computing by successively reducing the state space.
The algorithm works with the generator matrix G P I having zero row sums. It
proved to be surprisingly accurate in numerical experiments and was later recognized
as a variant of Gaussian elimination. The key difference is that the main diagonal
element of the triangular factor is computed as the negative sum of the computed off-
diagonal elements, and thus the row sum property is preserved. O’Cinneide [4] later
analyzed the GTH algorithm, showing that the computed vector r has low relative
error in each component.

No single algorithm runs at peak efficiency on each of the wide variety of computer
architectures in current use. For some architectures, a simple count of arithmetic op-
erations provides an accurate prediction of performance. For machines with vector
pipelines and multilevel memories, however, the number of loads and stores of data
can be a more critical factor. For parallel architectures, the data layout and commu-
nication patterns are crucial.

A common approach to algorithm design is to consider a parameterized family
of algorithms that can be tuned to different architectures. Block-matrix algorithms
provide one such parameterization, and their use is widespread in portable libraries
such as LAPACK. There is a considerable body of literature on the error analysis
of such block algorithms. Backward error bounds are established, for example, in
[2]. The O’Cinneide bounds for GTH are much stronger than these results, since
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properties of the matrix G allowed him to obtain forward error bounds independent
of the condition number of the matrix.

The purpose of our work is to define a block-GTH algorithm (2), analyze its error
properties (3) to obtain results analogous to those of O’Cinneide, and determine the
performance of the algorithm on various architectures (4).

2. The block-GTH algorithm. Consider an irreducible generator G of dimen-
sion n n; i.e., G is a matrix with nonnegative off-diagonal elements and row sums
equal to zero. We seek the row vector satisfying

G=0, re=l.

The GTH algorithm reduces G to lower triangular form. It is an iterative process,
working with a matrix Gk of dimension (n-k) (n-k) at the kth stage--a generator
from which k states have been eliminated. Let Go G, and partition as

Ak B 1(2) G- C D

where Ak is the (1, 1) element of G and B is the remaining part of the first row.
Then if pkGk 0, it is also true that

O pG
0 I pk C D CA-IB

Define

(3) Gk+I D CA-IBk.
Note from (2) that [C D]e 0 and [Ak B]e 0, and so

[0, Gk+]e [C Dc]e CkA-I[Ak Bc]e O.

Furthermore, the.sign pattern is preserved, and G+I is a generator [4].
If we have a nonzero row vector p+ satisfying p+Gk+ 0, then the nonzero

row vector defined by

(4) Pk- -pk+lCkA- pk+l

satisfies pkG 0. Thus, we have reduced the original problem to that of solving
pk+iG+ 0, a problem with one fewer state.

The main difference between the GTH algorithm and standard Gaussian elimina-
tion is in the computation of A. In Gaussian elimination, this element is accumulated
as a result of the updates (3). In the GTH algorithm, Ak is computed as the neg-
ative sum of the off-diagonal elements in the first row of Gk. A minor difference
between the algorithms is that the GTH algorithm is usually formulated so that the
last state (rather than the first one) is the first to be eliminated, but in this work we
will eliminate the first state first, as in Gaussian elimination.

These relations form the basis for the GTH algorithm, which we now state more
formally.
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ALGORITHM GTH

FACTORIZATION PHASE

1. Let G0=G.
2. Fork=0,1,...,n-2

2.1. Partition Gk as in (2), where Ak is calculated as Ak -Bke.
2.2. Define Gk+l by (3).

End for.
BACKSUBSTITUTION PHASE

3. Let Pn-1 1.
4. For k n- 2,n- 3,...,0

4.1 Define p by (4).
End for.

5. Renormalize 7r po/(poe).
The LU factors of G can be defined using quantities computed in the factorization

phase of the algorithm:

Ao 0

A1 0

CO C1 ""

and we will make use of this fact later.

1 AIBo
1 A-IB1

The GTH algorithm is easy to implement andnumericMly stable, but its efficiency
on certain computer architectures can be disappointing. Notice, for example, that the
(n, n) element of G is accessed and updated n- 1 distinct times. It is well known that
block-oriented algorithms can reduce the memory traffic for elimination algorithms,
so we now direct our attention to developing a block-GTH algorithm.

The basis of the block-GTH algorithm is a block partitioning of the matrix G:
we partition as in (2), but now A is an matrix, rather than a single element.
Similarly, B has rows. The block size can be tuned to achieve improved efficiency
on various architectures, as discussed in 4. The generator Gk+z and its eigenvector
pk+z are expressed in terms of Gk and Pk by formulas similar to (3) and (4):

Gk+t Dk CkA-IBk
(6) Pk-- --Pk+lCkA- Pk+l

Rather than division by a scalar, (5) and (6) now require solution of linear systems
involving the blocks Ak. This can easily be done using an LU factorization of these
blocks.

The other main implementation issue is the correction of the main diagonal ele-
ments of A. To avoid memory traffic, we wish to do this with minimal access to the
elements of B. Notice that the matrix

(7) Hk=[ AO Bke10



BLOCK-GTH FOR MARKOV CHAINS 473

is also a generator, and the diagonal corrections that would be generated in step 2
Of the GTH algorithm applied to this matrix are the same as those that GTH would
generate for the original problem at the corresponding steps. For instance, after
elimination in the first row of Ht:, the elements hi =- (Bt:e)i are updated as

(8) i hi ilhl
all

il Ej bljE bij
all

il blj )(9) E. bij
11

where ,il is the updated value of ail, j ranges over the column indices in Bt:, and
i 2,..., 1. Equation (9) shows that the update to the row sum vector Bt:e in (8)
is mathematically equivalent to taking the row sum after correcting the matrix B in
(9).

This is the bsis for the block-GTH algorithm. For convenience in notation, we
assume that evenly divides n, Mthough vrying block sizes can be esily hndled.

ALGORITHM BLOCK-GTH-I

FACTORIZATION PHASE

1. Let Go G. Given an integer between 1 and n, let n/1.
2. Fork=0,/,...,(-l)/

2.1. Partition Gt: as in (2), where At: is an matrix.
2.2. Apply the factorization phase of algorithm GTH to the matrix Ht: de-

fined by (7).
2.3. If k - (- 1)/, define Gt:+t by (5):

ak+t Dt: Ct:(A-IBt:),

where the factors from 2.2 are used to compute the expression in paren-
theses.

End for.

BACKSUBSTITUTION PHASE

3. Let P(-l)l be computed from the backsubstitution phase of the GTH algo-
rithm applied to G(_1)r

4. For k ( 2)/, (- 3)/,..., 0
4.1. Define pt: by (6), again using the factors of At:.

End for.
5. Renormalize r po/(poe).

As an alternative to block-GTH-I, which relies on a block lower triangular factor
with At: on the main diagonal, we can compute a standard LU factorization of G:
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L0 0

Lt 0

[L(.,,1)/

U L’[-1B

This algorithm takes the following form.

ALGORITHM BLOCK-GTH-II

FACTORIZATION PHASE

1. Let Go G. Given an integer between 1 and n, let n/1.
2. For k=0,/,...,(- 1)/

2.1. Partition Gk as in (2), where Ak is a matrix.
2.2. Apply the factorization phase of algorithm GTH to the matrix Hk de-

fined by (7), applying the same updates to Ck (i.e., computing CkU[I).
2.3. If k (- 1)/, define Gk+ by (5):

Gk+ Ok (CkUI)(L;Bk).
End for.

BACKSUBSTITUTION PHASE

3-5. Use the backsubstitution phase of algorithm GTH, organizing the compu-
tations by single rows or by blocks of rows.

3. Error analysis. As we mentioned before, the left eigenvector computed by
the GTH algorithm has a small entry-wise relative error bound. Our next task is a
rounding error analysis for the block-GTH algorithm in order to demonstrate that it
preserves this error property.

Let us introduce some notation first. We use the special symbols (7> from Ap-
pendix 3 of [5]. Let u be the unit roundoff in floating-point arithmetic. Then we
write

(I + a)(1 + a2)" "-(I + a)
(1 + bl)(1 H- b2)"" (I + b#)

whenever lal < u, Ibl <_ u, and a + # 7. The <’),> symbols satisfy the relations

and

+

and make floating-point expressions simple and clear. Let us denote the floating-point
operators with a "hat." The error analysis of floating-point operations is based on the
following rules:

I.
2. <a>aS<Z>b=<a+Z+l>a.b,
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Note that these rules also hold if we interchange the operators on the left-hand side
with those on the right-hand side. A fundamental property upon which we heavily
rely is that if no cancellation occurs in forming a sum or difference (i.e., if the two
operands have the same sign), then

(a) a -- (} b (max(a, ) + 1} (a b).

The following theorem gives the error bounds for the GTH algorithm.
THEOREM 1 (see O’Cinneide [4]). For any stochastic matrix P of order n with

stationaw vector , the accuracy of the le eigenvector computed by the GTH
algorithm using floating-point arithmetic is characterized by

#i (2(n)+n)i, i= 1,...,n,

where (n) (2n3 + 6n2 8n)/3. Fuhermore, g (2(n) + n)u .1, then

+

The formula for (n) is derived by induction [4] and makes use of a theorem of
Tweedie [6], which says that if two irreducible generators G and G of order m have
the property that .j (a/gj, j, then their eigenvectors satisfy

(2mR) pi 1,...,m.

The proof strategy is shown in Figure 1.

(0) (2(n-

rue pl of1 .true pl of 01,- /computed
he true Gy

(2(n2 1)) computed)]
((n 1))

L for G1 /
step 2, k 0 step 4, k 0

The bound for step 2 comes from verifying that given a generator Go in algorithm
GTH, the relative error for the off-diagonal entries of the computed generator G1 is
(n + 1). Since the generator G1 is of order n- 1, then by Tweedie’s result the true
eigenvector of computed G1 has component-wise error bounded by

<2(n+l)(n-1)> =<2(n2-1)>.
The bound for step 4 results from direct calculation. Combining these error bounds
gives the recursion

(10) (n) (n- 1) + 2n2 + 2n- 4,
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with the initial condition (1) 0.
This proof strategy yields a valid although far too pessimistic bound for the block-

GTH algorithm. Suppose that we eliminate states instead of 1. By an error analysis
similar to [4], the error introduced into the eigenvector pt in step 2 for the block
algorithm is bounded by

</2(3t 1)2 + 0(/23)>.

We denote the error bound by (- 1). With the initial condition (1) (/), we
have

which is not tight for large block size because of the exponential term. Therefore, a
more delicate analysis is necessary.

We obtain a polynomial error bound for the computed eigenvector in GTH by
repeatedly applying Tweedie’s theorem to the generators resulting from eliminating
one state only. This suggests reconsidering the error bound for one iteration in step
2 of block-GTH by accumulating error bounds when one state is eliminated instead
of calculating the error bound for the eigenvector after eliminating states. Our
next task is to define the generators that are implicit in the intermediate steps of the
block-GTH algorithm and determine the error bound for their off-diagonal entries.
The proof strategy for block-GTH is shown in Figure 2.

Suppose that we have a given generator Go of order n. We need to determine an
error bound Ct() with polynomial growth in each iteration in step 2, where [n/l.
Let Go Go. The generator Gt is defined by the block-GTH algorithm, so we need
to define the following generators.

k, the generator of size n-k that has the same eigenvector as Gk-1,
for k= 1,...,/.
(k, the computed generator of size n k, k 1,..., 1.

Since the block-GTH algorithm is closely related to GTH, it is useful to define Gk
to be the generator resulting from eliminating the first state from Gk- by GTH using
exact arithmetic. Note that the definition of G is the same for GTH and block-GTH
(since Go is the same for both), but generators G2,..., Gt differ for the two algorithms
because they are defined in terms of the computed quantities (,..., (t_. Our goal,
then, is to study Gk for the block-GTH algorithm and show that its eigenvector is
close to the eigenvector of Gk.

Throughout the following paragraphs, index k will vary between 1 and 1- 1. A
scalar with superscript k will denote a result after eliminating k states from Go. An
operator with a "hat" uses floating-point arithmetic. Since the error bound strongly
depends on the specific computational formulas, we analyze the error by strictly fol-
lowing the order of operations in the block-GTH algorithm. We will derive an error
bound for block-GTH-II. The bound for block-GTH-I is derived in the appendix.

Suppose that we partition the generator (k (including Go) as

A Bk Jk-- Ck Dk
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ue Po of G
(0)

.he true G
Strue Pl of (1,(O1) e computed

ttrue p2 of 2, Strue P2 of 2,
..he true G2/]

(c2/ e computed

computed
for 0 J

forG1 J

for G2 J

_.truept of(t. cm   dZ{ot}-ecomputedG {(’)} ,x. forG j

step 2, k 0 step 4, k 0

FIG. 2.

where Ak is of order k. Note that we define the order of Ak in a different way
from the partition (2) for block-GTH in 2. It is convenient to index the elements of
Ak as

(11)

k k
ak+l,k+ ak+l,

akl,k+l

Let h Boe. In step 2.2, we apply GTH to the matrix

Ho- A00 h]0
using the following computations: for k < i, j _< l,

(12)

(13)

(14)

and st--atti-1
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The next task is to determine error bounds for the off-diagonal entries of Ak
relative to corresponding entries of Gk. Let (/) be the error bound for sk. From (12)
we see that this bound arises from the error bound for hkk-1 plus k additions, and
from (13) we conclude that the error for the off-diagonal entries of Ak is bounded by
(/k / 3/ (since the entries in Ak-1 have no error relative to G). We determine y by
studying the h. Initially, h has a component-wise error bound (n- l- 1) coming
from n- l- 1 additions. om (12), we have an error bound (n- 2) for s relative to
the sum of the off-diagonal entries of the first row of G0. om (14), we have

0 ; ( 7 )h h ai

o;

where the summation is tken over the n- column indices of Bo. By using the rules
of floting-point operations, we have

0(6) I {n ) , {( ) + ) , (/)

((n -l- 1) + 5} [bi + ail

=((n-l-i)+6) [bi ail

Let us define the entries of B by
0 ; (q 7 ).bi bi ai()

Then we obtain

For 2, the above equation and (12) imply that s2, the (1,1) entry of G1, has error
bound ((n 3) + 6} relative to the (1,1) entry of G1.

For the next update, we have

h/2 h/ - ai2

(/)=((n-l-I)+6} b${(n-l-1)+8} a2,

which is similar to the first line of (15), so we can define B2 and directly derive

((n- - 1)+ .
Then s3, the (1,1) entry of G2, has error bound {(n 4) + 2 6} relative to the (1,1)
entry of G2. Continuing this process, we define mtrix B as

bk+,_
(17) "..

b kbn_l,n_
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and we have an error bound for sk (including st) as ((n- k- 1)+ 6(k- 1)) _= 7k.
Therefore, we have shown that there is an error bound (- + 3) for each off-diagonal
entry of A and for each entry of B, relative to the corresponding element in G.
The matrix Co has been updated in a similar way during step 2.2, and by defining

(18) Ck
Cl,k+l

k k
Cn_l,k+ Cn_l,

to be the matrix after k updates, it is easy to see that the entry-wise relative error
between C and the corresponding entries of G is also bounded by (’ + 3/.

Next, we consider the matrix Dk. After finishing step 2.2, we have an LU factor-
ization of the matrix A0 as

Ao-LU=

--81 1

a21 -s2 0

al a2 st

(-a12 / 81) (--at / 81)
1 (-a/s2)

The computations for t can be expressed as

Do -(CoU-I)(L-1Bo).

Now, let us focus on the computation of the entry (i,j) of t, where 1 < i,j <
n- 1. We need to compute (L-Bo) first. Let b be the jth column of the matrix
B0, and let x be the jth column of the matrix (L-Bo). Then the solution to the
triangular linear system Lx b is computed as

To obtain Gt in block-GTH-II, we have

(19)

(i,j) entry of (t dij [row of (CoU-1)] " [column j of (L-1B0)I
l-1 " (bli;1di - [cil * (blj ? 81) Cil / 8l)]
1-1 ; (bll;X 7 81)1o, / +... +

If we define

(20) k k-1 k-1 , (bkk;1 / 8kdij dij nt- elk

then (19) becomes

l-1 " (blj(i, j) entry of d =/l} [d21 + % / s)]
I-1 I-1{1 + 2) Ida21 + % (bj /s)]

(21) (3’ +l + 2} (i,j) entry of ,
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where the ")’t comes from the error bound for st.
Note that (20) also gives us the definition of Dk as

(2)

with entry-wise error bound (’)’k + 2). From (11), (17), (18), and (22), we have defined
Gk and shown that its off-diagonal entry-wise error can be bounded by (’)’k + 3). By
applying Tweedie’s theorem, for k 1,..., 1- 1, the component-wise error bound for
the eigenvector of Gk relative to the eigenvector of is (a) (2(n- k)("/k + 3)).

From (21), we have the off-diagonM entry-wise error bound (3’ +l + 2) for (t
computed by block-GTH-II. Since Gt is of order l, by applying Tweedie’s theorem,
we have (at) _(2(n 1)(/ + + 2)) as a component-wise error bound between the
eigenvectors of Gt and {t. Therefore, the error bound accumulated in one iteration of
the factorization phase of block-GTH-II is bounded by

(23)

Ea= 2(n-k)(7k+3) +2(n-1)(Tt+l+2)
k---1 kk-I

1-[61n + (12/2 -61- 6)n- (10/3 + 91 13/)]3

As for the backsubstitution phase, we can also express the computations in the
form

q=pt(CoU-1)

where pt is the computed eigenvector of (t. Note that Po [qL-1 Pt] is the eigen-
vector of Go.

The type II process uses the same backsubstitution process as the GTH algorithm.
Thus the component-wise error bound (/3) between the computed vectors/Sk and 15-1
in block-GTH-II is (3’ + (n- k + 1)), where the bound {n- k + 1) comes from one
multiplication, n-k- 1 additions, and one division. The error bound for one iteration
in step 4 of block-GTH-II is

(24)

+-_ +
k--1 k=l

21n + 2(/2 2/).

Combining (23) and (24), we have established a polynomial error bound for block-
GTH-II: we have

(25) = 2na+ 91- -(3/2+31+ n-

with Ct(1) (/).
Therefore, we have the following analogue to Theorem 1.
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THEOREM 2. For any stochastic matrix P of order n with stationary vector
the accuracy of the left eigenvector computed by the block-GTH algorithms I and II
with block size (1 <_ <_ n) using floating-point arithmetic is characterized by

i (2t(n)+ n i, i= 1,...,n,

where Ct(n) is defined by (25) or (A.31). Furthermore, if (2t(n) + n)u<_ .1, then

I 71 _< 1.06(2,(n) + n)u.

Note that for 1 n, Ct(n) (n), with equality holding at 1 and n.

However, we can sharpen (n) in several places. For example, if does not evenly
divide n, then the initial value Ct(1) is less than (/). For <_ n/2, the error bound
(/k} for sk can be reduced to (n-/}, which is independent of k, by summing (12)
from left to right.

4. Performance of the block-GTH algorithm. In this section, we consider
the implementation of the block-GTH algorithm and discuss some numerical results
comparing the performance of GTH and block-GTH. Experiments were performed
with single precision IEEE arithmetic on a DECstation 3100 (DEC) and a SUN
SPARCstation 2 (SUN), each with a 64k byte cache memory; a Convex C3820 (Con-
vex); and a Cray Y-MP4D/2/16 (CRAY).

We implemented the algorithm using standard software as much as possible, pri-
marily the basic linear algebra subroutines from the BLAS collection [1]. On the SUN
and DEC machines, we used Fortran versions of the BLAS; on the Convex and Cray,
we used the manufacturer-supplied versions. The standard Fortran compilers (f77,
f77, fc, and cf77) were used with default levels of optimization. We summarize the
machine configurations and computing environments in Table 1.

TABLE

Machine Operating system Processor Compiler Word length
DEC ULTRIX V4.1 1 f77 V3.2 32-bit
SUN SUN4c_OS413A 1 f77 SC2.0.1 32-bit

Convex ConvexOS 10.1 1 fc version 7.0 64-bit
CRAY UNICOS 7.0.4.3 1 cf77 Release 6.0 64-bit

The principal implementation task is SGTHLU, which computes the LU factor-
ization of the matrix Ak for type I block-GTH ([AT C[]T for type II). Note that this
subroutine performs the standard GTH algorithm when the block size equals the
order n of the original generator.

The major time-consuming modules of the algorithm are shown in Table 2.

TABLE 2

Step Routine Source Function
2.2 SGTHLU Uses Level-1 BLAS Apply GTH
2.3 STRSM Level-3 BLAS Update Bk
2.3 SGEMM Level-3 BLAS Update Dk

Since the block-GTH algorithm is a variant of Gaussian elimination, the complex-
ity is of order n3 and the factorization phase dominates the computational time. In
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our implementation, the cost of factorization is

1(4n3 + 3n2 7n)
6

independent of the block size 1.
For our numerical experiments, we defined the generator of order n to be a cir-

culant matrix

with

-0.01,
0.0002,
0.0098/(n 2).

It can be shown that this generator has a simple eigenvalue 0 with left eigenvector

=(1/n)e.

We tested only the type II block-GTH algorithm.
First we examined the accuracy of the block-GTH algorithm. We set n 400 and

varied the block size as 1, 2,..., 49, 50 and then 60, 80,..., 400. Table 3 shows
the resulting rounding errors. As predicted by the theory, the errors do not have
strong dependence on block size: the errors produced by the block-GTH algorithm
varied between .87 and 1.5 times the errors produced by the GTH algorithm.

TABLE 3
Rounding errors resulting from use of the block-GTH algorithm with different block sizes for a

generator of order 400.

size
2O
4O
60
8O
100
120
140
160
180
2O0
400

Average
difference
3.5700e’-09
3.8925e-09
4.2275e-09
3,9475e-09

5.1225e-09
3.4000e-09
3.3600e-09
3.0025e-09
3.2050e-09
3.1250e-09
3.415eL09

Largest
difference
1.8000e-08
1,8000e-08

1.7000e-08
2.2000e-08
2,0000e-08

1.9000e-08
1,8000e-08

1.6000e-08
,1.9000e--08

1.9000e-08
1.7000e-08

Largest rela.
difference
7.2000e-06
7.2000e-06
6.8000e-06
8.8000e-06
8.0000e-06
7.6000e-06
7.2000e-06
6.4000e-06
7.6000e-06
7.6000e-06
6.8000e-06

Figure 3 shows the total CPU times for our implementation of the factorization
phase of the block-GTH algorithm and the time taken by its three dominant sub-
routines (SGTHLU, STRSM, and SGEMM) as the block size changes. Although the
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number of operations is independent of block size, the total execution time on the
SUN and DEC machines had a significant drop around block size 40, due to efficient
utilization of the cache memory. This timing phenomenon is primarily due to the
behavior of SGEMM. This routine computes the matrix ( column-wise by comput-
ing linear combinations of columns of the matrix Ck. Since Fortran stores matrices
column by column, we can expect that SGEMM will perform best if for all k, the
matrix Ck and some portion of Dk and Bk fit in the cache memory.

DECstatlon 3100 SUN SPARCstatlon
30 12

2O
TOTAL

10

’",...i’’ "’’*’.,,.
SGEMM ’". SGTHLU,,..,. .,.,

STRSN "" "’""...
,:.:’:=’"

50 100 150 200 250 300 350 400
block size

TOTAL

SGEMM ’,,, .,.,,.
.,.,,’

sss ""’"’"*
"" ....... STRSN "’-.. "’"..

,....- ......_:
50 100 150 200 250 300 350 400

block size

SGTHLU

0.g

0.8

0.7

0.6

0.4

0.3 ,
2L’.. SGEMM......

"" """ STRSM
0.1 ..: T.’.’. :.-. .....................

block size

Convex

0.91

0.71

0.61

,," SGTHLU 0.41

031

0.21

0.1l

CRAY Y-MP2D

TOTAL

SGTHLU

SGEMM

STRSM

block size

FIG. 3. Block-GTH time as a function of block size for a generator of order 400.

The biggest of the C matrices is Co, of size (n 1)l. Each column of Bk has size
l, and the Do matrix has columns of length n- I. Therefore, we predict that the
optimal block size should occur at the largest integer satisfying

(n + + (n < cache memory size

word size

For the DEC and SUN, the cache capacity is 64k/4-16k words. The actual optimal
block size also depends on other features of the machine architecture such as page
size, cache line size, etc.

Next, we ran numerical experiments on generators of different orders. We varied
the block size in increments of 1 until well past the predicted optimum, and then in



484 DIANNE P. O’LEARY AND YUAN-JYE JASON WU

n=1000 n=800 n=600 n=400

DECstation
500 180

16(

400
14(

60

1

10 0 10
blk size blk size

SUN SPARCstation

Convex
14 12

12
10

10

100 10

CRAY

102 103 ;00 101 102 103
block size block size

FIG. 4. Block-GTH time as a function of block size for generators of order 400,600,800, and
1000.

increments of 20. Figure 4 shows the total time as a function of block size. Table 4
gives the timings, predicted and actual optimal block size, and the speedup, defined
by

speedup=
the time for the GTH algorithm

the best time for the block-GTH algorithm

On the SUN, the timing gain for the block-GTH algorithm over the standard
GTH algorithm is 18-20%, while it is 19-30% on the DEC machine. The predictions
of optimal block sizes were quite accurate for the DEC, but were overestimates for
the SUN. Using the predicted optimal block size on the SUN gave timing gains of
16-19%, not much less than the actual optimal.

On the Convex, a block size of 21, independent of the order of the matrix, performs
quite well, while on the Cray, the performance varies only slightly for a large range of
block sizes, with the optimal size about 12% of n.

Further timing gains could be achieved by using level-2 or level-3 BLAS in the
implementation of SGTHLU.
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TABLE 4
Timings, optimal block size, and speedup for generators of order n 400,600,800, and 1000.

Problem GTH
size time

(see)
400 18.91
600 64.18
800 151.72
1000 296.83
400 11.07
600 37.35
800 88.56
1000 172.25
400 0.92
600 2.85
800 6.61
1000 12.24
400 0.26
600 0.75
800 1.64
1000 3.06

Block Size
Predicted Actual
optimal optimal

44 41
28 27
20 20
16 16
44 25
28 19
20 17
16 16

21
24
21
40
48
60
100
120

Block-GTH
Time

14.55
50.11
122.49
249.94
9.24
31.23
74.45
145.57
0.33
0.96
2.13
3.98
0.18
0.56
1.27
2.41

Mflop
rate
2.9
2.9
2.8
2.7
4.6
4.6
4.6
4.6
130
150
160
168
238
258
269
277

Speedup

1.30
1.28
1.24
1.19
1.20
1.20
1.19
1.18
2.82
2.95
3.10
3.07
1.41
1.32
1.29
1.27

5. Conclusions. It is necessary to use block algorithms in order to attain good
utilization of vector processors and cache memory. In this work we have shown that the
GTH algorithm has a block implementation that can achieve a considerable increase
in efficiency without sacrificing accuracy. Future work will deal with the parallel
implementation of the algorithm.

Appendix A. Derivation of the error bound for the block-GTH-I algo-
rithm. The block-GTH-I differs from block-GTH-II only at step 2.3 for computing
(t and in the backsubstitution phase, so the definitions for Ak nd Bk in (11) and
(17) remain the same for k 1,..., l- 1. Thus we have an error bound ( + 3} for
each off-diagonal entry of Aa and for each entry of Bk.

The computations of (t for block-GTH-I can be expressed as

Do Co(U-I(L-1Bo))
We save the original matrix Co, so there is one more linear system to solve for com-
puting U-Ix. Let y be the jth column of the matrix U-I(L-1Bo). Applying back-
substitution to the triangular linear system U y x, we have

Yl --Xl

Ym--Xm nt- (aml / Srn) * Yl + + (am,m+1 / 8m) " Ym+l,

rn- l- 1,...,1

Note that all x, are negative, so all y, are negative and there is no cancellation. To
obtain (, we have

(i,j) entry of ( dij [row i of Co] $ [column j of U-I(L-1Bo)]
o 7Y2 $ o 7yt]di [Cil Yl -- ci2 all

o o o(A.26) (1 + 1} [di Cix Yl ci2 * Y2 Cil * Yl]

By expanding yl, we have

(i, j) entry of t
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The updated matrix C1 is not explicitly present, but we can define

(A.27) o 0
tim Cim "-Cil $ (hOlm / 81), m- 2,..., 1.

From (20) and (A.27), the update becomes

entry of ((1 + 1) + l) [dil + ci y +... + ci2 Y2],

which is similar to (A.26). Therefore, we can expand Ym, m 2,..., 1, one by one
and repeat the same process go obtain

(i, j) entry of a
I-1((1 + 1) +l +... + 2} [4; +

\m--2

l+Em [d;l+c ,(bl; /s)l
m----2

(A.28) ’ + E m (i, j) entry of ,
where the -y comes from

Note that from (A.27), the matrix Ck defined in (18) has an entry-wise error bound

@k / 1). Again, from (11), (17), (18), and (22), we have defined G and shown that
its off-diagonal entry-wise error can be bounded by (y + 3/. From (A.28), the entry-
wise error bound for ( computed by block-GTH-I relative to z.-m-1

By applying Tweedie’s theorem, the error accumulated for one iteration in step 2 of
block-GTH-I is bounded by

(A.29)

Eak= 2(n-k)(-y+3) -+-2(n-l) .y+Em
k--1 Lk--i m--1

116/n2 / (15/2 31- 12)n-- (13/3 / 12/2 19/)].
3

For the backsubstitution phase, let pt [Pll""" Pt,n-t] be the computed eigenvec-
tot of t. Then we have the vector
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resulting from computing (pC) first. Then the solution to the triangular linear system
qU pC is

ql Pli Cil

o $ / ql -7- $ (a_ / s-l) * q/-1

k- 2,...,/.

0 with 61--n-1 To find anFrom the first equation, we have ql 51 ipi cil,
error bound for qk in the second equation, suppose that we have q, (ti,) yipi
cim.-l. We know that ti, is an increasing function of m, so

Note that the floating-point additions are carried out from left to right. Using (A.27),
we have

qk (1 + 2) Pli * Cik " Pli * (aOlk / 81 *

ck-2(ek_ + 1) ,, (a:,k 8k_1)* i,k-1]

(2 + 1) li * (ak 82) * Ci] @(el + 2) Pli $ Cik

ck-2

Since all are integers and + 1 N +, we can repeat the same process and
obtain

k-1q (-1 + 2) p c

Therefore, 6 6k-1 + 2, and the solution to this recursion is 6k n- + 2(k 1).
By an analysis similar to that for block-GTH-II, we have (’k + 6k + (1 k + 1))

as the component-wise error bound () for the computed Pk for block-GTH-I. The
error bound for one iteration in step 4 of block-GTH-I is

(A.30)

Ek E["Y + n + k-11
k=l k=l

21n + 3/2 51.
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Finally, combining (A.29) and (A.30), we obtain a polynomially-growing error

bound l for block-GTH-I:

1 [2na(A.31) g

This error bound agrees with (25), the error bound for block-GTH-II, in its highest
order term.
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ON THE SPECTRAL RADIUS OF (0I)-MATRICES WITH 1S IN
PRESCRIBED POSITIONS*

RICHARD A. BRUALDIt AND SUK-GEUN HWANG$

Abstract. Let n and d be positive integers with 1

_
d

_
n(n- 1)/2. We investigate the

maximum and minimum spectral radii of a (0, 1)-matrix of order n that has l’s on and below its
main diagonal and d additional l’s. If d

_
4 we determine all matrices of this type that have the

maximum spectral radius. For general d we prove an asymptotic result that severely limits the
structure of matrices with maximum spectral radius. For d

_
n, we determine the minimum spectral

radius.

Key words, spectral radius, (0,1)-matrices

AMS subject classifications. 15A18, 15A48

1. Introduction. Let n2 not necessarily distinct nonnegative real numbers be
given. A fundamental theorem of Schwarz [Sc64] asserts that the largest spectral
radius of a matrix of order n whose entries are the n2 given numbers occurs among
those matrices in which the entries in each row and in each column are nonincreasing.
Indeed let A be any matrix of order n whose entries are the given numbers. Then
there exists a permutation matrix Q such that independently rearranging the entries
of each row of QAQT to have nonincreasing order and then doing the same with the
entries in each column results in a matrix A* in which the entries in each row and
in each column are nonincreasing, such that the spectral radius of A* is at least as
large as that of A. (Schwarz’s argument was given for positive real numbers, but
the conclusions apply to nonnegative numbers by a continuity argument.) Analogous
conclusions hold for the smallest spectral radius; in particular, the smallest spectral
radius occurs among those matrices in which the entries in each row are nonincreasing
and the entries in each column are nondecreasing. Motivated by these results, Brualdi
and Hoffman [BH85] considered the problem of determining the largest spectral radius
for a (0, l)-matrix of order n with a prescribed number d of l’s (and thus n2 d O’s).
They proved that if d 2 or d k2 -- i, then the largest spectral radius equals
k. Let d k2 -t, where t

_
2k. Confirming (asymptotically) a conjecture of

Brualdi and Hoffman, Friedland [Fr85] determined the largest spectral radius for all
n if t 2k and for all sufficiently large n otherwise. Brualdi and Solheid [BS87]
considered the corresponding minimum spectral.radius problem and determined the
minimum spectral radius for (0, l)-matrices of order n with at least n2 n/2J [n/2]
l’s (an alternative proof of this result is contained in [Ch90]) and in all other cases
bounded the minimum spectral radius between two consecutive integers.

In this paper we begin an investigation of a generalization of the above problems
where l’s are prescribed in certain positions and d additional l’s can be put in any
of the remaining positions. Let a(X) denote the number of l’s contained in a (0,I)-
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matrix X, and let p(X) denote the spectral radius of X. A precise statement of our
general problem is the following.

PROBLEM 1.1. Let B be a (0, 1)-matrix of order n having s l’s, and let d be a
positive integer with d <_ n2 s. Let A(B, d) denote the set of all (0, 1)-rnatrices A
of order n such that B <_ A (entrywise) and a(A- B) d. Determine the largest
spectral radius (jt(B, d))(respectively, smallest spectral radius fi(A(B d) of a matrix
in .4(B, d) and all the matrices A for which p(A) -fi(.4(B, d))(respectively, p(A)

d))).
The specific matrix B that we consider in this paper is the (0, 1)-matrix An of

order n with l’s everywhere on and below its main diagonal. Thus, for instance,

1 0 0 0 0
1 1 0 0 0

Ah= 1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

For brevity, we will write ,4(n, d) in place of 4(An, d).
In our investigations we shall make important use of the Perron-Frobenius theory

of nonnegative matrices (matrices each of whose entries is nonnegative) [BP79, Ga59],
and for this we need the notions of reducibility and irreducibility of a matrix. Let A
[aij] be a matrix of order n. Then A is reducible provided there exists a permutation
matrix P such that

A1 O ]pApT
A21 A2

where A1 and A2 are square, nonvacuous matrices. Let D(A) be the digraph of A,
that is, the digraph with vertices {1, 2,..., n} in which there is an arc from to j if
and only if aij O. Then, as is well known, A is irreducible if and only if the digraph
D(A) is strongly connected [BR91]. In general, there exists a permutation matrix Q
such that

(1) QAQT
A1 O O
A21 A2 O

A A2 A
where r _> 1 and A1, A2,..., Ar are the irreducible components of A. The irreducible
components of A are uniquely determined up to simultaneous permutations of their
rows and columns.

We use In to denote the identity matrix of order n and Jn to denote the all l’s
matrix of order n. In general, J denotes an all-l’s matrix whose size is determined
from context. If B1, B2,..., Br are arbitrary square matrices, we define the block
triangular matrix BI:B2... Br by

B1 0 0
J B2 0

J J B
LEMMA 1.2. Let A be a (0, 1)-matrix of order n such that An <_ A.
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(a) Then A AI#".#Ar, where r >_ 1, and AI,...,Ar are the irreducible
components of A.

(b) If A is irreducible, then A has an irreducible, principal submatrix B of order
n- 1 such that An- <_ B.

Proof. (a) In the digraph associated with the matrix A we have the path n
n- 1 --, --, 2 - 1. This implies that the irreducible components of A can be
obtained by partitioning A (as opposed to having first to permute simultaneously the
rows and columns of A as in (1)), and (a) follows.

(b) Since An _< A, we have An-1

_
A(j j) for j 1,2,...,n. Since A is

irreducible and A <_ A, it easily follows that for some k >_ 1 there exist integers
il,..., ik such that 1 < i2 < < ik _< n- 1 such that row i has a 1 in column
jl where jl > il, i2 _< jl and row i2 has a 1 in column j2 where j2 > i2,..., ik <_ jk-1
and row ik has a 1 in column jk n. If jk- n 1, then A(n n) is irreducible. If
jk-1 : n- 1, then ik < n- 1 and A(n- 1 In- 1) is irreducible.

We now summarize certain parts of the Perron-Frobenius theory as applied to a
nonnegative matrix A of order n.

(PFI) p(A) is an eigenvalue of A and there exists a nonnegative eigenvector x such
that Ax p(A)x. If A is irreducible, x is a positive vector.

(PFII) Let the row sums of A be r,..., r. Then

min{rl,..., rn}

_
p(A)

_
max{r1,..., rn}.

If A is irreducible and not all the row sums are equal, both of these inequalities
are strict.

(PFIII) Let z be a positive vector. Then

Az <_ rz implies p(A) <_ r

and

Az >_ rz implies p(A) >_ r.

For each of these assertions, if A is irreducible, then p(A) r if and only if
Az rz.

(PFIV) Let C also be a nonnegative matrix and assume that A _< C. Then p(A) <_
p(C) with strict inequality if either A or C is irreducible and A = C.

(PFV) If A’ is a proper principal submatrix of A, then p(A’) <_ p(A) with strict
inequality if A is irreducible.

The following lemma is a special case of a method of Schwarz [Sc64] (see also
Lemma 2.1 of [BS86]) used to derive the results mentioned earlier. Let Eij denote a
square (0,1)-matrix with a 1 in position (i,j) and O’s elsewhere; the order of Ej is
taken from the context in which it is used. Also ei denotes a column vector with a 1
in position and O’s elsewhere.

LEMMA 1.3. Let A [aj] be a (0, 1)-matrix of order n with a positive eigenvector
X (XI,... ,Xn)T corresponding to p(A). Assume that apq 0 and apt 1 for some
p, q, r. Let C A + Epq Ep. Then

> < > <
(b) if C is irreducible, then p(C) > p(A) (respectively, p(C) < p(A)) if xq > x

(respectively, Xq < xr).
Proof. We have

Cx Ax + Epqx Epx p(A)x + (Xq Xr)ep.
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Thus we have Cx >_ p(A)x (respectively, Cx <_ p(A)x) if xq >_ xr (respectively,
xq <_ xr), and assertion (a) follows from (PFIII). If xq xr, then Cx p(A)x and
thus if C is irreducible, assertion (b) also follows from (PFIII). D

We conclude this introduction by defining the following operation that will be
useful in what follows. We denote the symmetric permutation matrix of order n with
l’s on the back diagonal, that is, in those positions (i, j) with i + j n + 1, by Ln.
If X is a matrix of order n, then we let

L,XTL,
the matrix obtained by flipping X over the back diagonal. Since X is permutation
similar to Xr, J has the same determinant, trace, and spectrum as X. If X is a
(0,1)-matrix, we have o(X) a(X), and X ,4(n, d) if and only if X 4(n, d).

2. Maximizing the spectral radius over 4(n, d). Throughout this section
n and d denote positive integers with d <_ n(n- 1)/2. Recall that ,4(n, d) denotes the
set of all (0, 1)-matrices such that An _< A and a(A A,) d. Let

P,,d max{p(A)" A e A(n, d)},

and let

G(n, d) {A A G A(n, d), p(A) P,d}.

The determination of Pn,d and characterization of the matrices in G(n, d) for all n
and d is an apparently difficult problem. In this section we consider the cases d
1, 2, 3, and 4 (all n) and arbitrary d with n sufficiently large.

We first observe the following. For each n _> 2, let Bn An+EI,. and/ p(B,).
Then because

1

det An-2 xXn-2, xn_2,
1
i 1 1

we have that fn(X)= (-1) det(Bn- xI) satisfies

fn (X) (X 1)n xn--2,
and n is the largest real root of f,(x) O.

LEMMA 2.1. We have/3n < n+l and limn-o
Proof. Let A be any positive solution of f,(x) 0. Then

fn+i(A) (A- 1)n+i n-1
(A- 1)n+ (A- 1).kn-2 + (A- 1).kn-2

(-- 1)((-- 1)n-
-A-2 < 0.

/n--2) _[_ n--2(_ 1 A)

In particular we have fn.+.l(/n) < O. Thus fn+l(X) has a root that is larger than n
and therefore ,+1 > n.

The fact that lim,_ n oc follows from the observation that

n--2

=1. D
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COROLLARY 2.2. We have limn_, fln,d 00.

LEMMA 2.3. Let n and d also be positive integers with d < d <_ n(n- 1)/2
and n < n. Then Pn,d < Pn’,d’.

Proof. It suffices to prove the lemma for the case n n + 1 and d d + 1. Let
A E 6(n, d) and

1 1 1
B=

1 1 1

Then p(A*) p(A), A* <_ B, and B A(n + 1, d + 1). The matrix B is clearly irre-
ducible and it follows from (PFIV) that p(A) < p(B). Therefore Pn,d <
Pn+l,d+ [-]

By (a) of Lemma 1.2, it follows that a matrix in jr(n, d) is irreducible if and only
if it does not have a k by n- k zero submatrix in its upper right corner for any integer
k with 1 _< k _< n 1. This implies that A jr(n, d) is irreducible if and only if its
flip A is irreducible.

THEOREM 2.4. Every matrix in (n, d) is irreducible.

Proof. Suppose to the contrary that there is an integer n such that for some d,
G(n, d) contains a reducible matrix A, and let n be the smallest such integer. By the
above remark there is an integer k with 1 _< k _< n- 1 such that

where U is a square matrix of order k. Since p(A) P,,d, either p(U) Pn,d or
p(V) Pn,d. Lemma 2.3 implies that either U =/kk or V /kn_k. After flipping, if
necessary, we may assume that p(U) Pn,d and V A,-k and hence that Pk,d Pn,d.
The minimality of n implies that U is irreducible.

Let x (yT, zT)T be a nonnegative eigenvector of A corresponding to Pn,d, where
y (Xl,... ,Xk)T and z (Xk+l,... ,Xn)T. Then

Uy Pn,dY,

Jy + An-kZ Pn,dZ.

If y 0, then z # 0 and A,_kz Pn,dZ implies that Pn,d is an eigenvalue of An,k.
This is a contradiction since 1 is the only eigenvalue of An_ and clearly Pn,d >_ 2.
Hence y = 0 and y is a nonnegative eigenvector of U corresponding to its spectral
radius. Since U is irreducible, y is a positive vector. The above equations now imply
that z, and hence x, are positive vectors. Since Ax Pn,dX, we have

Pn,d(Xn Xj)

_
Xk+ -’’’-- Xn > 0 (j 1,2,...,k)

so that

xj < x, (j 1,2,...,k).

Since U is irreducible, there exists an integer t with 2 _< t _< k such that alt 1. The
matrix B A- Elt -- Eln is an irreducible matrix in Jr(n, d) and by Lemma 1.3,
p(B) > p(A), which is a contradiction.

The following corollary improves Lemma 2.3.
COROLLARY 2.5. If (n, d) <_ (n’, d’) and (n, d) (n’, d’), then Pn,d < Pn’,d’.
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Proof. It suffices to prove that Pn,d < fln+l,d and that f)n,d < fin,d+1 if d <
n(n- 1)/2. Let A E G(n, d), which by Theorem 2.4 is irreducible. The matrix

B=
1 1 1

is a reducible matrix in A(n + 1, d) and hence by Theorem 2.4, P,,a p(A) p(B) <
Pn+l,d.

Now assume that d < n(n- 1)/2. Then A has a zero entry, say apq O. The
matrix A’ A+ Epq is a matrix in jr(n, d+ 1) and by (PFIV), we have Pn,d p(A) <
p(A’) < Pn,d+l. E!

We now show that 0(n, 1) contains a unique matrix and determine Pn,1 asymp-
totically.

THEOREM 2.6. The following hold.
(a) (n, 1) {An + Eln} for all n >_ 2.

n(b) P,,I- 21ogn"

Proof. Since the only irreducible matrix in t(n, 1) is An + Eln, assertion (a) is
a consequence of Theorem 2.4. Moreover, it follows from our earlier calculations that
Pn, satisfies (x- 1)n xn-2. Putting w 1Ix and differentiating twice we obtain

(1 -w)n-2

This yields

log(1 w)

from which it follows that

w=eXP/n_21 log1

Hence

and (b) follows.

n(n- 1)"

1 2
log

n 2 n(n 1)’

)n(n-1)
=exp

n-2

exp
n

-2 log n 2 log n
n n

For each matrix X, we let ri(X) denote row of X and cj(X) denote column j.
The following lemma is useful in investigating the structure of matrices in G(n, d).

LEMMA 2.7. Let A [aij] be a matrix in 6(n, d).
(a) For integers p and q with 2 < p, q <_ n, if rp(A) <_ rq(A) but rp(A) rq(A),

then aip <_ aiq for 1,..., rain{p, q} 1.
(b) For integers p and q with 1 <_ p, q <_ n-l, if cp(A) <_ cq(A) but cp(A) cq(A),

then apj <_ aqj for j max{p, q} + 1,..., n.

Proof. Let x (x,..., x)T be a nonnegative eigenvector of A corresponding to
its spectral radius p(A). By Theorem 2.4, A is irreducible and hence x is a positive
vector. Since rp(A) < rq(A), we have

p(A)xq p(A)xp (rq(A) rp(A))x > 0

and hence xq > Xp. Assertion (a) now follows from Lemma 1.3. Assertion (b) follows
by applying assertion (a) to A. El
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THEOREM 2.8. If d <_ n- 2 and A is a matrix in G(n, d), then aln 1.

Proof. Suppose to the contrary that aln 0. By Theorem 2.4, A is irreducible
and hencealt 1 for sometwith 2_< t_< n-1. Since then alt > aln and since
rn(A) is the all-l’s vector, (a) of Lemma 2.7 (with p t and q n) implies that
rt(A) rn(A). In particular, atn 1. Now applying (b) of Lemma 2.7 (with p- t
and q 1), we conclude that ct(A) cl(A) and hence cry(A) is the all-l’s vector.
Therefore

n t--1

d- a(A- An) >_ E atj + Eat =n-1,
j=t+l i=1

which is a contradiction.
In maximizing (or minimizing) the spectral radius over some class of nonnegative

matrices, the order of the components of a positive eigenvector corresponding to the
spectral radius of a matrix under consideration generally plays a crucial role. In many
cases, such an order can be assumed in any desired form by simultaneous permutations
of the rows and the columns. The class A(n, d) is not invariant under simultaneous
row and column permutations, but nonetheless we are able to compare some of the
components of a positive eigenvector of a matrix in G(n, d).

LEMMA 2.9. Let numbers r, b0, bl,..., bp be given, and let numbers a0, al, ap
be defined by

ao bo, a rai-1 + b

Then

(2) Eak=E r b.
k=0 k=0

Proof. Equation (2) follows from the observation that

ak rkbo + rk-lbl +.." + rb-i + bk (k O, 1,... ,p). D

LEMMA 2.10. Let A.be a matrix in G(n,d), and let x (Xl,... ,xn)T be a positive
eigenvector of A corresponding to p p(A). Let y (yl,..., Yn)T (A- An)x, and
let r (p- 1)/p. Then for each pair of integers l, rn with 1 <_ < rn <_ n, we have

1 rm-1
(a) >

1-r

Proof. Since px Ax Anx + y, we have

(i 1,2,...,n),

which implies that

p(xi xi-1) xi + Yi Yi-1 (i 2,3,...,n).

Hence

1
(4) xi-1 rxi -- -(-Yi nt- Yi-1) (i 2, 3,..., n).

P
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Letp=rn-l-1. Then

m p

xz) + +
j=l+l i=0

We now apply Lemma 2.9 with a0 b0 x, and with ai x,_i and bi
(-y,-i+l + Ym-i)/P for 1,2,...,p. Since ai rai_l + bi (i 1,2,...,p), (2)
gives

(6)

Therefore from (5) and (6) we get

p(Xm xt) >
1-rp+l ( ll-rP)Xm+ 1 y.-yt.
1-r p 1-r

The inequality (3) now follows since p + 1 rn and

1 1-rp

pl-r
1 (1 rp) rp > O. D

We now introduce some new notation. If M is a square matrix of order n, then
M(x).denotes the matrix M- xIn. In addition, if i1,... ,it and jl,... ,jr are each
sets of t distinct elements of {1,2,...,n}, then M(il,...,it jl,...,jt) denotes the
square matrix of order n- t obtained from M by deleting rows il,..., it and columns
jl, ,jr.

LEMMA 2.11. Let A [aj] be a matrix in A(n,d) such that a13+a14+.../aln
d and al,n-1 aln 1. Let B A- El,n-1 -- E2n [bij]. Then A and B have the
same spectrum.

Proof. Expanding the determinant of B(x) along its first row and noticing that
b12 0 we get

n

det B(x) (1 x)det B(x)(1 1) + E(-1)l+Jblj det B(x)(1
j=3

(1 x)det B(x)(1 1)
n

+ E(--1)l+Jalj det B(x)(1 J) (-1)n det B(x)(1 n 1).

Let ( An + (1 x) n-1Ei--1 Ei,i+l" We then have

(i) det B(x)(1 1) det A(x)(1 1) + (-1) det Cn-2,
(ii) detB(x)(1 j) detA(x)(1 J) (J 3,...,n), and
(iii) det B(x)(1 n 1) det A(x)(1 n 1) (1 x) det C-2.
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The validity of (ii) follows from the fact that for each j 3,..., n, the first two
columns of B(x)(1,21j, n are identical and hence det B(x)(1,21j, n 0. Using
(i)-(iii) in the above equation for det B(x) and the observation that hi2 0, we obtain

det B(x) (1 x) det A(x)(1 1) + E(--1)l+Jalj det A(x)(1 J) det A(x).
j=3

The following lemma can be proved in a similar way; hence we omit the proof.
LEMMA 2.12. Let

1 1 1 1K=
0 0 1

Then the two matrices

0 J2 and An+ 0 0A + 0 0

have the same spectrum.
Now we are ready to determine the structure of matrices in G(n, d) for d

2, 3, and 4.
THEOREM 2.13. The following hold.
(a) (n, 2) {A + Eln + El,n-I, An + Eln + E2n} for all n >_ 4.
(b) G(n, 3) {A / El,n-1 + Eln / E2n} for all n >_ 5.
(c) }(n,4) {An+EX,n-+Eln+E2n+Epq (p,q)- (1, n-2),(2, n-1),(3, n)}

for all n >_ 7.
Proof. Before proceeding with the individual cases (a)-(c), we first consider some

common conclusions.
Let A [aj] be a matrix in G(n, d) where 2 _< d _< 4, and let Z A- An [zij].

The restrictions on n in (a)-(c) allow us to conclude from Theorem 2.8 that zln 1.
Suppose that there exist integers s and t with s > 1 and t < n such that zst 1.
If zsn 0, then Lemma 2.7 implies that rt(A) (1,..., 1) and hence ztn 1. We
conclude that either zn 1 or ztn 1, and hence z2n / z3n /... / Zn-l,n _> 1.
Similarly, we get Zl 1 or Zlt 1 and that z12 / z13 /’" + Zl,n-1

_
1. But then

Z has at least four l’s and hence d _> 4. Therefore if d <_ 3, we have Z(1 In) O.
Case d 2, n _> 4. We have Zln 1, and by flipping if necessary we may assume

that Zlt 1 for some t with 2 _< t _< n- 1. Since r2(A) _< r3(A) _< _< rn(A) and no
two of these rows are identical, Lemma 2.7 implies that t > n- 2 and hence t n- 1.
Thus Z El,-i + Eln and (a) now follows.

Case d- 3, n >_ 5. We have Zl 1 and partition Z as

(7) z- w

where u (Zll,Zl2,...,Zl,n--1) and v (Z2n, Z3n,...,Znn)T. Suppose that v 0.
Then arguing as in the previous case, Lemma 2.7 implies that zl,n-2 Zl,n-1 Zln
1. Let B A- El,n-1 + E2, [bj]. By Lemma 2.11, B is in G(n, 3). Since n _> 5
and rn-2(B)

_
rn-l(B) but rn-2(B) rn-l(B) and since bl,-2 1 > 0 bl,n-1,

we contradict Lemma 2.7. Thus v 0 and in a similar way we conclude that u 0,
and hence u and v each contain exactly one 1.

We now suppose that Zl,n-1 0 and obtain a contradiction. Then zlt 1 for
some t with 2 _< t _< n- 2. If ztn 0, then the fact that alt zlt 1 > 0 Zl,n-1
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al,n-1 leads to a contradiction of Lemma 2.7. Hence ztn 1. If n 5, then up to
flipping A is one of the two matrices

1 0 1 0 1
1 1 0 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

A2--

1 1 0 0 1
1 1 0 0 1
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

But a calculation shows that p(A1) 3.5115... and p(A2) 3.5346... while p(A) >_
p(A5 + Ela + E15 + E25) 3.5605..., giving a contradiction. Now assume that
n _> 6. By flipping A if necessary we may assume that t _< [(n + 1)/2J. Let x
(x,x2,...,Xn)T be a positive eigenvector of A corresponding to p p(A). Then
p(x, x-l) x, so that Xn_ rXn where r (p- 1)/p. Applying Lemma 2.10
we get

1 rn-l-t
p(Xn-X Xt) > Xn-1 Xn1-r

(1 + r +... + rn--2--t)Xn_l Xn
>_ +

since n _> 6 implies that n- 2- t _> n- 2- [(n + 1)/2J >_ 1. Now p k P6,3 > P6,1
P(A6 + E16) 3.1479... > 3, and thus

(2)
2

r(l+r)-I >

Hence Xn-1 > Xt. Let C A- Elt -[- El,n-1. Then C is a matrix in A(n, 3)
and p(C) > p(A) by Lemma 1.3, contradicting the fact that A is in G(n, 3). This
contradiction implies that Zl,- 1, and in a similar way we get z2,n 1. Therefore
Z EI,- + EI + E2 and (b) follows.

Case d 4, n >_ 7. As in the previous case, we can show that in the partition (7)
of Z we have u 0 and v : 0. We consider two subcases.

Subcase W O. Since u and v are not zero and since d 4, we see that
u, v, and W each contain exactly one 1. In particular, there exists a unique pair of
integers (s, t) with s > 1 and t < n such that zst 1. By Lemma 2.7, either zsn 1
or rt(A) (1,..., 1). We first show that t n- 1. Suppose to the contrary that
t <_ n-2. If z, 0, then rt(A) (1,..., 1) contradicts the fact that W contains only
one 1. If zn 1, then rt(A) <_ rt+l(A), rt(A) rt+l(A), and at 1
together contradict Lemma 2.7. Thus t n- 1 and in a similar way we conclude
that s 2. Since either z2n 1 or r_l(A) (1,..., 1) and either Zl,n-1 1 or
c2(A) (1,..., 1), we now conclude that up to flipping, Z equals one of the matrices

0 J2 ] ZI__0 0 j

0 1 O 0 1
0 0 1 0 [ 0 1 O 0 1
O O O ,Z2= [ 0 0 1 1

O 0 1 O O O
O

0 0

We relied on MATLAB for all our calculations.
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If Z Z1, then we contradict Lemma 2.7 since hi2 > hi,n-1 and since r2(A) _<
rn-l(A) holds without equality. Thus Z Z1. We next show that Z Z2. This is
true for n 7 and 8 since

p(A7 + Z2) 4.3504... < 4.3846 .... p(A7 + Z0)

and

p(A8 + Z2) 4.6133... < 4.6762 .... p(A8 + Zo).

Assume that n _> 9, and suppose to the contrary that Z Z2. Let

0 0 0 1
O O O

and let A3 A3 + Z3. Then A3 is in A(n, 4). Since A3 A + Ei,n-i E2,n-i and
ci (A) c2(A), A3 can be obtained from A by permuting rows 1 and 2 and columns
1 and 2. Hence p(A3) p(A) and A3 is in (n, 4). Let x (xi,... ,x) be a positive
eigenvector of A3 corresponding to p p(A3) p(A). Then we have x-i rXn
and Xn-2 rxn-1, and hence x-2 r2xn, where r (p- 1)/p. We also have from
Lemma 2.10 that

1 rn-4
p(x_ x) > x_ X1--r

(r(l + r +... + r-) i)
>_ (r2+r3+r4-1)xn,

from which we get x,-2 > x2 because

r2 + r3 + ra > + + > 1,

since p > 4. But then, as in (c), A3- E12 / El,n-2 is a matrix in ,4(n, 4) with
p(A3-E12-+-E1,,-2) > p(A), which is a contradiction. Thus Z Z2, and we conclude
that Z Z0 in this subcase; that is, A An + El,n-1 / EI, + E2,n-1 + E2,n.

SubcaseW- O. Sinceu 0 and v - 0, we have a(u) 2 and a(v) 1 or

a(u) 1 and a(v) 2. After flipping if necessary we assume that a(u) 2 and
a(v) 1. We first observe that Lemma 2.7 implies that if for some integers p and j
with 2 _< p < j _< n- 1 we have Zip 1 and Zlj O, then Zpn 1. Let the two l’s
in u be in positions k and t where 2 <_ k < t _< n- 1. Then t n- 1 for otherwise

Zkn ztn 1, contradicting a(v) 1.
We now show that k n- 2. Suppose, to the contrary, that k _< n- 3; hence

by the above, Zkn 1. Consider first the case 4 <_ k _< n- 3. Then by flipping A we
obtain A [aj], where

Cn()--(1,1, O, zl,n--3,...,Zlk--1,...,Z14,0, O, 1)T and alk--l, al,n-l--0.

Let (/1,..., n)T be a positive eigenvector of corresponding to p p()
p(A). As before let r (p- 1)/p and let - (- A)} (91,... ,gn)T. Then
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)k &n because rk (A An) (0,..., 0, 1).
Lemma 2.10 that

Since also 2n-1 r2, we get from

l_rn_l_k )P(- ) >
1-- r

--1

_> (r+r2-1)n>0,

n

k <_ n- 3, and p > 3. But then by Lemma 1.3, the matrix A- Elk -+- El,n-1 is a
matrix in A(n, 4) whose spectral radius is greater than p, contradicting A E G(n, 4).
We now obtain a contradiction in the remaining case 2 _< k _< 3. Let W2 and W3 be
the square matrices of order n defined by

w.= 0 0 0 w=
O O O

0 0 1 0 I 1
0 0 0 OI 0 0 0
0 0 0 0 0 1
o o o

and let Mi An + Wi (,i 2, 3). Then A M2 if k 2 and A M3 if k 3. Let

M=A+ 0 0

Then calculation shows that

n= 7 p(M) 4.3846..., p(M2)=4.3504..., p(M3)-4.3141...;

n 8" p(M) 4.6762..., p(M2) 4.6133..., p(M3) 4.5719

Thus p(M) > p(M)(i 2, 3) for n 7 and n 8, which is a contradiction. Hence
k 2,3 ifn 7or8. Assume that n

__
9. Let x (Xl,...,Xn)T be apositive

eigenvector of A corresponding to p p(A), and again let r (p- 1)/p. As before
we have xn-2 r2Xn and by Lemma 2.10,

2(1 -r--2-k) )p(x,-2 xa) > 1
1-r

Xn

Since n >_ 9 and k _< 3, we have n- 2 k _> 4 and hence

r2(1-rn-2-k) r2(1--r4)
1--r 1--r

1 r2 + r3 + r4 1 > 0

because p > 4. It thus follows that x-2 > xk and hence p(A- Elk + El,n-2) > p(A),
which is a contradiction. We have thus proved that k n- 2 and thus that rl (Z)
(0;..., 0, 1, 1, 1).

To complete the proof we show that z2 1. Flipping A to get A [aj] we

have c() (1, 1, 1, 0,..., 0, 1)T. We need to show that al,n- 1 or, equivalently,
that a12 a1,-2 0. Let } (2,...,2n)T be a positive eigenvector of
A corresponding to p. Then 2n-1 r2, where r (p- 1)/p, and for each j
2,..., n 2, we have

P(&n-1 j) (r(1 -1-rrn--J)
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wherecj-- lif2<_j_<3andcj =0if4_<j <_n-2. From this it can be proved
that 2n-1 > 2j (j 2,..., n- 2) for all n _> 6. It thus follows from Lemma 1.3 that
none of 512, 13,..., ,n-2 can be equal to one and hence that 5,n_ 1, as desired.
Thus in this subcase Z equals

1 1 1O
0 0 1

o o

or the matrix obtained by flipping. Since by Lemma 2.12, the matrices

1 1 1 ]O J2 ] and An+ O
0 0 1O O O O

have the same spectral radius. The proof is complete.
Let A be a matrix in A(n, d), and let Z A An [zj]. Then A has a staircase

pattern in the upper right corner, abbreviated SPURC, provided that

and

Zlj

_
Z2j _’’"

_
Znj (j 1,2,.. ,n).

Each of the matrices in G(n, d) in the statement of Theorem 2.13 has a SPURC.
However, it is not always the case that each matrix in G(n, d) has a SPURC. For
example, one can check that

1 1 0 1
1 1 0 1 1

1 1 0 1
1 1 0 0 1

G 1 1 1 0
and G2 1 1 1 0 0

1 1 1 1 0
1 1 1 1

1 1 1 1 1

are matrices in G(4,2) and 6(5,3), respectively, but neither has a SPURC. The
SPURC property does hold in the following asymptotic sense.

THEOREM 2.14. Let d be a positive integer. Then for n suJficiently large, each
matrix in G(n, d) has a SPURC.

Proof. Let A [aij] be a matrix in G(n, d), and let p p(A) and r (p- 1)/p.
By Corollary 2.2, by choosing n large enough we can make p as large as we wish and
r as close to 1 as we wish. Choose n so large that

(i) n>_9d+3,
(ii) r + r2 +... + r3d > 2d, and
(iii) p _> 2d.

Let x (xl,...,xn)T be a positive eigenvector of A corresponding to p, let Z
A- An [zj], and let y Zx (yi,... ,Yn)T. For each k 1,2,... ,n we have

Yk <_ dxn because

n n

j----1 j--1
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Let min{j Zlj 1}. We show that > n/2. If Zl,t+l zln 1, then
since d >_ ,jn= Zlj n + 1, we have >_ n + 1 d > n/2 (by (i)) and we are done.
Assume that there is a j > such that zij 0, and let m be the largest integer such
that Zlm 0. Then0 < n-m_< d. We prove that m-l <_ n/3. Suppose to the
contrary that m- > n/3. By Lemma 2.10 we have

(s)

1 rm-I
p(Xm Xt) > --Xm yt

1--r
_> (1 + r +... + r"--l)x. dxn.

From

Xm+l -’- + Xn Ym p(xn Xm)

we get

pXm pXn Xm+l Xn Ym
>_ px, (n m)x

so that

p- (n m)(9) Xm >_ x.
P

Combining (8) and (9) we get

p(Xm X) >_ (p-- (n (l + r + + rm_l_l) d)xn.
From (i) we get m- l- 1 > n/3- 1 _> 3d, and then from (iii) we get

p-(n-m) > p-d> 1.
p p -2

Hence using (ii) we get

p- (n- m)(1 + r +... + rm-z-) d >
P

1 + r +... + r3d

1+2d
> d>0.

2

We can now conclude that Xm > xt. This fact, together with all Zll 1 > 0
Zlm am, contradicts Lemma 1.3. This proves that m- <_ n/3. Now

n n
n-l=n-m+m-l_<d+ < 2’

and hence we have > n/2.
In a similar way we can prove that

n
min{j zij 1} > -nmax{i zij 1} <

(i 1,2,...,n),

(j 1,2,...,n).
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Hence it follows that

0 J[n/2J 1(10) z _< o o

Then since rj(A) <_ rj+l (A), r(A) rj+l(A)(j L /2J + 1,..., n- 1), we get from
Lemma 2.7 and from (10) that

(i 1,2,...,n);

in a similar way we get

Zlj Z2j .’’" Znj (j 1,2,...,n).

Thus A has a SPURC.

3. Minimizing the spectral radius over jr(n, d). Throughout this section
n and d again denote positive integers with d <_ n(n- 1)/2. Here we are concerned
with the minimum spectral radius of matrices in A(n, d) and the characterization of
those matrices with the minimum spectral radius. Let

#,d min{p(A)" A e A(n, d)},

and let

(n, d) {A A e A(n, d), p(A) #,d}.

Clearly, n’,d n,d and n,d’ n,d if n _> n and d _< d.
We first derive an analogue for #n,d of the results of Schwarz described in the

introduction.
LEMMA 3.1. Let P and Q be permutation matrices of order n. Then the matrix

obtained from PAnQ by first (i) moving all the 1 ’s in each row to the left and then
(ii) moving all the 1 ’s in each column to the bottom equals

Proof. The row sums of A are 1, 2,..., n, and hence the row sums of pAQ are
1, 2,..., n in some order. The matrix B obtained from PAQ by applying (i) also
has row sums 1, 2,..., n in some order and hence there exists a permutation matrix R
such that RB An. Therefore applying (ii) to B yields the same matrix as applying
(ii) to An, that is, yields An.

COROLLARY 3.2. Let A be a matrix in 4(n, d) and let P and Q be permutation
matrices of order n. Then the matrix obtained from PAQ by first (i) moving all the
1 ’s in each row to the left and then (ii) moving all the 1 ’s in each column to the bottom
is also in A(n, d).

THEOREM 3.3. There exists a matrix in (n, d) such that in each row all the 1 ’s
precede the 0 ’s and in each column all the 0 ’s precede the 1 ’s.

Proof. Let A be a matrix in 7-/(n,d). Since An _< A, it follows from Lemma
1.2 that for some r >_ 1, A AI... #At, where A1,A2,..., Ar are the irreducible
components of A. Each A has a positive eigenvector corresponding to its spectral
radius p(A). For each integer with 1 _< _< r, let Qi be a permutation matrix such
that the components of the positive eigenvector of QAQ corresponding to p(A)
are in nondecreasing order. Applying Lemma 1.3 (and its analogue for columns) to
QAQT we obtain a matrix B such that in each row all the l’s precede the O’s and
in each column all the O’s precede the l’s and p(B) <_ p(A)(i 1,2,...,r). Let
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B BI#’" #Br. It follows from Corollary 3.2 that An _< B and hence B e A(n, d).
Since

p(B) min{p(Bi)" 1,2,...,r} _< min{p(Ai)" 1, 2,...,r} #(n,d),

we conclude that p(B) =/_tn,d and hence B is in (n, d). []

We next investigate Pn,d and 7-/(n, d) for d _< n- 1. Throughout the remainder of
this section, we let H3 and H4 denote the (0, 1) lower Hessenberg matrices of orders
3 and 4, respectively, and we let B4 A4 + E14. Each of these matrices is given as
follows along with their spectral radii:

i 1 O]Ha= 1 1 1 p(H3)-3+V;
1 1 1

1 1 0 0
1 1 1 0

H4= 1 1 1 1 p(H4)=3;

1 1 1 1

1 0 0 1
1 1 0 0 3+vB4-- 1 1 1 0 p(B4)- 2

1 1 1 1

The characteristic polynomial of H3 equals x(x2 3x + 1) and that of B4 equals
(x2 3x + 1)(x2 x + 1). This implies that the spectral radii of H3 and Ba equal
(3 + x/)/2 as given above.

The following lemma is a direct consequence of Lemma 1.3.
LEMMA 3.4. Let A [aj] be a (0, 1)-matrix of of order n having a positive

eigenvector corresponding to p(A). Suppose that for some i, j, and we have aj 0
and ai 1 and rj(A) <_ r(A) but rj(A) r(A). If the matrix B A +Eij Ei is

irreducible, then p(B) < p(A).
LEMMA 3.5. Let A be a matrix in (n, d).
(a) /f d 1, then p(A) 2 and A An + -n-1 eiEi,i+ where each e 0 or 1i=1

and el +’" + en- 1.
(b) If (n, d) (3, 2), then p(A) (3 + -)/2 and A H3 up to permutation

similarity. 2

(c) If (n, d) (4, 2), then p(A) 2 and A J2#J:.
(d) If (n, d) (4, 3), then p(A) 3 and A Jl#J3, A J3#J1, or A H4 up

to permutation similarity.3

Proof. Assertion (a) is almost immediate, and assertion (b) follows from the fact
that all matrices in A(3, 2) are permutation similar and have spectral radius equal to
(3+ x/)/2. Now assume that (n,d) (4, 2). If A J2#J2, then A has an irreducible
component of order 3 or 4 with minimum row sum at least 2 (but not all row sums
equal 2), and hence by (PFII), p(A) > 2. Since p(J2g/=J2) 2, A J2#J2, and
assertion (c) follows.

2 There are three matrices in (3, 2).
3 There are four matrices in T/(4, 2).
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Finally, assume that (n, d) (4, 3). The only reducible matrices in t(4, 3) are

Jl#J3 and J3#J1, each of which has spectral radius equal to 3. In particular, #4,3 _< 3.
Suppose that A is irreducible. It is now easy to check using (PFII) that the only
irreducible matrices in T/(4, 3) with spectral radius at most 3 are the n:latrices H4 and
the matrix

1 0 1 0
1 1 1 1
1 1 1 0
1 1 1 1

which is permutation similar to Ha. Since p(Ha) 3, assertion (d). now follows.
LEMMA 3.6. For each n >_ 4 we have #n,n-1 3.
Proof. Let n 3t + a, where t >_ 1 and 1 <_ a <_ 3, and let B J3#"" #J3#K,

where the number of J3’s is t and where

J1 ifa= 1,
K J2 if a= 2,

.H3 ifa=3.

Then B is in jr(n, n- 1) and p(B) 3. Thus #n,n-1 <- 3. We prove #n,n- >_ 3 by
induction on n. By (d) of Lemma 3.5, we have #4,3 3. Assume that n >_ 5 and let
A [aj] be a matrix in Jr(n, n- 1). Then A satisfies at least one of the following
properties.

(i) a(rl(A- An))_< 1.
(ii) a(r2(A- An)) 0.
(iii) a(r(A- An))>_ 2 and a(r2(A- An))_> 1.

If (i) holds, then A(1 1) >_ F for some matrix F in A(n- 1,n- 2) and hence by
(PFIV), (PFV), and the inductive assumption, p(A) >_ p(F) _> 3. If (ii) holds, then
A(2 2) _> G, where G is in ,4(n- 1, n- 2) and again p(A) _> 3. If (iii) holds, then
each row of A contains at least three l’s and hence p(A) _> 3 by (PFII). Therefore
p(A) >_ 3 for each matrix in A(n, n- 1) and hence

COROLLARY 3.7. If n >_ 4 and d <_ n- 1, then #n,d <_ 3.
Assume that n _> 4 and d _< n- 1. In view of the above corollary, no matrix A in

4(n, d) with p(A) > 3 belongs to T/(n, d). To investigate matrices in T/(n, d) we now
identify some classes of matrices whose spectral radii are greater than 3. Any matrix
of jr(n, d) having an irreducible component that belongs to one of these classes cannot
belong to 7-/(n, d).

LEMMA 3.8. /f A [aj] is an irreducible (0, 1)-matrix of order 6 such that
A6 <_ A, then p(A) > 3.

Proof. If a6 1, then p(A) >_ p(A6 + E16) > 3. We now assume that a16 0
and consider a number of cases.

Case (i). a5 1. Thenak6 1 for some k E {2, 3, 4, 5} and thus A >_ A6+
El5 + Ek6. If k 5, then/k6 + El5 - Ek6 is permutation similar to /k 6 - El6 -+- E56A
and hence p(A) >_ p(A6 + E6) > 3. If 2 _< k _< 4, then by Lemma 3.4 applied to A
we have

p(A) >_ p(A6 + E5 + Ek6) >_ p(A6 + E5 + Ea6) 3.1497... > 3.

Case (ii). a26 1. We apply Case (i) to A.
Case (iii). a15 a26 0 and hi4 1. Then ak6 1 for some k E {3, 4, 5} and

hence A >_ A6+E4+Ek6. If k _< 4, then p(A) > 3 since p(A6+Ea+E36) 3.0907...
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and p(A6 + E14 + E46) 3.2201 If k 5, then there is an E {2, 3, 4} such that
a5 1. Then permuting the last two rows and last two columns of A, we may apply
one of the previous cases to conclude that p(A) > 3.

Case (iv). hi5 a26 0 and a36 1. We apply the previous case to A.
Case (v). a15 a14 a26 a36 0 and hi3 1. There exists a k E {4, 5}

such that ak6 1. Since A is irreducible, we also have ast 1 for some (s,t)
{ (2, 4), (2, 5), (3, 4), (3, 5)}. Then A > A6 + E13 + Est + Ek6. First suppose that k 4
and let Xt A6 + E13 + Et + E46. Then p(X24) 3.2092..., p(X25) 3.1479...,
p(X34) 3.2695..., and p(X35) 3.2092... and hence p(A) > 3. Now suppose
that k 5. Since A is irreducible, at least one of a25, a35, and a45 equals 1. That
p(A) > 3 follows by applying the previous cases to the matrix obtained from A by
interchanging rows 5 and 6 and columns 5 and 6.

Case (vi). a15 hi4 hi3 a26 a36 0 and a46 1. We apply the previous
case to A.

Case (vii). a15 a14 a13 a26 a36 a46 0. Since A is irreducible,
a12 a56 1. In this case at least one of a25, a35, and a45 equals 1, and by an
argument similar to that used in Case (v), we can show that p(A) > 3.

THEOREM 3.9. Let A be an irreducible (0, 1)-matrix of order n > 6 such that
An < A. Then p(A) > 3.

Proof. It follows by repeated application of (b) of Lemma 1.2 that A has an
irreducible, principal submatrix of order 6. Hence p(A) > 3 follows from Lemma 3.8
and (PFV).

COROLLARY 3.10. If 1 < d < n- 1 and A is a matrix in 7-/(n, d), then for some
r, A AI... Ar where each As is an irreducible matrix of order at most 5.

Proof. This is a direct consequence of Corollary 3.7 and Theorem 3.9.
THEOREM 3.11. Let 1 <_ d <_ n- 1. Then

(11)
2

#n,d "2
3

/f + 1 _< d <_ L J,
+1 <_d_n-1.

Proof. Let A be a matrix in .A(n, d). First suppose that 1 < d < [n/2J. Then A
has an irreducible component of order at least 2 and hence #n,d > 2 by (PFII). Since
there exists a matrix in A(n, d) each of whose irreducible components has order at
most 2, #n,d 2.

Now suppose that [n/2J + 1 < d < [2n/3J. Then A has an irreducible component
of order at least 3 and, by Corollary 3.10, no irreducible component of order greater
than 5. There exists a matrix in A(n, d) each of whose irreducible components is con-
tained in {H3, J2, gl } and hence Pn,d <_ (3 + x/-)/2. It can be checked by computation
that if X is an irreducible (0, 1)-matrix of order 4 with A4 _< X or X is an irreducible
matrix of order 5 with A5 < X, then p(Z) > (3 + x/)/2 with equality if and only if
Z B4. It now follows easily that #n,d (3 + V)/2.

Finally, suppose that [2n/3J + 1 < d _< n- 1. Then again A has an irreducible
component of order at least 3 and no irreducible component of order greater than
5. If at least one component of A equals J3, then p(A) _> 3. Suppose that A has
no components of order 3. Then the lower bound on d implies that either A has a
component of order 5 with at least four l’s or A has a component of order 4 with at
least three l’s. Since Lemma 3.6 implies that #5,4 #4,3 3, we have p(A) > 3.
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There exists a matrix in M(n, d) each of whose irreducible components belongs to
{ J3, J2, J1}, and hence we now conclude that #n,d 3. D

To conclude we determine the minimum spectral radius Pn,n of matrices in ,4(n, n)..
In the next theorem we shall make use of the the matrices below given with their char-
acteristic polynomials and spectral radii:

1 1 1 0

T4=
1 1 1 0 x2(x2-4x+2) p(T4)=2+x/;
1 1 1 1
1 1 1 1

1 1 1 0 0
1 1 1 0 0

T5= 11110
1 1 1 1 1
1 1 1 1 1

x (x + 5),

THEOREM 3.12. Let n be an integer with n >_ 3. Then

3 ifn--O (mod3),
(12) #,,n 2 + x/ if n 2, 5 and n 1 or 2 (mod 3),

+v /fn 52

Proof. The matrices J3 (R)"" (R) J3, J3 (R)"" (R) J3 (R) T4, J3 O... (R) J3 (R) T4 (R) T4,
and T5 show that the values for Pn,n given in the statement of the theorem are upper
bounds for Pn,n. Since #n,n

_
Pn,n-1, Theorem 3.11 now implies that Pn, 3 if

n 0 (mod 3). For the remaining two cases we let A A... #At be a matrix in
(n, n) where.A1,... ,A are the irreducible components of A with orders nl,... ,n,
respectively.

Case n 1 (mod 3). By Theorem 3.3 we may also assume that in ech row
of A all the l’s precede the 0’s and in each column all the 0’s precede the l’s. Each
irreducible component of A also has this property and hence has only l’s on its
superdiagonal.

First assume that a(A-A) n for M1 i. Suppose that ny 5 for some j. Then
Ay is an irreducible matrix nd contains principM submatrix B such that T4 B.
om (PFIV) and (PFV) we conclude that p(A) > p(T4), which is a contradiction.
Hence n 4 for all i. Since a(A-An) n and n 1 (mod3), there is

k such that n equMs 4. Since T4 Ak or T4 A, it follows from (PFIV) that
p(A) p(A) p(T4).

Now assume that it is not the case that. a(A A) n for all i. Then a(A
Ak) > nk for some k where nk 4. As above it follows that p(A) p(T4).

Case n 2 (mod 3). First assume that n 5. If A is reducible, then it is easy
to check that p(A) > 4, which is a contradiction. Thus A is an ireducible matrix with

A5 A hving l’s on its superdiagonal and one additionM 1. Except for T5 and Th,
there is only one other such matrix and its spectrM radius is greter than that of Th.
If n 8, it follows s bove that p(A) p(T4).
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ON THE CONDITION BEHAVIOUR IN THE JACOBI METHOD*

ZLATKO DRMA(t

Abstract. The aim of this note is to show that the matrix S(n, c) (1 a)I +aee", e

(1,..., 1), a E (0, 1) is not a counterexample for the accuracy properties of the Jacobi method for
computing the singular and eigenvalue decomposition, as might be understood from a recent article
of Mascarenhas in this journal. In fact, the Jacobi process on S(n, ) is an example of the perfect
behaviour of the algorithm. It is shown that Jacobi rotations preserve the optimal (with respect to
diagonal scalings) spectral condition number of S(n, c).

Key words. Jacobi method, accuracy, condition behaviour, optimal scaling

AMS subject classifications. 65F15, 65G05

1. Introduction. Jacobi’s method is more accurate than QR. This was stated
by Demmel and Veselid [2], where the claim about the accuracy of the Jacobi method
was dependent on the behaviour of the condition numbers during the process. For the
reader’s convenience, we give a short description of the Jacobi method for computing
the spectral decomposition of positive definite matrices. Let n E N and let

H- LL Rnxn

be positive definite. The Jacobi process is defined by

H() H, H(k+l) (U(k))H()U(), k O, 1, 2,...,

where U(k), k 0, 1, 2,... are chosen from the orthogonal group O(n). Each U(k)

is given by pivot position (p, q) 7)(k), which depends on chosen pivot strategy 7)
N --+ {(p,q), 1 _< p < q _< n}, and by the parameter (angle) Ck [-r/4, r/4], as
follows:

(U(C))pq I cosCk sin ](U())qq -sinCk cosCk
(U(k))ij 5ij, (i,j) {(p,p), (p,q), (q,p), (q,q)},

where 5ij denotes Kronecker’s symbol. The angle is chosen to satisfy

(H(k+l))pq O,

i.e., for (H(k))pq 0 (see [5]),

cot2
(H(a))qq (H())PP

tank
sign cot 2k

2(H(k))pq cot 2k + V/1 + cot2 2k
For suitably chosen pivot strategy 7) we have a convergent process--there are

A diag (’1,’’.,/n) lim H(),
k=0

Received by the editors January 19, 1994; accepted for publication (in revised form) by F. T.
Luk May 30, 1995. This research was supported by Ntional Science Foundation grant ACS-9357812,
Department of Energy grant DE-FG03-94ER25215, and Intel Corporation.

Department of Computer Science, University of Colorado, Boulder, CO 80309-0430 (zlatko@
cs.colorado.edu).
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and H UAU is the spectral decomposition of H. For k E N [.J{0} let

H(k) A(k)H(sk)A(k), (H(s))ii 1, 1 _< _< n.

According to the theory of Demmel and Veseli5, the spectral condition numbers
t2(H(k)S amax(H(sk))/amin(H(sk)), k N[.J{0} determine the relative accuracy
of the computed eigenvalues. Here amid(’) and amx(’) denote the minimal and the
maximal singular values of a matrix, respectively. If the elements of the initial ma-
trix H have relative uncertainties (which is the case in the applications), then the
moderate size of the quotient

2(H(sk)
# #(H, P) max

gives sense to the first sentence of this section. In extensive numerical testing Demmel
and Veseli( have never measured It above 1.82. Explaining the excellent behaviour of
It is an important open problem; see [2], [1]. Wang [7] used the matrix S(n, a) (see
(2.1) below) and obtained It considerably larger than 1.82. Recently, Mascarenhas
[6] used S(n, a) for the construction of a Jacobi process with condition growth of the
order n/4. Thus, the matrix S(n, a) started to play the role of a counterexample for
the relative accuracy properties of the Jacobi method. Is that really so ?

The aim of this note is to show that the Jacobi process on S(n, a) is an ex-
ample of the perfect behaviour of the Jacobi method and that the search for a real
counterexample remains open.

2. The matrix S(n, ). Let n N, a (0, 1). The matrix S(n, a) is defined
by

(2.1) S(n,a)=(1-a)In+aee, e=(1,...,1).
It was noted in [4] that S(3, a) is optimally scaled with respect to diagonal scalings,
i.e., no scaling DS(3, a)D, D diagonal and nonsingular, can decrease its spectral con-
dition number. Because of the importance of S(n, a) in the theoretical investigation of
the Jacobi process, we prove the optimal scaling property here. We use the technique
and characterization developed in [4].

THEOREM 2.1. For n N, a e (0, 1) let the matrix S(n, a) be defined by (2.1).
Then

2(S(n, a)) min{t2(DS(n, a)D), D

where T) denotes the set of n n diagonal nonsingular matrices.

Proof. It is easily seen that the spectrum of S(n, a) is given by

/1 (S(n, o)) /n-1 (S(n, )) 1 a, An(S(n, a)) 1 + (n 1)a.

The eigenspace of An(S(n, a)) is spanned by e ei, and if we look at the inter-
section of this eigenspace and the Euclidean unit sphere S(0, 1) {x e R, Ilxl12-- 1} we get two points +/- -4-e Let ,min(’) and Amx(’) denote the mini-
mal and the maximal eigenvalues of a matrix, respectively. The subspace belonging to
min(S(n, C)) is obviously the hyperplane e+/-, and therefore the normed eigenvectors
from e+/- build the sphere sn-2(0, 1) e+/- S(0, 1). Let D diag (d11,..., dnn)
and let So(n, ) DS(n, a)D be the scaled matrix. Since for x : 0

S(n, a)x ix S(n, a)(Dx) iD-(Dx),
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we have

xS(n,a)z
/min(SD(n, O)) min

ilxll2=l xrD-2x

xS(n,a)< min
xeSn_.(0,1) xrD-2x

/max(SD (n, o)) max
iixll2= xD-2x

x’S(n,a)x:> max
x{4-} xD-2x

,min (S(n, o))
max xrD-2x

xes-2(o,1)

x(S(, ))
min xrD-2x"

xe{=}

Therefore,

max xrD-2x
)max(qD(n, a)) :> ,max(S(n, a)) xeS’--(0,1)

min(D(n, O)) /min((n, O)) rain xD-2x

Note that

n 2 1 1

il xi --.x {:k} == x’D-2x
n dii

On the other hand, if we choose n vectors in Sn-2(0, 1),

1 1
xi=--(ei-ei+l), 1 <_i<_n-1, xn----(e-en)

and compute

xD-2xi= - + 2d+1,+1
1 <_i<n-1,

we immediately see that

max xD-2x >_ min xrD-2x,
es-:(o,) xe(+}

,(s,(,, o0) _> ,.(s(,, o0).

Thus, a2(S(n, a)) min{a2(DS(n a)D), D e 2)}. D
Remark 2.2. Since S(n, a)S(n, a) (1 + (n 1)a2)S(n, (n-2)+2a

1+(n_1).’ ), it also
holds that

2(S(n,a)) min{2(S(n, a)D), D e

due to the homogeneity of a2(’) and the properties of the spectral norm.
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Wang [7] used S(n, a) as an example of the matrix for which the scaled condition
during the Jacobi process grows more than Demmel and Veselih’s 1.82 growth factor.
Recently, Mascarenhas [6] described a strategy with the condition growth factor n/4.
Although used as a counterexample for the good behaviour of the Jacobi rotations, the
matrix S(n, c) is actually an example of the perfect behaviour of Jacobi rotations.
We shall explain our claim. For the reader’s convenience we restrict ourselves to the
technically simple part of the analysis. We consider two pivot strategies: the well-
known row-cyclic strategy ((1, 2),..., (1, n), (2, 3),..., (2, n),..., (n 1, n)) and the
strategy defined by Mascarenhas [6].

For the sake of simplicity, let n > 2 be even. In that case the optimal scaling of
S(n, a) is obvious, at least in the theory of Forsythe and Straus. Indeed,

are eigenvectors corresponding to .max(S(?’t, o)) and )min(S(, o)), respectively, and
the corresponding eigenspaces are not separable by the set of nonsingular diagonal
matrices. (See Definition 1 and Theorems 1 and 3 in [4].)

THEOREM 2.3. Let the Jacobi method with the row-cyclic strategy be applied on
S S(n, a) and let the Jacobi rotations be followed by the swapping of pivot rows and
columns (see below). Then only n-1 rotations are needed to finish the diagonalization
process. Furthermore, if S(k), 1 <_ k <_ n- 1 denote corresponding matrices generated
by the method, then for 1 < k < (n- 2)/2

2(S(k)) min{2(DS()D), D e 2)}.

Proof. After k steps of the row-cyclic strategy (with certain permutations), the
obtained matrix has form S(k) (1 -a)Ik (R) (k), where

l+ka v/l+ ka v/l+ ka
v/1 +ka 1 o a

". 1 a
x/l+ka a a 1

This will be clear if we consider rotation, which annihilates the (1, 2) position of (k).
Let

U() Ck 8k
--Sk Ck

v/l+k 1
In-k-2, ck V/2 + k’ sk -v/2 + k

Then

(U())()U()

l+(k+l)a 0 v/2+ka v/2+ka
O. 1-a 0 0

v/2 + ka 0 1 a a

a 1 a
v/2 + ka 0 a a 1

Mascarenhas used 1/rmin(. as a condition number. This can be misleading because n overes-
timates the spectral norm of the scaled matrix up to n times (roughly).
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and if we swap the first two columns and rows we obtain the matrix (I a) (k+l).
Now we prove that for k

_
(n- 2)/2 the matrices S(k) are optimally scaled; i.e.,

any diagonal symmetric scaling would increase the spectral condition number of S(k).
Obviously, the problem reduces to the optimal scaling of ;(k). Consider the vectors

Xmax (V/1 + k, 1, 1, ,1) E Rn-

Xmin (v/1 + k,-1,-1,...,-1, 1,-1,..., 1,-1)7 E Rn-.
l+k

They belong to the eigenspaces of /max((k)) and ,min(/(k)), respectively, and are
reflections of each other; i.e., I(Xmax)jl I(Xmin)jl, 1

_
j

_
n- k. Now by Theorem

3 in [4] the matrix (k) is optimally scaled. Thus, Jacobi rotations preserve the opti-
mal scaling property and, because of orthogonality, the value of the optimal spectral
condition number.

The case (n-2)/2 < k < n-1 is technically not easy to handle. As an illustration,
we shortly analyse the case S S(4, a). After rotating at pivot positions (1,2) and
(2, 3), respectively, we have (up to a certain permutation)

1 -a 0 0 0 1 -a 0 0 0
0 l+a ax/ ax/ S()= 0 1-a 0 0
0 ax/ 1 a 0 0 l+2a ax/
0 ax/ a 1 0 0 ax/- 1

The lower right 3 3 submatrix of S(1) is optimally scaled. On the other hand, the
lower right 2 2 submatrix of S(2) is not optimally scaled, but its standard scaling
(diagonals to one) is the optimal choice. Furthermore, rotating at (3, 4) in S(1) gives

S’(2)

1-a 0 0 0
0 l+a 2a 0
0 2a l+a 0
0 0 0 1-a

which is an optimally scaled matrix.
In the case of the strategy defined by Mascarenhas, the situation is much simpler.

Mascarenhas uses n- 2 and the following strategy, which we will call
(i) Partition H H Rnn by

H1,1 H1,2 1(2.3) H= (H1,2) H2,2 H1,1,H2,2 Rn/2xn/2

and first choose El2 pivot pairs from the main diagonal of the (1, 2) block in (2.3),
i.e., (k, El2 + k), 1 <_ k <_ El2. Next, the remaining pivot positions in the blocks (1, 2)
and (1, 1) in (2.3) are chosen in any order.

(ii) If n > 2, then apply (i) recursively on the (2, 2) block in (2.3). (In the case
H S(n, a), (i) reduces to pivoting at (k, El2 + k), 1 <_ k <_ El2.)

THEOREM 2.4. Let S(k), 1 <_ k <_ n- 1 denote matrices from the Jacobi process
with pivot strategy 7M and S() S(n, a), n 2 > 2. Then S(n-) is diagonal and
forl<_k<_n-2

tc2(S(k)) min{a2(DS()D), D e }.
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Proof. Recall that S(k) is obtained after rotating by U(k-l) at the pivot position
(k, n/2 + k) and with the angle r/4. It is easily seen that S() (1 a)Ik @ ()
with some (k) and that (n/2) (1 + )S(n/2,2/(1 + a)). Hence it is sufficient to
consider the case 1 _< k

_
(n- 2)/2. If x, and XM are as in (2.2) then

are eigenvectors corresponding to Amin(S()) and Amx(S(k)), respectively. Further-

more, it can be shown that I(x))jl I(X(kM))jl, 1 <_ j <_ n, and the application of
Theorem 3 from [4] completes the proof.

The spectral condition number remains optimal the entire time with respect to
diagonal scalings, and in the last step it drops to one.
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AN OPERATOR RELATION OF THE USSOR AND THE JACOBI
ITERATION MATRICES OF A p-CYCLIC MATRIX *

DIMITRIOS NOUTSOSf

Abstract. Let the Jacobi matrix B associated with the linear system Ax b be a weakly
cyclic matrix, generated by the cyclic permutation a (al, 2,... ,qp) as this is defined by Li and
Varga. The same authors derived the corresponding functional equation connecting the eigenvalues
A of the unsymmetric successive overrelaxation (USSOR) iteration matrix T and the eigenvalues

z of the Jacobi matrix B extending previous results by Gong and Cai. In this paper, the validity
of an analogous matrix relationship connecting the operators T2 and B is proved. Moreover, the
"equivalence" of the USSOR method and a certain two-parametric p-step method for the solution of
the initial system is established. The tool for the proof of our main result is elementary graph theory.

Key words. USSOR method, p-cyclic matrices, graph theory, matrix relationship

AMS subject classification. 65F10

1. Introduction. Let us consider the matrix A E Cn,n and let us suppose that
it is partitioned into p p blocks where its diagonal blocks are square and nonsingular.
For the solution of the linear system

(1.1) Ax b,

we consider the unsymmetric successive overrelaxation (USSOR) iterative method

(1.2) x("+1) T,x(") + c, rn 0, 1, 2,...,

where x() E Cn is arbitrary, and w and & are the overrelaxation parameters. The
iteration matrix T is given by

T (I &U)-I [(1 &)I + &L](I wL)-l[(1 w)I + wU],

where L and U are, respectively, the strictly lower and the strictly upper block trian-
gular parts of the block Jacobi matrix B and the vector c is given by

(1.4)

Let the associated block Jacobi matrix B be a weakly cyclic matrix generated by
the cyclic permutation a (al, a2,..., ap). This definition given by Li and Varga [9]
is as follow.s.

DEFINITION. The p p block matrix B is a weakly cyclic matrix, generated
by the cyclic permutation a (al,a2,...,ap), if there exists a permutation a

(al, a2,..., ap) of the integers {1, 2,..., p} such that

Bj+I 0, j l(1)p, and Bij =- 0 otherwise,

* Received by the editors May 13, 1994; accepted for publication (in revised form) by R. Freund
June 13, 1995.

fDepartment of Mathematics, University of Ioannina, GR-451 10, Ioannina, Greece (dnoutsos@
cc.uoi.gr).
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where O-p+1 (71.

We remark here that the well-known definition for the consistently ordered matrix
([16] and [21]) is derived from the one above with a (p,p- 1,p- 2,..., 1), while
that of the (q, p- q)-generalized consistently ordered (q, p- q)-GCO matrix ([2], [7],
and [4]) is derived from the permutation a (al, a2,..., gyp), where (7j-[-1 p- q + crj
or ay+l aj -q such that 1 _< cry _< p,j l(1)p. So, the definition (1.5) is the most
general for the family of p-cyclic matrices. It is obvious that the graph of the block
matrix B is a cycle as this is also noted in [9].

Li and Varga [9] derived the functional equation

(1.6)
[A- (1 w)(1

+ + +

which couples the nonzero eigenvalues A of the USSOR iteration matrix T with the
eigenvalues # of the Jacobi matrix B. In (1.6) ILI and IuI are the cardinalities of
the sets L and v, which are the two disjoint subsets of P {1, 2,..., p} associated
with the cyclic permutation cr (Crl, a2,..., ap) as these are defined in [9], i.e.,

(1.7) L {(7j grj > O’j+l}, U {aj "aj < (7j+l}.

The integer k is well defined in [9] as is the number of nonzero block elements of the
matrix product LU. Li and Varga gave also the directed graph interpretation of the
number k. It is obvious that L [-J U {1, 2,... ,p} and L U , consequently,
ILI + IUI P. In other words ILI and IuI are the numbers of the nonzero block
elements of the matrices L and U, respectively.

Equation (1.6) generalizes the following previous works: (i) The results of Sari-
dakis [12] on the USSOR iteration matrix for consistently ordered weakly p-cyclic
matrices; (ii) the ones of Gong and Cai [5] and of Varga, Niethammer, and Cai [17] on
the SSOR iteration matrix for p-cyclic matrices; (iii) the well-known results of Young
[19, 21] on the SOR matrix for the two-cyclic case; (iv) the well-known results of Varga
[15, 16] on the SOR iteration matrix for the consistently ordered weakly p-cyclic Ja-
cobi natrix; and (v) the results of Verner and Bernal [18] on the SOR matrix for the
(q, p- q)-GCO case. It should be noted that the result in the last case was mentioned
for the first time by Varga in [16]. Finally, a relationship similar in character on the
modified SOR (MSOR) matrix for the (q, p-q)-GCO case, was derived by Taylor [14].

Our main objective in this work is to derive the matrix analogue of the functional
equation (1.6). More specifically, we show that the identity
(1.8)

[Toco-(1-w)(1-&)I]P

+ + +

always holds.
It is interesting to mention that the matrix analogues of the functional equations

of cases (ii)-(v) were derived by Galanis, Hadjidimos, and Noutsos (see [1-3]), by using
elementary graph theory (Harary [8], Varga [16]). The matrix analogue of the equation
corresponding to the MSOR case was derived by Young and Kincaid [20] for the special
case (p, q) (2, 1), by Hadjidimos and Yeyios [6] for the cases (p, q) (3, 1), (3,2) by
the straightforward analytic calculations and by Hadjidimos and Noutsos [7] for all
values of p and q, by elementary graph theory.
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The proof of (1.8) is given in 2. As will be seen, the main tool will be combina-
torics and to guide intuition elementary graph theory will be used. Also by considering
special cases of (1.8) with 0 or w 0, known, other results for the SOR as well as
the backward SOR methods will be obtained. In 3 the "equivalence" of the USSOR
method and a certain two-parametric p-step method in the sense of Niethammer and
Varga [10] is established. Apart from the theoretical interest presented by the identity
(1.8), it is also of practical importance, since the problem of determination of "good"
or "optimal" parameters w and & for the solution of the linear system (1.1), using the
USSOR method, is equivalent to that of the determination of the same parameters
of a two-parametric p-step iterative method. This problem, however, still remains an
open one.

2. Main result and preliminary analysis. The statement of our main result
is given in the following theorem.

THEOREM 2.1. Let B be the weakly cyclic block Jacobi matrix, generated by the
cyclic permutation a (al, a2,..., ap), andT in (1.3) be the block USSOR iteration
matrix associated with A in (1.1). Then the matrix relationship (1.8) holds.

The proof of Theorem 2.1 will be given later, where a number of other auxiliary
statements will be stated and proved. First, the background material on which these
proofs are based is developed.

It is noted that (1.8) trivially holds if w b 0. So we assume that w 0 and
& : 0. We will see that this assumption can be made without any loss of generality.

To simplify the proof of Theorem 2.1, we will prove the validity of another simpler
relationship which is produced from (1.8) by setting

(2.1) (i vU)T(I YoU) -1

in the place of T. We then begin our analysis by introducing the directed graphs.
The directed graph G is a pair (V, E) where E c Y x Y (see [16] or [8]). In

our analysis the vertex set V -- P, following [13] or [7], we identify G with the
edge set E. Also for a block partitioned matrix A, the graph of A is defined to be
G(A) {(i, j)" Aj 0}. So the directed graph G(B) of the Jacobi matrix B will be

P

(2.2) G(B) U {(a,a+l)},
i’.-1

where ap+l a. (In the sequel the node ap+ will be denoted as a.)
An example for p- 5 is given now to demonstrate the analysis. Let

0 0 0 B14 0
0 0 0 0 B
0 B32 0 0 0
0 0 B43 0 0
Bh 0 0 0 0

be the Jacobi matrix. From the definition we have a (2, 5, 1, 4, 3), L {5, 4, 3},
and v {2, 1}. The graph G(B) is shown in Fig. 1.

From Fig. 1 it is easily seen that G(B) is a cyclic graph. It is also noted that (i)
there are exactly k paths which go from a node of L to a node of Cv corresponding
to the nonzero blocks of LU. We call these paths "backward" paths. (ii) There are
exactly k paths which go from a node of Cv to a node of L corresponding to the
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L

FG. 1.

nonzero blocks of UL. We call these paths "forward" paths. In our example, k 2
corresponds to the two backward paths (3, 2) and (5, 1) or to the two forward paths
(2, 5) and (1, 4).

To derive the graph of the matrix Bp we can observe that starting from the node
a, we return to a after p paths of B passing through all the nodes a+l, oi+2,...,

So Bp is a block diagonal matrix which comes from a sum of products of powers of
L’s and U’s. Each product contains totally a number of ILI, L’s and IuI, U’s.

The graph G(T) of the matrixT is now studied. From (1.3) and (2.1) we get
that

(2.3) w [(1 O)I + OL](I wL)-l[(1 w)I + wU](I 2U) -1.

Obviously the following relations hold:

qL qu

(2.4) (I wL) -1 E (wL)i and (I &U)-1 E (&u)i,
i=0 i=0

where qL and qv are the largest integers such that LqL 0 and Uqv 0, respectively,
(in the above example, qL 2 and qu 1). By substituting (2.4) in (2.3) and after
simple operations, we obtain that

a (1 w)(1 &)I + (w + &
qL qu

(1 +
(2.5) i=1 i=1

qL qu

+ + }E
=1

It is noted that wL and &U are of exactly the same form as L and U. So wL and &U
will be denoted from now on by L and U. Thus, after this convention (2.5) can be
written as

To.,,;., (1 w)(1 ,)I +
(2.6)

x L + U + LiUJ
w

=1
w

=1
ww

=1=1
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Since in relation (2.6) we have different scalar coefficients for the matrices I,Li, U,
and LUJ, we introduce the weighted graph of 7. Thus we define (i) the paths
weighted by (w + &- w&) 1=____ as single-arrowed paths; (ii) the paths weighted by

(w / &- w&) as double-arrowed paths; (iii) the paths weighted by (+-)w as
triple-arrowed paths; and (iv) the paths weighted by (1- w)(1- &) as four-arrowed
paths. So from the right-hand side of (2.6) we have the following. The first term of
(2.6) gives the four-arrowed identity paths

(2.7) (hi, hi), i=1(1)p.

The second term, which contains a sum of powers of L, gives the single-arrowed paths

(2.8) (a,ai+j), j l(1)qL,i, ai e 4L,

where qL,i is an integer such that all the successive nodes a, a+l,..., a+qL,_l belong
to L and ai+qL, E 4u. (From Fig. 1 we can see that if a 5 or a 3 then qL,i 1
while if ai 4 then qL,i 2.) The third term, which contains a sum of powers of U,
gives the double-arrowed paths

(2.9) (hi, hi+j), j l(1)qv,i, cri e u,

where qu, is an integer such that all the successive nodes a, a+l,..., a+qv,_l belong
to u and ai+q, L. (Figure 1 gives that qu, 1 for both cases a 1 or 2.)
Finally the last term, which contains a double sum of products of powers of L and U,
gives the triple-arrowed paths

(2.10)

where qLU, qL,i / qu,i+, (in our example qLU, 3 for ai 4, which corresponds
to the three successive paths (4, 3), (3, 2), and (2, 5)). It is noted here that a8 := as-p
if s > p in (2.8), (2.9), and (2_.10). The union of all the paths in (2.7), (2.8), (2.9),
and (2.10) gives the graph of T.

(2.11)

i--1

The subgraphs of G() of our example that contain only the paths that have
the origin node 4 i or 1 U are illustrated in Fig. 2(a) and Fig. 2(b), respectively.

We distinguish the subset i of L which contains the nodes aj such that aj_
u and the subset u of u which contains the nodes aj such that aj_ i. It is

easily seen from Fig. 1 that both L and u contain exactly k nodes. In our example
we have L {4, 5} and u { 1, 2}.
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(b)

FIG. 2.

After replacing wL and daU by L and U, the matrix relationship (1.8) will be
equivalent to
(2.12)

[- (1- w) (1- &)I]p [ (w ’[-ww- w&)2] k [ + &(lw-W) I] ICLI--

x co + I Bp.

It is noted that in (2.12) we have put Bp for wll&lqlBz,, since Bp constitutes the
sum of products of I(LI, L’s and I(uI, U’s.

From (2.6) we cn see that the graph of the matrix co -(1 -w)(1 -&)I con-
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tains no identity paths. So, from (2.1 i), we have
(2.13)

G( -(1 -w)(1 -&)I) U {(ai, ai+j)} U {(ai,ai+j)}
aieCL [j=l j=qL,i+l

u U {(,*)}

The graph in (2.13) is derived from G() by simply omitting the identity paths.
It is easily checked from (2.6) that the matrix T + (&(l -w)/w)I is given by

,:.,(1,,,, +
}x L + U + LUJ

Cd
i=0 i=1 "= j=l

So the identity paths now become single-arrowed paths and the graph of the matrix
is given by

i=1

(Eu L=I
This graph is derived from G() by simply replacing the four-rrowed identity paths
with single-rrowed paths. Similrly, the mtrix T + (w(1 -&)/&)I is given by
(e.l)

and its graph by

G

(2.17)

03 -- 0.3
qL qu

ww
LiUJ

= j---i
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which is derived from G(To) by simply replacing the four-arrowed identity paths with
double-arrowed identity paths.

A lemma is now stated and proved that shows the equivalence of (1.8) and (2.12).
LEMMA 2.2. If the matrix relationship (2.12) holds then so does (1.8) and vice

versa.

Proof. We prove the validity of the matrix relationship (2.12) from that of (1.8)
by replacing at the same time the wL’s and &U’s by L’s and U’s, respectively.

By taking .the inverse similarity transformation of (2.1) on both sides of (2.12),
we have

or from (2.1)
(2.18)

[T..c.. (1-w)(1-&)I]p [(w +& --w&)2]k [Ta T,,

[ w(1- &)T.,+ I

&(lw- w) I]
(I- U)-IBP(I- U).

For (2.18) to hold it must be proved that (I- U)-IBp(I- U)= Bp or Bp(I- U)-
(I- U)Bp or simply that

(2.19) BPU UBP.

The proof of (2.19) is given by elementary graph theory. Since the graph G(Bp)
contains the identity paths (a,ai),i l(1)p which constitute p successive simple
paths of G(B) and the graph G(U) contains the simple paths (ai, ai+l),ai E v, the
graph G(BBU) contains the paths (a, a+l), a E u which constitute p/ 1 successive
simple paths of G(B). Similarly, the graph G(UBp) contains the same paths. So
these two graphs describe the graphs of the same matrices and the proof is complete.
Moreover, it is noted here that an analogous proof gives that the matrices Bp and L
also commute. H

Now we have all the necessary tools to prove our main theorem.
Proof of Theorem 2.1. Let C and D be the matrices denoting the left- and right-

hand sides of (2.12), respectively. The proof is due to the following simple idea: Since
C and D have been expanded i-n sums of terms of products of L’s and U’s, we must
prove that if there exists a term of the expansion of C then there exists also such a
term of the expansion of D with the same coefficient and vice versa. This means, in
graph analogue, that if there exists a path (a, aj) of G(C) then there exists also such
a path of G(D) weighted with the same weight, for all the pairs hi, aj and vice versa.
Each of these paths consists of consecutive subpaths and represents the graph of a
nonidentically zero block of the term in question. Our objective will be accomplished
if we show that all paths in G(C) and G(D) from a to aj with m backward subpaths
(0 _< m _< p) coincide and are associated with equal overall weights. It is obvious
that any two paths (hi, aj) of G(C) and (hi, aj) of G(D) with a particular number m
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of backward edges correspond to the same expansion in terms of nonidentically zero
products of L’s and U’s. They differ from each other only because of the different
weights of the single-, double-, triple-, or four-arrowed subpaths as they are described
above. For example, let a 4 and aj 5. Then Figs. 1 and 2 give that the
path (4, 5) of G(C) constitutes paths associated with three different numbers m of
backward edges, m 1 corresponds to the matrix product LLU, m 3 corresponds
to LLULULLU, and m 5 corresponds to LLULULLULULLU. The union of all
the above paths from a to ay with m backward edges will be considered as one path,
with which an overall weight will be associated. This overall weight will be equal to
the sum of all the weights associated with each individual path. The determination
of this weight constitutes the basic key to the proof of our main result.

We try to find the overall weight of G(C) with k + m backward subpaths (0 _<
rn <_ p- k). (The number of k + m backward subpaths is taken since the smallest
number of backward subpaths of the matrix C [ -(1 -w)(1 -&)I]p is k.
This is obtained by considering the path of the smallest possible way, which contains
p consecutive subpaths of the form (at, at+l) with their weights.) From the graph
expression (2.13) of the matrix (1 -w)(1 -&)I, from Fig. 2, and from elemen-
tary graph theory we can see that this path consists of the union of all possible
combinations of p consecutive subpaths of G(T (1 -w)(1 -)I) that go from a
to ay with k + rn backward edges. This remark leads us to the conclusion that to
analyze and study the problem at hand, the use of combinatorics theory together with
elementary graph theory must be made.

The analysis requires that we distinguish four cases

(i) , ,
(ii) hi, aj E u,
(iii) ai E (L and cry (v,
(iv) cri (u and ay eL.

Since the argumentation is quite similar in all the four cases, only the first case is
presented in detail. The others can be found in [11].

From Fig. 2(a) we see that there are two types of backward edges" the single-

arrowed path with ending node belonging to u (see path (4, 2)) and the triple-arrowed

path with ending node belonging to (v\v)t2 L (see path 4, 5 )). If we take r
ending nodes of the first type and k / m r of the second type we have (k+,) cases
to consider. Then let t be the number of consecutive nodes in the way from ai to
aj with k + m backward edges, with ay being included and tL and tv being the
number of those nodes, respectively, which belong to L and U(tL / tu t). We
consider all possible combinations of t nodes by taking p of them as ending nodes of
G( -(1 -w)(1 -&)I). In our example, from node 4 to node 5 with three back-
ward edges, we have the consecutive nodes" 3, 2, 5, 1, 4, 3, 2, and 5 as we can see in
Fig. 1. So, t 8. Five of these nodes (3, 5, 4, 3, and 5) are taken from L and three
nodes (2, 1, and 2) from (v. So, tL 5 and tu 3. This way corresponds to the
product of blocks B43B32B25B5IB4B43B32B25.

Let ay L, aS in our example aj 5. The analysis of the case aj L\L is
similar. In the sequel we will see that the way of going from one node of the set v
to one of L can be given by means of the nodes of L only. So the k / m nodes of
L will all be taken (the three nodes 5, 4, and 5 of our example). The number of
nodes that have been taken so far is r + k + m(r of u and k + m of L). From the
remaining nodes we take q nodes belonging to (v\v and s nodes belonging to L\L.
So, r / q / s p- k m. The q nodes are taken from tv nodes of v except the
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k+m nodes ofu corresponding to the k+m backward edges which were taken before.
This gives (tvk-,) different ways to consider. In our example we have tu k/m 3
since (v u { 1, 2}. This means that we have only one possible way. The s nodes
are taken from tL nodes of L except the k / m nodes of L. Similarly this gives a
number of (tL--,) different ways to consider. Totally, we have

(2.20) /

r

different ways to consider. The associated weight comes from k /m- r triple-arrowed
subpaths, from q + k + m (k + m r) q + r double-arrowed subpaths (q nodes
of v\v plus k + m nodes of L except the k + m r triple-arrowed subpaths), and
from the remaining r / s single-arrowed subpaths. So this weight is

(2.21)

(w+&-w&) l-w. (w+&_w&)2 k+m-

By considering all possible values of r, q, and s such that r / q / s p- k m,
we get the total overall weight equal to

(2.22)
Nc =(w + w)

r+q+s--p-k-m
r

02 / d 02d ] k+m-r

In our example:

Nc-(w+&-w&)5E 3 2 1-& 1-w
r 2-r w w

r--0

Now we try to show that there exists the same path in G(D) with the same
weight. Only the case where cri E L and cry E L is studied here.

From (2.12) we note that Bp is the last factor of the matrix D. The graph G(Bp)
consists of the identity paths (cri, cry) containing k backward edges. This means that
in the graph of D, the last path (cry,orj) containing k backward edges belongs to the
graph of Bp and has no weight. So, we must find the overall weight of the path from
cr to cry with m backward edges of the graph

From the graph expressions (2.11), (2.15), (2.17), and Fig. 2 it is easily seen that this
path exists since the same nodes are used in the way from cri to aj. The total number
of nodes are t p(p nodes belong to the graph of Bp). In our example we have the
nodes 3, 2, and 5. However, tv -Ivl of them belong to v and tL --ILI belong to
L. The main difference from the previous case is that now there are identity paths
involved. We can also see that the graph expressions (2.11), (2.15), and (2.17) have
the same paths which differ only in the weight of the identity paths. We then must
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find all the possible combinations by taking the first k consecutive paths from (2.11),
the second ILI- k consecutive paths from (2.15), and the last IuI.- k consecutive
paths from (2.17).

Let us consider rl nodes from u, ql nodes from u\u and q2 nodes from L\L
of the path in the way from a to aj with m backward edges. This gives a number of

(2.24)

different ways. Let us also take sl four-arrowed identity paths from the k paths of
the graph (2.11), s2 single-arrowed identity paths from the [L]- k paths of the graph
(2.15), and s3 double-arrowed identity paths from the ](u[- k paths of the graph
(2.17). So we must first distribute the number of times of the above sl identity paths
to the k- sx + 1 nodes (the first ai node being included)., This gives the number of
combinations with repetitions of k- sl + 1 chosen sl, that is

(2.25) (k- 81-k-1--81- 1)( k )(k)k- Sl + 1 1 k- Sl Sl

Similarly we obtain a number of (lCL-k) different cases because of the identity paths of

(2.15) and a number of (lCvk) different cases because of the identity paths of (2.17).
After these considerations are made it is obvious that there is a number of

(2.26)

different ways. The associated weight consists of rl -k- q2 + s2 single-arrowed paths
of rl + ql + s3 double-arrowed paths, of m- rl triple-arrowed paths, and of Sl four-
arrowed paths. This gives a weight of

(2.27)
(w

1 b ] rl +ql

+ (w+&-w&) Iw]
[(1 -w)(1 &)]s.

rl -q2 +82

The total number of subpaths of (2.23) is k + (IL[- k) / (luI- k) p- k. Since
the m subpaths with ending nodes in L must be taken, the integers rl, ql, q2, 81, 82,
and s3 vary but satisfy the relationship rl + ql + q2 + Sl + 82 -+- 83 p k m. From
(2.26), and (2.27) we have the total weight of the path of the graph (2.23) from a to
(Tj with m backward edges, which is

(2.28)
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By considering ql + s3 q, q2 + s2 s, and rl + s r, the sum (2.28) takes the
form
(2.29)

r+q--s--p-k-m r+s--r

ql +sa--q
ql 83

By applying combinatorics theory, (2.29) gives

+
r--q--s--p-k-m

1 --W w -- -o3& m-r

The total weight ND of the path from cr to aj with k + m backward edges of
G(D) is given by multiplying (2.30) with the coefficient

of the right-hand side of (2.12). This gives exactly the quantity Nc of (2.22). So

(2.31) Nc =- ND.

Obviously (2.31) is satisfied for all pairs (a,aj),i,j l(1)p and the proof of our
theorem is complete.

Based on the analysis so far, it is easy to prove the following statement.
THEOREM 2.3. Under the assumptions of Theorem 2.1 there holds

(2.32) BpT TBP

that is, the matrices Bp andT commute.
Proof. The proof is obvious from Lemma 2.2, since the matrix Bp is commutative

with the matrices U and L.
The above result gives a more general matrix relationship than (1.8). In fact, it

is not necessary that the factor Bp of the right-hand side be put as the last factor of
the product. It can be put as its first factor or as any intermediate one.

Based on the main result already obtained, we can obtain some similar results
for the SSOR, the SOR, and the backward SOR methods. These are presented in the
following corollary.

COROLLARY 2.4. Let B be the weakly cyclic block Jacobi matrix, generated by the
cyclic permutation a (a a2, ap). Let also S be the block SSOR, L be the block
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SOR, and LJ be the block backward SOR iteration matrices, respectively, associated
with A in (1.1). Then the following matrix relationships

(2.33) [S -(1 w)2I]p wp(2 w)2kSk[S + (1 w)IIP-2kBp,

(2.34)

and

[L (1 w)IlP pL’jLIBp,

(2.35)

hold.
Proof. It is easily proved that the analysis of the proof of our main result above

holds whenw & orw 0 or & 0; see also [11]. Puttingw & or & 0 or
w 0 (and using w instead of &) in T in (1.3) reduces this matrix to the SSOR
matrix S, the SOR matrix L, or to the backward SOR matrix LJ, respectively.
Consequently, putting w & or & 0 or w 0 (and using w instead of &) in (1.8)
reduces the relationship in question to the matrix relationships (2.33), (2.34), or (2.35),
respectively. El

The first result generalizes the previous result by Galanis, Hadjidimos, and Nout-
sos [3] for the p-cyclic consistently ordered case and the second result generalizes the
previous one by Galanis, Hadjidimos, and Noutsos [2] for the (q,p- q)-generalized
consistently ordered case. It is noted here that the proof of Corollary 2.4 can be ob-
tained independently of the result (1.8) by using an analogous analysis and elementary
graph theory in each particular case.

3. Equivalence of the USSOR and a two-parametric p-step method. To
show that the USSOR method, used for the solution of (1.1), is equivalent to a certain
two-parametric p-step method we proceed in a way analogous to that in [1-3]. For
this let x("-P) be the (m- p)th iteration of (1.2) with m p, p + 1, p / 2, From
(1.8) we have
(3.1)
[T (1 w)(1 &))I]Px(m-P) (w + & w&)2T[wT + (& w&)I]l.l-

x [&T + (w w&)I]II-kBPx(m-P).
By expanding both sides of (3.1) in terms ofT and by successively applying (1.2),
after some modest amount of algebra takes place (see [11]), we get the following two-
parametric p-step iterative scheme"

z(m) E (-1)J(1 co)J(1 )J p

j=l
J

+ (co + o
ICz, I- ICu I-k

=0 j=0

I uI- k/’xX
J\ /

+ (w+&-w&)P B b,
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where x(J) E Cn, j 0(1)p- 1 are arbitrary.
In the sense explained above, the USSOR method (1.2) and (3.2) are equivalent

and the study of (1.2) can be made by studying (3.2) and vice versa.
We must remark here that by putting w & or & 0 or w 0 in (3.2), we

recover the monoparametric p-step schemes related to the SSOR, SOR, or backward
SOR iterative methods, respectively. These schemes can also be obtained from the
matrix relationships (2.33), (2.34), or (2.35), respectively.

One may also observe that because of the special cyclic nature of B, scheme (3.2)
can be split into p simpler and smaller-dimension p-step iterative methods provided
that all the vectors involved are partitioned in accordance with B. Each of these p
simpler p-step methods has the same convergence rate, in the way considered in [10],
as that of (3.2). So the solution of any one of these simpler methods provides us with
the corresponding vector component of the solution x of (1.1), and from (1.1) all the
other components of x. Therefore x itself can be readily obtained.
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ON THE FACIAL STRUCTURE OF THE SET OF CORRELATION
MATRICES*

MONIQUE LAURENTt AND SVATOPLUK POLJAK

Abstract. We study the facial structure of the set n of correlation matrices (i.e., the positive
semidefinite matrices with diagonal entries equal to 1). In particular, we determine the possible
dimensions for a face, as well as for a polyhedral face, of nn. It turns out that the spectrum of
face dimensions is lacunary and that nn has polyhedral faces of dimension up to v/. As an
application, we describe in detail the faces of :44. We also discuss results related to optimization
over nx

Key words, correlation matrix, face, max-cut problem
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1. Introduction. A positive semidefinite matrix whose diagonal entries are equal
to 1 is called a correlation matrix. Let n denote the set of n x n correlation ma-
trices, i.e.,

The notation X

_
0 means that X is a symmetric positive semidefinite matrix. The

convex set $n is called the elliptope. Let us recall two previously known results that
are also crucial for this paper.

THEOREM 1.1 (see [LT94]). Let A E nn be a correlation matrix of rank r and
let F(A) be the smallest face ofnx containing A. Then

(1.1) dim F(A)= (r+l)_rank(vvll<i<n)
where Vl, Vn r is a collection of vectors such that A Gram(v1,..., Vn).

Theorem 1.1 generalizes results of [CM79, Loe80, GPW90], which mainly con-
sidered the question of determining the possible ranks for extreme elements of $n.
The elliptope is a nonpolyhedral convex set and it has a nonsmooth boundary. The
points X $n with full-dimensional normal cone are called vertices.

THEOREM 1.2 (see [LP93]). The elliptope nn has precisely 2n-1 vertices, each
of the form aaT for a {-1, 1 }n.

Theorem 1.2 was motivated by the fact that nn is a relaxation of a hard com-
binatorial optimization problem, namely, the max-cut problem. Indeed, the rank-one
matrices of nxn are of the form aaT for a {-1, 1}"; they are called cut matrices
because they correspond to the cuts of the complete graph. The convex hull of the cut
matrices defines a polytope, called the cut polytope and denoted by CUT,n. Then
the max-cut problem is the problem of optimizing a linear objective function over
the cut polytope. Hence, $nxn can be seen as a (nonpolyhedral) relaxation of the
cut polytope (see [LP93, La94]). Moreover, a recent result of [GW94] shows that by
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optimizing over the elliptope one obtains a very good approximation for the max-cut
problem.

Some other papers [GJSW84, BJT93, BJL, La94] study the projection (G) of
nn on the edge set of a graph G; this corresponds to the question of determining
what partial matrices can be completed to a positive semidefinite matrix.

The subject of this paper is the facial structure of the elliptope nn. Section 2
contains several old and new preliminary results. In 3, we describe all possible
values for the dimension of a face of nn. We show that for all "admissible" values
k within the range of (1.1), there exists a face of dimension k. Our further results
from 4 concern the polyhedral faces of x. A polyhedral face is, in some sense, the
most "nonsmooth part" of the boundary of xn. We determine the largest possible
dimension for a polyhedral face and show that it can be realized by a simplex face
whose vertices are cut matrices. In 5, we group some results related to optimization
over the elliptope. In particular, we present a link between the faces of the elliptope
and the dimension of the optimized eigenspace in the dual problem. Finally, we treat
in detail in 6 the elliptope E4x4, the elliptope E3x3 having been described in [LP93].
We describe the proper faces of $4x4, whose possible dimensions are 0, 1, 2, and 3;
faces of dimension 1 are edges between two cut matrices and faces of dimension 3 are
ismorphic to $3x3. The highest dimension for a polyhedral face of Sax4 is 2.

2. Old and new basic facts. Throughout the paper, when dealing with matri-
ces, we take as ambient space the set of symmetric matrices equipped with the inner
product

(A,B := Tr(AB) E aijbij.
l<_i,j<_n

We start with some well-known facts, formulated in the following two lemmas.
LEMMA 2.1. Let x x be n linearly independent vectors in IR Then the

system

{xxTI1 _< i _< n} u {(x- x)(x- xj)TI1 <_ < j <_ n}

is linearly independent.

Proof. Since S consists of n + () (n2+1) elements, it suffices to show that, if Z
is a symmetric n x n matrix orthogonal to all members of, then X is the zero matrix.
By assumption, <X, xixT> xTXxi 0 for 1,... ,n and <Z, (Xi--Xj)(Xi--xj)T>
(xi- xj)TX(xi- xj) 0, implying that xZxj + xyXxi 0 for 1 < i < j < n. We
check that xTXx 0 for all x E ]I(n. Indeed, let x 1<i<, aixi for some scalars

2 T
hi. Then xTXx El<i<n Qxi Zxi -- El<_i<j<_n tij(xZxJ -- xZxi) o. This
implies that X 0; indeed, if x is an eigenvector of X for the eigenvalue A, then
0 xTXx A x ]]2, yielding A 0.. [:]

The Gram matrix Gram(v1,..., vk) of a collection of vectors Vl,..., vk is the k x k
symmetric matrix whose (i, j)th entry is equal to vvj. The linear subspace spanned
by vectors v,..., vk is denoted <Vl,..., v>.

LEMMA 2.2. Let v, vk I. Then

dim ((v,..., v)) rank (Gram(v,...,vk)) rank vivi
i=1
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2.1. The kernel of a correlation matrix. It is easy to see Lemma 2.3.
LEMMA 2.3. The relative interior of$ consists of the positive definite correla-

tion matrices and its relative boundary of the correlation matrices X with rank(X) <

Let X E $nn. Clearly, each nonzero vector of ker(X) has at least two nonzero
coordinates. It is shown in [DP93b] that every vector v E ker(X) is balanced, i.e.,
satisfies

lull_< Iv l
<_j<_n, ji

THEOREM 2.4 (see [DP93b]). Given a vector v In, there exists a correlation
matrix X n n such that Xv 0 if and only if v is balanced.

Note that there exist balanced vectors v I for which there exists no matrix
X $ for which equality ker(X) {v) holds. This is the case, for instance, for the
vector v (n- 1, 1,..., 1); see Theorem 2.6. Call a vector v I strictly balanced if
it satisfies

Ivil < Ivjl for alli-1,...,n.
l<_j<_n, ji

LEMMA 2.5. Let X $nn with Ixijl < 1 for all j. Then every nonzero
vector v ker(X) is strictly balanced.

Proof. Suppose that IVll Iv21 +... / IVnl. From Xv 0, we obtain that

’2<< xlivi -Vl. Therefore,

XliV
2<i<n 2<i<n 2<i<n

Hence, equality holds throughout, which implies that E2<i<n([Xlil- 1.)[vi 0.
Therefore, v2 v 0, which is a contradiction.

THEOREM 2.6. Let v n such that vi 0 for all i. The following statements
are equivalent.

(i) There exists X e such that ker(X) (v}.
(ii) The vector v is strictly balanced.
Proof. (i) (ii). Let X e $ such that ker(X) (v}. Then xij[ < 1

for all/ j. (If, say, x2 1, then the vector (1,-1,0,..., 0) belongs to ker(Z);
hence, it coincides with v, which contradicts the fact that all entries of v are nonzero.)
Therefore, v is strictly balanced by Lemma 2.5.

(ii) (i). We partly follow the proof of Theorem 3.2 in [DP93b]. We can
suppose without loss of generality that v,..., v > 0. For h 1,..., n, set

l+eh’=
h

then eh > 0. Define the vector

x := (1,..., 1,-1 + e, 1,..., 1)

where i + eh stands at the hth position. Also set

t ":
l<h<n eu

h "= for h 1,..., n.
1+h
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Finally, let

E (hXhX.
l<h<n

Clearly, X 0 as Oh > 0 since 0 < t < 1. One can check that the diagonal entries
of X are equal to 1. Moreover, Xv 0 since v is orthogonal to Xl,...,x and
ker(X) (v as the rank of X is equal to the rank of {xl,... ,Xn}, i.e., to n- 1 (see
Lemma 2.2).

Note that Theorem 2.6 does not hold if some entries of v are equal to 0. For
instance, the vector v (0, 1, 1) is not strictly balanced but the kernel of the matrix

is spanned by v.

1 1/2 -1/2
1/2 1 -1
-1/2 -1 1

2.2. Faces. A convex subset F of a convex set K is called a face (or extreme set)
of Kif, for allxEF, y, zEK, 0<_a_< 1, x=ay+(1-a)zimpliesthaty, zF.
We .recall some facts, taken from [LP93], on the faces of $.

THEOREM 2.7 (see [LP93]). For every subspace V of ], the set

Fv {X e &x ker(X)

_
V}

is a face of $n xn. Conversely, every face F of $x, is of the form Fv, where V
XeF ker(X). In particular, given Xo $nxn, let F(Xo) denote the smallest face of
$n xn that contains Xo Then

F(Xo) {X e &x ker(X) _D ker(X0)}. El

Faces of $x can be "lifted" to faces of $(+l)x(n+l) (of the same dimension) in
the following way. Let X be a symmetric n x n matrix with diagonal entries equal to
1, of the form

X--
aT 1

where a n-1 and Y is a symmetric (n- 1) x (n- 1) matrix. Consider the
(n + 1) x (n + 1) symmetric matrices X’ and X" defined by

I Y a f Y a I-a IX’= aT 1 1 X"= I aT 1 1,1
aT 1 1 \ --aT I--1 1

For a subset F of $, set F’ := {X’IX F} and F" := {X"IX F}. Then

F is a face of $ 4== F is a face of n+l F’/is a face of $+1.

Clearly, F, F, and F" all have the same dimension. We say that F, F" are liftings of
the face F. Moreover, if F is a face of$x and V Oxeg ker(X), then the subspace
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V’ := YeF’ ker(Y) is generated by the vectors (v, 0) (v e V) and (0,..., 0, 1,-1),
while the subspace Y" := YeF,, ker(Y) is generated by the vectors (v, 0) (v e V)
and (0,..., 0, 1, 1). The following result permits to recognize if a face arises as a lifting
of another face.

LEMMA 2.8. Let F be a face of $(nW1)(nq-1) and V NXeF ker(X). Then F is
a lifting of a face of$n if and only if there exists a vector v V having exactly two
nonzero coordinates.

Proof. Necessity is clear. Conversely, suppose that v V with v (0,..., 0, a,/).
Since v is balanced, we deduce that lal I/1, i.e., a +3. This implies easily that
F is a lifting of a face of $n. [:1

2.3. The normal cone. Given a convex set K in a space V with inner product
(, and a boundary point x0 of K, the normal cone N’(K, xo) at x0 is defined by

A/’(K, x0) {c V l(c, x} <_ (c, x0} for all x K}.

The normal cone A/’($,, A) of a matrix A $ will be denoted as Af(A). It can
be characterized as follows.

THEOREM 2.9 (see [LP93]). We have

N’(A) {D MID is a diagonal matrix, M

_
0, (M,

In fact, we can compute the exact dimension of the normal cone at a correlation
matrix A in terms of the rank of A.

THEOREM 2.10. Let A $x with q := dim ker(A). Then

dim Af(A)= (q+l)2
+n.

Proof. Let bl,..., bq be linearly independent vectors in ker(A). Then the matrices

-(b + bj)(b + bj)T (1 _< _< j _< q) belong to Af(A). The elementary diagonal matrix

E (1 < _< n) is defined as the matrix with all entries 0 but the (i, i)th entry which
equals 1. All the n matrices E also belong to Af(A). We show that the system
{(b + bj)(b + bj)T 1 <_ i <_ j <_ q} [2 {E 1 <_ <_ n} is linearly independent. For
this, let Aj, # be scalars such that

+ + }2 0.
l<_i<_j<_q l<i<n

We show that all ,j’s and #’s are equal to 0. Let u (ker(A)) +/-. Applying the above
relation to u, we obtain that ’<i< #iEiiu 0, i.e., #iui 0 for all i 1,..., n.

CLAIM 2.11. For all {1,... ,n}, there exists u (ker(A)) +/- such that u 0.

Pro@ Suppose that ui 0 for all u (ker(A)) +/-. Then (ker(A)) +/-

ui 0}. Therefore, ker(A) _D {u IR ui 0} +/-. This implies that the ith unit
vector belongs to ker(A), which is a contradiction with Theorem 2.4. [:]

Therefore, #i 0 for all 1,..., n. Using Lemma 2.1, we obtain that Aij 0
for all 1 _< <_ j <_ q. Hence, we have found a system of () +n linearly independent
members of N’(A). This shows that

dim Af(A)> (q+l)2
+n.

We now show the converse inequality. Let B be a system of linearly independent
members of Af(A) of maximum cardinality. Since all diagonal matrices belong to
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Af(A), we can suppose without loss of generality that B is composed of the elementary
diagonal matrices Ell,..., En together with some matrices -M1,...,-Mk, where
each M is positive semidefinite and satisfies (M, A 0. By the latter condition, all
matrices M belong to the set F := {M

_
0 ker(M

_
(ker(A))+/-}. One can check

that the set F has dimension (q+21) (see also [HW87]). This implies that k _< (q+2).
Therefore, dim Af(A) _< (+2) + n. This concludes the proof. E]

Note that Theorem 2.10 implies the characterization of the vertices of Sn from
Theorem 1.2. Let A E ’n. Suppose that A has rank r and is the Gram matrix of
the vectors v,..., v e r. Set g dim (VlV,..., vnvT). Then the dimension of
the face F(A) and of the normal cone of A are linked by

dim F(A)+dim A/’(A)=
2 + n- r(n- r) g.

(This follows from Theorems 1.1 and 2.10.) It implies the following corollary.
COROLLARY 2.12.

2
r(n r) < dim F(A) + dim Af(g) < (r 1)(n r).

2

Note that equality holds in the upper bound if, for instance, A is a cut matrix or
A lies in the relative interior of.

3. The dimension of the faces of n. We group in this section several
results on the faces of the elliptope 8 n. Using a result of [LT94] recalled in Theorem
1.1 above, we describe all the possible values that can take the dimension of a face of
8,n; it turns out that the spectrum of feasible dimensions for proper faces is a union
of intervals that ranges from 0 to (’).

Suppose A 8 has rank r. Then A is the Gram matrix of a set of vectors
Vl,..., vn ]r. of rank r, i.e.,

Aij-vvj for l_<i,j_<n.

A perturbation of A is any symmetric matrix B such that A+/-tB ’, for some small
t > 0. Then the dimension of the face F(A) (the smallest face of $n containing A)
is defined as the dimension of the space of perturbations of A. Let Z denote the r n
matrix whose columns are Vl,..., v; thus, A ZTZ. Li and Tam [LT94] show that
B is a perturbation of A if and only if

(3.1) B ZTRZ,

where R belongs to the orthogonal complement of (vlvT1,..., VnVTn) in the space of
symmetric r r matrices (this latter condition ensures that the diagonal entries of B
are equal to 0). This implies that the dimension of F(A) can be expressed as in (1.1).
More generally, we have the following result.

THEOREM 3.1.
(i) Let A $nn of rank r and let k denote the dimension of F(A). Then

-n <_ <_
<_ <_(ii) Let r, k >_ 0 be integers such that 1 <_ r <_ n and max(O, r+l

Then there exists a matrix A 8 of rank r and for which dim(F(A)) k.
Proof. (i) follows from the inequalities r _< rank(vivT 1 _< _< n) _< n. (The

upper bound is obvious. For the lower bound, observe that the set (v,..., v) has
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Trank r and that if, say, Vl,..., vr are linearly independent, then VlVlT,..., VrVr are
also linearly independent by Lemma 2.1.)

For (ii), we use a construction proposed in [LW94] (also in [GPW90]). Let
el,..., er E denote the unit vectors in IRr and set

1
--(ei + ej) for 1 _< < j

_
r.

r+lOne can easily check that the
j <_ r} are linearly independent.

Let k be such that 0 _< k _< (). Suppose first that n (r+21) -k. Then
r _< n _< (+21). Define A as the Gram matrix of the n vectors el,..., e together
with n r of the vectors wij. By construction, A has rank r. Using relation (1.1),
one obtains that dim(F(A)) r+l(2)-n k. This shows (ii)in the case when
n (r+l) k Suppose now that n > (+21) k Then we choose for A a lifting of
the matrix defined above; for instance, we can take for A the Gram matrix of the n
vectors el (repeated n- (+21) + k + 1 times), e2,..., e, together with () k of the
vectors wj.

A correlation matrix X is called extreme if the set F := {X} is a zero-dimensional
face of $,n. Thusi as a special case of Theorem 3.1, we obtain the result of Li and
Tam.

COIOLLAIY 3.2 (see [LT94]). Let rmax be the largest integer r such that (+21) <_
n. Then

(i) 1 <_ rank(X) _< rmax for every extreme correlation matrix X .
(ii) For every r, 1

_
r

_
rmax, there is an extreme correlation matrix X $nxn

of rank r. 0

As shown in [LP93], any two cut matrices of $ form an edge (one-dimensional
face) of $. For n 3, 4, these are the only edges of$ (see 6). However, for
n >_ 5, $ has edges whose extremities are not cut matrices. A construction for
such an edge is given in Example 3.3.

Example 3.3. We apply the construction from the proof of Theorem 3.1 (ii) in
the case n 5, r 3, k 1. Let A $55 be the Gram matrix of the vectors
el (1,0,0), e2 (0, 1,0), e3 (0,0, 1), w12 (2’ 2’0)’ and w3 (2,0, 2)’
i.e.,

1 0 0
0 1 0
0 0 1
1 1 0

o

1._k_

Hence, F(A) is an edge of $55. In order to describe this edge, we note that ker(A)
is spanned by the vectors

a := (-1,-1,0, /, 0), b := (-1,0,-1,0,

Then X $55 belongs to F(A) if and only if Xa 0 and Xb 0. One can check
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that X must be of the following form:

:=

where -1 _< a _< 1. Hence the edge F(A) has the matrices X(-1) and X(1) as
extremities, where X(- 1) and X(1) are of the above form for

As an application of Theorem 3.1, we can describe the range :Dn of the values
taken by the dimension of the faces of nn. Let sn, denote the smallest integer such
that (82+2) -n > (s2) + 1, i.e., 2sn > n or, equivalently,

sn + 1.

Then

(3.2) 7:)n’-IO, (s2n)lto I(r+ 1)
r=s+l

2

(Given two integers a, b, In, b] denotes the set of integers x lying between a and b.)
For instance,

s3 2, 7)3 [0, 1] to {3},

s4=3, D4=[0,31{6},

s5 3, 7)5 [0, 3] L..J [5, 6] tO { 10},

s6 4, 7)6 [0, 6] to [9,101 to { 15},

s7 4, :D7 [0, 6] U [S, 10] U [14, 15] U {21}.

In particular, the largest dimension of a proper face of $nn is (n;1). We give below
a direct simple proof of this fact which permits us, moreover, to show that every face
of of dimension (nl) is. a lifting of (-1)(n-1).

PROPOSITION 3.4. Let F be a proper face of $nn. Then dim(F) _< (nl), with
equality if and only if F is a lifting of $(n- 1) (n- 1).

Proof. Let F be a proper face of $n. Then F Fv for some subspace V of
]R, V - {0}. Let v E V, v = 0. We can suppose that vl : 0. Then Xv 0 for all
X E F. The equation Xv 0 can be written as the following system of n equations
in the () variables xj (1 _< i < j _< n)"

X12V2 + X13V3 + + XlnVn --Vl
Xl2Vl -- X23V3 -+- --V2

Xl3Vl - X23V2 -[" --V3

Xin’Vl
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Since Vl 0, the matrix of the system obviously has rank _> n- 1. This implies that
dim(F) _< () -(n- 1) (nl). Moreover, the equality dim(F) (nl) holds if and
only if the matrix of the system has rank equal to n- 1. It is not difficult to check
that this holds only if vvj 0 for all 2 _< < j _< n. Hence, we may suppose, for
instance, that v3 v4 vn 0. Hence, v has only two nonzero components.
Using Lemma 2.8, we obtain that F is a lifting of a face (of the same dimension
of $(n- 1) (n-- 1). Therefore, F is a lifting of $(s- 1) (n- 1).

We conclude with an example of a face of the next smaller dimension (nl) 1.
Example 3.5. Consider the face

F := {x e e.. 0},

where e is the all-ones vector. Then dim F-- (nl) 1. (To see it, one can proceed
in the same way as in the proof of Proposition 3.4. Namely, the condition Xe 0
can be rewritten as the system

xj=-I for alli=l,...,n.

Since the matrix of this system has rank n, we deduce that dim F () -n
(s) 1.) Let X0 denote the matrix with ones on the diagonal and -i-_ on the off-
diagonal positions. Then X0 belongs to the relative interior of F since ker(X0) (e/.
Hence, F F(Xo).

Suppose that n is even. Then F contains the cut matrices ffT for all vectors
nf E {-1, 1}s having exactly entries 1 and entries -1. Hence, F contains 21-

cut matrices.
Let us look in more detail at the case n 4. Then one can easily check that a

matrix X E $44 belongs to the face F if and only if it is of the form

1 x y -1 -x-y
x 1 -1 -x-y y
y -1-x-y 1 x

-l-x-y y x 1

with the conditions -1 _< x, y _< 1, and x + y _< 0. Therefore, F is a polyhedral
face of 44, whose vertices are the three cut matrices ffT for f (1, 1,--1,--1),
(1,--1,--1, 1), and (1,-1, 1,-1).

Finally, note that, for any n _> 5, the face F cannot be a polyhedral face because
its dimension is too large; see Theorem 4.1. [:l

4. Polyhedral faces of sn. We consider here the polyhedral faces of the
elliptope ss. In particular, we describe the range of their feasible dimensions.

As was mentioned in Proposition 3.4, every face of sn of dimension (s) is

isomorphic to $(n-1)x(n-1). Hence, Snxs has no polyhedral face of dimension (nl).
In fact, we can show that the feasible dimensions for polyhedral faces of Snxs range
from 0 to ks, where ks is the largest integer such that (k2+i) _< n- 1. We also
consider the polyhedral faces of Ssxs having only cut matrices as vertices, i.e., the
faces of t;sxs that are inherited from the cut polytope. It turns out that such a face
is necessarily a simplex. In fact, a simplex face of dimension k can be constructed for
any k <_ kn.

THEOREM 4.1. Let F be a polyhedral face of $nn of dimension k- 1. Then
(k2) <_ n- 1. Moreover, if all vertices of F are cut matrices, then F is a simplex.
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Proof. Let F0 C F1 C C F c F+I c C F_ := F be a chain of faces of
F, where F has dimension i for each i 0, 1,..., k 1. Using Theorem 2.7, each F
is of the form Fv {X E n, V C_ ker(X)}, where the V are subspaces of n
forming a strict chain:

Then dim(V_) <_ dim(V0) k + 1 _< n- 1 k + 1 n- k. Let X be an interior
point of F and let r denote the rank of X. Then r n- dim(V_) >_ k. Using the
dimension formula (1.1), we deduce that k- 1 dim(F) _> (r+2) -n _> (2+1) -n.

This implies that n >_ (2k) / 1.
Suppose now that all the vertices of F are cut matrices, say, of the form fhfh for

h E H, where fh {--1, 1 )n for all h H. Then

V_ N ker(fhf[) (fh h H) +/-

hH

Hence, dim(Vk_) n- dim((fh h e HI) <_ n- k, which implies that

dim((fhlh e H}) _> k.

Let fo, f,..., fk- be k linearly independent vectors in the set {fh h H}. Then
the vertices ffT (i 0, 1,... ,k- 1) affinely span the polyhedron F. We show
that they are the only vertices of F. For this, let X be another vertex of F. Then
X 0<<k-1 affT with -0<<-1 c 1. We show that each a is nonnegative.
Indeed, let

u e (fy J 0,1,...,k- 1,j = i} +/- (fO, fl,...,fk-1}

such that u 0. Then uTXu oi(uTA)2

_
0 with uTfi 0, yielding ai >_ 0. Hence,

X is a vertex of F which can be written as a convex combination of other vertices of
F. This shows that f0f0T,..., fk_lfkT_l are the only vertices of F. Therefore, F is a
simplex. [:1

We propose in Proposition 4.7 a construction for polyhedral faces of dimension
k- 1 for each integer k such that (2k) _< n- 1. For this, we state an intermediate
result.

We recall the following notation. Given two vectors x, y Nn, their Hadamard
product is the vector z x o y Nn with entries zi :- xiyi.

THEOREM 4.2. Let fl,...,fk {-1,1}n and set e := (1,...,1) E {-1,1}n.
Suppose that the following assertions hold.

(i) The vectors {fl,..., fk} are linearly independent.
(ii) The vectors {fh o fh’ 1 <_ h < h’ _< k} U {e} are linearly independent.

Then the set F := Conv(fhf[ h 1,..., k) is a face of gnx, of dimension k- 1.
(Here "Conv" denotes the operation of taking the convex hull.) Note that the

face F constructed in the previous theorem is a simplex face with cut matrices as
vertices.

Proof. Set
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Then ker(X0) <fi,..., fk> +/-. Therefore, by (i), X0 has rank k. Let F(Xo) denote
the smallest face of $nn containing X0. Clearly, F(Xo) contains F. Our goal is to
show that F(Xo) F.

Consider the k n matrix M whose rows are the vectors fl,..., fk. Denote by
vi,...,v ENk its columns Setw := kv fori= 1, ,n. It is easy to see that

X0 is equal to the Gram matrix of wl,..., wn. Therefore, by the dimension formula

dim F(Xo)- (k +2 1) rank{wl(wl)T,...

CLAIM 4.3. rank(w(w)T, w(w’)T) >- (2) + 1.

Proof. By assumption (ii), the vectors {fho fh, 1 <_ h < h’ <_ k}U{e} are linearly
independent in R. Let I be a subset of {1,..., n} of size (k2) + 1 corresponding to
the positions of independent coordinates. We show that the set {w(w)T i I} is
linearly independent. For this suppose that

iwi(wi)T O.
iEI

Note that wi(wi)T(h,h’) 1/4fh(i)fh,(i), which is equal to 1/4(fh o fh,)(i) if h h’ and
to 1/4e(i) if h h’. This implies that all ’s are zero. []

As a consequence of the previous claim, we deduce that

dim F(Xo) <_ (k 1 =k-1.

On the other hand, dim F(Xo) >_ dim(F) k- 1. Therefore, dim F(Xo)
dim(F) k- 1. This implies, in particular, that F(Xo) is contained in the affine
hull of {fiflT,...,fkf[}. Now, by an argument similar to the one used in the
proof of Theorem 4.1, we show that F(Xo) c_ F. For this, let X F(X0); then
X l<h<k #hfhf[ with ,l<h<k#h 1. We claim that #h _> 0 for all h, which
will imply that X F. Indeed, take a nonzero vector u in the intersection of the
spaces If, fk} and {f,..., fk_i} +/-. Then uTXu #k(uTfk)2 >_ 0, implying that

#k >_ 0. The same argument shows that all h’S are nonnegative. [I

Remark 4.4. We can suppose without loss of generality in Theorem 4.2 that the
vectors fi,... ,fk have a common entry equal to 1, say, fh(n) 1 for h 1,... ,k.
Set Sh {ilfh(i) 1} for h 1,..., k. It is easy to check that assumption (ii) of
Theorem 4.2 can be reformulated as the following.

(iii) The (2) vectors XSh/xSh’ (1 < h < h’ <_ k) are linearly independent. (Here
XA denotes the 0, 1-incidence vector of the set A and AAB (A \ B) U (B \ A)
denotes the symmetric difference of the sets A and B.) 0

We say that the sets S,..., Sk C_ V := {1,..., n} are in general position if each
of the 2k sets heHSh N (]hcH(V \ Sh) is nonempty for H C_ {1,...,k}. Then
k _< log2 n. We say that the vectors fl,..., fk {-1, 1}’ are in general position if
the sets Sh := {ilfh(i) 1} (h 1,..., k) are in general position.

COROLLARY 4.5. Let fl,... ,fk {--1, 1}n be in general position. Then the set
Conv(flflT,..., fkf[) is a face of nxn.

Proof. By Theorem 4.2 and Remark 4.4, it suffices to verify that conditions (i)
and (iii) hold, which can be easily done. 0

Example 4.6. Let n 4, f (1,-1,-1,-1), f2 (1,-1, 1, 1), f3 (1, 1,-1, 1).
The sets S := {1}, $2 := {1, 3, 4}, $3 := {1, 2, 4} are not in general position but nev-
ertheless satisfy assumption (iii). Also (i) holds. Hence, the set Conv(flfT, f2f2T, faf3T)
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is a polyhedral face of $44 of dimension 2. Note that this face falls into the category
of the so-called elliptic faces of44 (see 6). Also, F Fv, where V (fl, f2, f3} +/-

((1, 1, 1, -1)}. [:]

PROPOSITION 4.7. For each integer k such that (k2) + 1 <_ n, the elliptope
has a polyhedral face of dimension k- 1 (which is a simplex with cut matrices as

vertices).
.Proof. It is enough to show the result for n (2) + 1 (for larger values of n, apply

lifting). Let G denote the graph with node set {1,...,k,k + 1}, obtained from the
complete graph Kk on {1,..., k} by adding an edge e, say, e (1, k + 1). We consider
the edge set of G as our groundset of n elements. For h 1,..., k, let Sh denote the
set of edges in the star of the node h plus the edge e, i.e., Sh consists of the edges
(h,i) (i E {1,...,k} \ {h}) together with the edge e. Let fh denote the +l-incidence
vector of Sh. Then Conv(flflT,.. k

Tf fk) is a face of$ (since assumptions (i),
(iii) can be easily checked to hold).

As an application of Theorem 4.1 and Proposition 4.7, we obtain that the largest
dimension of a polyhedral face of$ is equal to k, the largest integer such that
(k2+l) t- 1, i.e.,

kn [x/Sn- 7-1J"2

COROLLARY 4.8. The maximum dimension of a polyhedral face of the elliptope
is

Remark 4.9. It was shown in [DLP92] that, if the vectors fl,..., fk are in general
position, then the set F Conv(flfT1 ff[) is a face of the metric polytope and,
thus, of the cut polytope CUT,,. We recall that the metric polytope MET,, is
defined as

METnn {X E SYM.xn X- 1
Xij Xik Xjk k --1
Xj +X + Xy >_ -1

for 1,...,n,
for l _< i, j, k _< n,
for 1 _< i,j,k <_ n}.

Hence, the metric polytope is a linear relaxation of the cut polytope; see [LPR95]
for more details. Corollary 4.5 shows that the set F is also a face of the elliptope,,. Therefore, the elliptope $,, and the metric polytope MET,, are two distinct
relaxations of the cut polytope CUTnxn that share many common faces, at least up
to dimension log2 n. D

5. Optimization aspects. Let us consider the optimization problem

min (C,X)
(5.1)

s.t. X ,
where C is a symmetric n n matrix. Recall that

i,j--1,...,n
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and let J denote the all-ones matrix. The problem (5.1) is of interest because it is
related to the max-cut problem. To be more precise, the problem

1
cij (1 xij -1 1

max E (C,
(5.2)

s.t. X E Sn s.t. X E$

provides a good approximation of the max-cut problem

1
max E cij(1 aaj)

(5.3)
s.t. ae{-1,1}n.

(For various results concerning the approximation of (5.3) by (5.2) we refer to the fol-
lowing papers: worst case bound of the approximation [GW94], asymptotic optimality
of the approximation [DP93a], complexity and further aspects [DP93b, LP93].)

Let Fc denote the set of optimum solutions to the problem (5.2), i.e.,

Fc {A e g,xn (C,A} (C,X} for all X e gnx,}.

The set Fc is exposed. Let us recall that a set F is called an exposed set of a convex
set K if F K N H for some supporting hyperplane H for K. Clearly, each exposed
set is a face of K. For a general convex set K, the converse is not true. However, for
the elliptope gnx,, both notions coincide.

LEMMA 5.1 (see [LP93]). Every face of g,xn is exposed. 1

If Fc contains a rank-one matrix, then (5.2) provides an exact solution of the
max-cut problem. Hence we are interested in finding low-rank matrices in Fc, since
they (intuitively) provide a tighter approximation of the max-cut problem.

QUESTION 5.2. Given a face F of gnXn, what is the minimum rank of a matrix
XF?

Since there exist extreme correlation matrices of any rank r up to the bound rmx
given in Corollary 3.2, we cannot ensure, in general, the existence of matrices with
rank smaller than rmx -. However, we are able to establish the existence of a
low-rank matrix under some additional constraints.

LEMMA 5.3. For every balanced vector c Nn, there is a matrix X $nn such
that c e ker(X) and rank (X) <_ 2.

Proof. Without loss of generality, we may assume that Cl >_ c2 >_ ..-c >_ 0. Let
i0 be such that

EcY _< EcY and EcY >_ Ecj.
j<io j>_o j<io j>io

Set 1 Y/<io cj, . Cio, and 3 := y’j>ioCj. Then it easily follows that
(1,2,3) is balanced, since 1 -+-2 -- 3, 1

_
2 -" 3 by the choice of io and

2 Cio _< cl _< + 3 by the nonnegativity of c. Since N3 is balanced, there
exists a matrix ) g3x3 with E ker(J) (by Theorem 2.4). Set

1 a b)2= a 1 c and X=
b c 1

bJ

a

J
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where we have specified the i0th row and i0th column in X and J denotes the all-
ones matrix (of appropriate sizes). Then we see that rank(X) rank()) _< 2 and
c E ker(X).

THEOREM 5.4. If a face F ofnn contains a matrix of rank n- 1, then it also
contains a matrix of rank at most 2.

Proof. The statement holds trivially if F Snn. Suppose now that F F(A),
where A has rank n- 1. By Lemma 5.3, there exists B E Sn of rank <_ 2 such that
ker(A) c ker(B), i.e., B e F.

Note that, under the assumption of Theorem 5.4, dim(F) (1) 1, (nl), or

Example 5.5. The construction from the proof of Theorem 3.1 (which was already
applied in Example 3.3) for the parameters n 9, r 4, k 1 provides a matrix A
of rank 4 whose face is an edge. One can determine the extremities of this edge (as
was done in Example 3.3) and check that their ranks are equal to 3. So this gives a
face containing only matrices of ranks 3 and 4.

The dual problem of (5.2) is also of interest. The dual problem reads

n
min Amax(Lc + diag(u))
s.t. u +... + u --0.

We recall that Lc denotes the Laplacian matrix; it is the n x n symmetric matrix with
(i, i)th diagonal entry j= n, j# cj and (i,j)th entry -cij for i j. (Note that
Lc does not depend on the diagonal entries of C.) Let u denote the optimum vector
for the program (5.4), set := max(Lc +diag(u)), and let Vg denote the eigenspace
corresponding to this eigenvalue for the matrix Lc + diag(u). It has been shown that
strong duality holds, i.e., that both programs (5.2) and (5.4) have the same optimum
solutions. Since the maximum eigenvalue in the optimum is typically multiple (unless
the corresponding eigenvector is a +/-1 vector, in which case (5.1) provides an exact
solution of the max-cut problem), the following question was asked in [DP93b] and in
a more general setting in [Ov88].

QUESTION 5.6. What is the possible dimension of the space Veig ?
The next result establishes a link between the eigenspace V and the face Fc

and implies a lower bound for the dimension of V.
PROPOSITION 5.7. We have

Fc {X e $x, ker(X)

_
(W,)+/-}.

Proof. Set M AI- Lc- diag(u). By construction, M is a positive semidefinite
matrix and its kernel is ker(M) V. For X Snn, we have

which implies

(Lc, X} E Lc(i’j)xiJ 2 E cij(1-xij),
i,j l<_i<j<_n

<M, X> <AI, X> <Lc, X> <diag(u), X>

Therefore, we see that {M, X} 0 if and only if X is an optimum solution to the
program (5.2), i.e., if X Ft. Suppose M }-l<i<k fif, where f,..., fk span the
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space (ker(M)) +/-. Then (M,X} 0 holds if and only if Xfi 0 for all 1,... ,k,
i.e., if (ker(M)) +/- _c ker(X). This shows the result. [3

COROLLARY 5.8. For every matrix X E Fc, rank(X) _< dim(Veig). [3

An alternative proof of Corollary 5.8 can be given as follows. Since X - 0, we
have X ZTZ for a matrix Z of the same rank as X. It can be checked that the rows
of Z are eigenvectors from the space Veg. Hence rank(X) rank(Z) _< dim(Vg).

Example 5.9. Consider the cost matrix C J. Then the Laplacian matrix
is Lc nI- J. Then min=0 Amax(Lc + diag(u)) is attained for u 0 (by
symmetry; see [DP93a]) and is equal to Amx(Lc) n. The optimized eigenspace is

Vg {x E I’ E<< x{ 0}, with dimension n- 1. Hence, by Proposition 5.7,
the face Fc is {X $, Xe 0}. Note that it coincides with the face considered
in Example 3.5. In particular, (Ve) +/- ker(X) for every matrix X lying in the
relative interior of Fc. [3

By Corollary 5.8, rank(X) _< dim(Veg) for each matrix X lying in the relative
interior of Fc. In the previous example, we have equality: rank(X) dim(Veig).
However, as is shown in the following example, strict inequality may hold and, in
fact, the gap can be made as large as possible.

Example 5.10. Consider the cost matrix C defined by clj 1 for all j 2,..., n
and cj n-----il for all 2 _< < j _< n. Then the Laplacian matrix has the form

n- 1 -1 -1
--1 2n--3

n--1

C
".

Tt--1

".
n-I

--1 2n-3
n-1

Then the optimizing vector u for minute=0/max(Lc + diag(u)) satisfies u2 Un
(by symmetry; see [DP93b]). Using this fact, it is not difficult to check that the
optimum vector u is (-(n- 1)a, a,..., a) for a 2(n-2). Then the optimum value

n

is Amx(Lc + diag(u))= 4(n-l). Moreover, the optimized eigenspace is Vg {x
(n- 1)Xl + -2<<n X 0}, with dimension n- 1. Hence, (Vg) +/- is spanned by

the vector v (n- 1, 1,..., 1). Therefore, by Proposition 5.7, the face Fc is given by

{x 0}.
Since v is not strictly balanced, we know from Theorem 2.6 that there cannot exist
a matrix in Fc whose kernel is spanned by v. In fact, one can check that the only
matrix of$ satisfying Xv 0 is the cut matrix

1 -1...-1
-1

J
1

Hence, the rank of X0 is 1 while the dimension of V is n- 1, which is the largest
possible gap. [3

From the characterization of the normal cone (of Theorem 2.9) can be derived
the following alternative description of the face Fc:

A Fc -C Af(A)
==v D diagonal matrix such that

C + D
_

0, ker(C + D)

_
(ker A) +/-.
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Therefore,

Fc {X e $n, kerX

_
(ker(C + D)) +/- for some diagonal matrix D

s.t. C+D h0}.

An interesting question is whether it is possible, given a cost matrix C, to find
an element of Fc (of smallest possible rank) not using some classical optimization
algorithm, but using rather some algebraic techniques based, for instance, on the
above description of Fc.

6. The elliptope 4x4" In this section, we give a description of the faces of the
set $4x 4 of 4 4 correlation matrices. This question was raised by W. Barrett (private
communication, 1994). Note that $4x is a convex set of dimension 6.

THEOREM 6.1. Let F be a proper face of $x4. Then one of the following holds.
(i) dim(F) 0, i.e., F consists of a unique matrix (which is an extreme element

off,n).
(ii) F is an edge joining two cut matrices, so dim(F) 1. There are (2s) 28

such faces.
(iii) dim(F) 2; F is called an elliptic face.
(iv) F is isomorphic to $33 (more precisely, F is a lifting of $33), so dim(F)

fac  .
Hence, we find again that the range of feasible dimensions for the faces of $44

is [0, 3] t2 {6}; recall (3.2). According to Corollary 4.5, the highest dimension of a
polyhedral face of $4a is 2; recall the construction of such a face from Example 4.6.
The elliptope $44 also has nonpolyhedral faces of dimension 2; see Examples 6.2 and
6.3.

We call a face of dimension 2 of $4x4 an elliptic face because, as will be seen in
the proof, it is described by a set of inequalities f(x, y) >_ 0, where f is a polynomial
of degree less than or equal to 2 in the variables x, y.

Proof of Theorem 6.1. Let F be a face of $4x4. Suppose first that F arises as
a lifting of a face G of $3x3. We use the description of the faces of $3x3 given in
Proposition 2.10 from [LP93]. Either G $3x3, in which case F is one of the faces
from Theorem 6.1 (iv), or G is an edge between two cut matrices, in which case F
is one of the faces from (ii). It may also be that G is reduced to a single element, in
which case F is also reduced to a single element; then we are in situation (i). From
now on we suppose that F is not a lifting of a face of $3x3. Set V := xeF ker(X). By
Lemma 2.8, every vector of V has at least three nonzero components. We distinguish
several cases depending on the dimension of V.

Case 1. dim(V) 1. Let v E V,v : 0. We can suppose that v (1,a,b,c),
where at least two of a, b, c are nonzero. We can suppose that a, b : 0. Let

(6.1)

1 x y z

X x 1 x y
y x 1 z
z y z 1

be a matrix in F. The condition Xv 0 can be rewritten as the system

ax + by + cz =-1,
x + bx + cy -a,

y + ax + cz -b,
+ z + ay + bz -c
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Xin the variables x, y, z, x y z Since a, b - 0, the variables x, y, z, can be uniquely
expressed in terms of a, b, c, y, z, namely,

(6.2)

X (- 1 a2 + b2 + c2 + 2bcz’),
(- 1 + a2 b2 + c2 + 2acy’),

-ay bz c,
a2 b2 c2 2acy’ 2bcz)2a’---g (1

The condition X

_
0 can be expressed by asking that all 2 x 2 and 3 x 3 principal

subdeterminants of X be nonnegative, i.e.,

(6.3)

-1 <_ x,y,z,x,y,z <_ 1,
1 x2 y2 (x,)2 + 2xyx >_ 0,
1 x2 z2 (y,)2 + 2xzy > 0,
1-y2-z2_(z)2+2yzz>_0,
-(x’) -(v’) (z’) + 2x’ ’z’ > o.

Hence, F is a face of dimension 2, which is determined by the systems (6.2) and (6.3).
So the boundary of F is described by polynomial equations in the variables y, z of
degree less than or equal to 2. Therefore, F is an elliptic face as in Theorem 6.1 (iii).

Case 2. dim(V) 2. Let X E F that is not a cut matrix. Then ker(Z) Y
(else ker(X) has dimension 3, which implies that X is a cut matrix). This shows that,
if F is not reduced to a single element, then its relative boundary consists only of cut
matrices and, thus, F is an edge between two cut matrices. However, we have already
ruled out this possibility (since we assume that F is not a lifting of a face of E33).
Therefore, F is reduced to a single element, i.e., we are in the situation of Theorem
6.1 (i).

Case 3. dim(V) 3. Then F is reduced to one element which is a cut matrix.
So we are in the situation of Theorem 6.1 (i). El

We recall Example 4.6, where we described a polyhedral elliptic face of E44,
namely, the face {X E E4xa [Xv 0}, where v (1, 1, 1,-1)T. In Example 3.5 we
also described the polyhedral face of $a4 corresponding to the vector v (1, 1, 1, 1)T.

We now present two examples of nonpolyhedral elliptic faces of E4x4. They are
of the form F {X Eax4 Xv 0}, where v 4 is a balanced vector.

Example 6.2. Take v (1, 1, 1, 0)T. Then F consists of the matrices

1 - - x- - y
_1 _1 1 -x- y2 2

x y -x-y 1

where x, y satisfy the condition x2 + xy + y2 <_ 1/4. Hence, F really has the shape of
an ellipse. F1

Example 6.3. Let v (1, 1, 2, 1)T. Then F consists of the matrices (6.1) satisfying
(6.2) and (6.3), where (6.2) reads

1 1 1
x (3 + 4z’), y (-3 + 2y’), z (-5 2y’- 4z’), x’ -1 y’- 2z’.

Acknowledgments. We thank a referee for his careful reading of the paper.



FACIAL STRUCTURE OF CORRELATION MATRICES 547

[BJT93]

[BJL]

[CM79]

[DP93a]

[DP93b]

[DLP92]

[DGSl]

[GW94]

[GJSW84]

[GPW90]

[HW87]

[La94]

[LP92]

[LP93]
[LPR95]

[LRT76]

[LT94]

[LoeS0]

[OvSS]

REFERENCES

W. W. BARRETT, C. R. JOHNSON, AND P. TARAZAGA, The real positive definite com-
pletion problem for a simple cycle, Linear Algebra Appl., 192 (1993), pp. 3-31.

W. W. BARRETT, C. R. JOHNSON, AND R. LOEWY, The real positive definite completion
problem: Cycle completability, to appear in Memoirs of the American Mathematical
Society.

J. P. R. CHRISTENSEN AND J. VESTERSTROM, A note on extreme positive definite
matrices, Math. Ann., 244 (1979), pp. 65-68.

C. DELORME AND S. POLJAK, Laplacian eigenvalues and the maximum cut problem,
Math. Programming, 62 (1993), pp. 557-574.

Combinatorial properties and the complexity of an eigenvalue approximation
of the max-cut problem, European J. Combin., 14 (1993), pp. 313-333.

M. DEZA, M. LAURENT, AND S. POLJAK, The cut cone III: On the role of triangle facets,
Graphs Combin., 8 (1992), pp. 125-142. Updated version in Graphs Combin., 9
(1993), pp. 135-152.

H. DYM AND I. GOHBERG, Extensions of band matrices with band inverses, Linear
Algebra Appl., 36 (1981), pp. 1-24.

M. X. GOEMANS AND D. P. WILLIAMSON, .878-approximation algorithms for MAX
CUT and MAX 2SAT, in Proceedings of the 26th Annual Symposium on Theory
of Computing, Montrtial, Canada, 1994, pp. 422-431.

R. GRONE, C. R. JOHNSON, E. M. SX, AND H. WOLKOWICZ, Positive definite comple-
tions of partial hermitian matrices, Linear Algebra Appl., 58 (1984), pp. 109-124.

R. GRONE, S. PIERCE, AND W. WATKINS, Extremal correlation matrices, Linear Algebra
Appl., 134 (1990), pp. 63-70.

R. D. HILL AND S. R. WATERS, On the cone of positive semidefinite matrices, Linear
Algebra Appl., 90 (1987), pp. 81-88.

M. LAURENT, The real positive semidefinite completion problem for series-parallel
graphs, Report BS-R9439, Centrum voor Wiskunde en Informatica, Amsterdam,
1994, to appear in Linear Algebra Appl..

M. LAURENT AND S. POLJAK, One-third-integrality in the metric polytope, Math.
Programming, 71 (1995), pp. 29-50.
, On a positive semidefinite relaxation of the cut polytope, Linear Algebra Appl.,

223/224 (1995), pp. 439-461.
M. LAURENT, S. POLJAK, AND F. RENDL, Connections between semidefinite relaxations

of the max-cut and stable-set problems, Report BS-R9502, Centrum voor Wiskunde
en Informatica, Amsterdam, 1995, to appear in Math. Programming.

G.S. LEUKER, D. J. ROSE, AND R. E. TARJAN, Algorithmic aspects of vertex elimina-
tions on graphs, SIAM J. Comput., 5 (1976), pp. 266-283.

CHI-KWONG L AND BIT-SHUN TAM, A note on extreme correlation matrices, SIAM J.
Matrix Anal. Appl., 15 (1994), pp. 903-908.

R. LOEWY, Extreme points of a convex subset of the cone of positive semidefinite
matrices, Math. Ann., 253 (1980), pp. 227-232.

M. L. OVERTON, On minimizing the maximum eigenvalue of a symmetric matrix, SIAM
J. Matrix Anal. Appl., 9 (1988), pp. 256-268.



SIAM J. MATRIX ANAL. APPL.
Vol. 17, No. 3, pp. 548-562, July 1996

() 1996 Society for Industrial and Applied Mathematics
OO7

INTERLACING PROPERTIES OF TRIDIAGONAL SYMMETRIC
MATRICES WITH APPLICATIONS TO PARALLEL COMPUTING*-

ILAN BAR-ONt

Abstract. In this paper we present new interlacing properties for the eigenvalues of an unreduced
tridiagonal symmetric matrix in terms of its leading and trailing submatrices. The results stated in
Hill and Parlett [SIAM J. Matrix Anal. Appl., 13 (1992), pp. 239-247] are hereby improved. We
further extend our results to reduced symmetric tridiagonal matrices and to specially structured full
symmetric matrices. We then present new fast and efficient parallel algorithms for computing a few
eigenvalues of symmetric tridiagonal matrices of very large order.

Key words, symmetric, tridiagonal, eigenvalues, parallel algorithms

AMS subject classifications. 65F15, 65Y05

1. Introduction. Tridiagonal matrices appear in a variety of algorithms for the
diagonalization of general real symmetric matrices. Dense symmetric matrices are
reduced to a tridiagonal form by the Householder transformation [7] and sparse sym-
metric matrices by the Lanczos process [4]. There are several efficient sequential
algorithms for computing the eigenvalues of tridiagonal symmetric matrices such as
bisection [10], LR [13], and the QR algorithm [7], [12], [15]. However, for matrices
of large order, faster parallel methods are required. Cuppen’s [5], [6], [11] divide and
conquer method is a useful parallel method for computing the whole spectrum of the
matrix, but usually we require only a few eigenvalues of the matrix. We will present
in this paper new interlacing properties for the eigenvalues of a tridiagonal symmetric
matrix and show how to use them to design fast and efficient parallel algorithms.

Recently, Hill and Parlett [8] have presented some refined interlacing properties
for the eigenvalues of an unreduced tridiagonal symmetric matrix in terms of the
eigenvalues of its leading submatrices. In this paper we generalize their results by
providing interlacing properties for the eigenvalues of the matrix in terms of the
eigenvalues of the leading and trailing submatrices, and we show that their results are
a special case of ours. Moreover, our exposition is elementary .and easy to follow. We
further extend our results to general symmetric tridiagonal matrices, and to specially
structured full symmetric matrices as well. Finally, we show how to apply these
ideas to the design of efficient parallel algorithms for computing a few eigenvalues of
tridiagonal symmetric matrices of large order.

This paper is organized as follows. In 2, we present some definitions and nota-
tion. In 3 and 4, we present our main theorems for unreduced symmetric tridiagonal
matrices. In 5, we extend them to general symmetric and other specially structured
symmetric matrices. In 6, we apply them to the parallel computation of the eigen-
values. Finally, in the conclusion we mention some open related problems.

2. Basic definitions and notation. We denote by 7n the set of real vectors
of order n and the standard basis for this induced vector space by
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where e is all zeros except the ith coordinate, which is one. When needed we empha-
size that a vector is in 7n by writing, for example (n) We denote by A/t(n) the set(:;i

of real matrices of order n and by A* the transpose of the matrix A E j4(n). Here,
we adopt the convention used in the complex case since our results can be generalized
to Hermitian matrices as well. However, for the sake of simplicity we will focus our
attention on real symmetric matrices.

We denote a tridiagonal symmetric matrix T E A/i(n) by

T

’ al
bl a2 b2

b2

bn-
\ bn-1 a

bk ak+l b+
bk+l Hk+2

where T denotes the leading submatrix of order k and Hk+2 the trailing submatrix of
order n- (k+ 1). We say that T is unreduced if b{ # 0, 1,..., (n- 1), in which case
the eigenvalues of T, as well as those of its leading and trailing submatrices, are all
simple, that is, of multiplicity one [12]. We then denote the characteristic polynomial
of T by

p(x) det(xI- T), k 1,...,n,

where we also write p(x) for k n. We denote the extended set of eigenvalues by

(2) ()0(k) {0(0k) --(:X:) < Ok) < Ok) < < O(kk__)l < O(kk) < ’k+l

where we will omit the subscript (k) when possible. We also denote the eigenvalues of
T by A{, 1,..., n. We now give a simple proof of the Cauchy interlacing theorem

THEOREM 2.1. The eigenvalues ofT_ interlace the eigenvalues of Tk.
Proof. For k 2 the proof is simple and in general,

pk(x) (X ak)pk-l(X) b2k_lPk_2(x).

By induction, the eigenvalues of T_2 interlace those of Tk-1. Hence,

(t}(k-1)8ign(pk-2(Ok-1)ff-)) ? 8ign(pk-2,i+l --)),

where by x:t: we mean a real number close enough to x from the right, left, respectively.
Therefore, pk(x) changes sign inside each subinterval

(0k-l) D(k-l)
,’i+1 ), 1 <_ < k- 1,

and being continuous it possesses a root there. A similar approach shows that
changes sign in the extreme subintervals as well. []

We proceed in the next section to give a refinement of the Cauchy interlacing
theorem, and for that purpose we denote by

qt(x),= det(xI- Hz), l- 1,...,n,
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the characteristic polynomial of Ht and note that

p(x) --b_lpk_2(x)qk+l(x + (x- ak)p_(x)q+(x) b2kpk_(x)q+2(x)
bkpk- (x)qk+2(x)

:bp_(x)qk+2(x)

for 1 _< k _< n, with po(x) qn+ (x) 1 and qn+2(x) 0.

3. Interlacing properties for the eigenvalues of an unreduced symmet-
ric tridiagonal matrix. We present in this section our first main result relating the
spread of the eigenvalues of the matrix to the spread of the eigenvalues of its leading
and trailing submatrices.

THEOREM 3.1. Let T E j/I(n) be an unreduced symmetric tridiagonal matrix as
in (1). Let denote the extended set of eigenvalues of Tk as in (2), and let

/ {0 --(:X:) < /1 <’’" < /m < (:X:) m+l}, m n (k + 1),

denote the extended set of eigenvalues of Hk+2. We further let

(3)

denote the union of 0 and , where by union we distinguish between the same eigen-
values from the two different sets. Then in each interval

there is exactly one different eigenvalue of T.
Remarks.

1. in case (-_ ) we assume that the interval contains that one point alone.
2. By a different eigenvalue we mean algebraically different, that is, in case the

multiplicity of an eigenvalue A is r, each is considered to be a different one.
3. The second remark is of no significance here because the eigenvalues differ

by the usual convention. However, when we later consider the more general case of
reduced symmetric tridiagonal matrices, an eigenvalue may have any multiplicity up
to n. For the sake of consistency we prefer to clarify this definition right at this point.

We present some lemmas before we prove Theorem 3.1.
LEMMA 3.2. Suppose there exists an index such that

Then A is an eigenvalue of T. We note that in this case, _, each belongs to a

different set, or more formally, there exist indices r and s such that

where l < r < k and l < s < m.

Proof. Consider the characteristic polynomial of T:

p(x) qk+l (x)pk(x) 2bkpk-1 (x)qk+2(X).

Then, for r, s as above,

p(A) q+(A)pc(Or) bcp2
_
(A)qc+2(s)= O.
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Hence,
LEMMA 3.3. There exists an index r such that

Or, 1 _< r _< k,

is an eigenvalue of T if and only if there exists an index s such that

A=s, l <_s<_m.

Proof. We prove one way; the other is proved similarly.
eigenvalue of T. Then

Let A 0v be an

0 p(A) qk+l()pk(Or) bkPk-12 (Or)qk+2()) bkPk-12 (Or)qk+2(A)

However, since T is unreduced bk 0 and since the eigenvalues of Tk strictly interlace
those of Tk-1 we have pk-l(0v) 0. Hence, qk+2(A) 0 and is an eigenvalue of

H+.. [3

COROLLARY 3.4. For the proof of Theorem 3.1 it is sufficient to show that there
is at most one eigenvalue in each nonredundant interval:

Proof. Consider the case of a redundant interval. Then

since the eigenvalues of Tk and Hk+2 are all different. By Lemma 3.2 there is exactly
one eigenvalue in each such redundant interval because the eigenvalues of T are all
different. By Lemma 3.3 if the endpoint of a nonredundant interval is an eigenvalue
of T it is accounted for in its respective redundant interval. Hence, if there is at most
one eigenvalue in each of the remaining nonredundant intervals, there must be exactly
one there, for the total number of eigenvalues is exactly n.

We will now prove Theorem 3.1 in the following.
Proof. By the last corollary we need only prove that there is at most one eigenvalue

in each nonredundant interval. For a given index s, 1 _< s _< m/ 1, we consider the sth
interval of , that is, (s--1, ]s). Then there is an index i, s _< _< (n- (m / 1 s)),
and indices and r such that

where 1 _< r _< k and 0 _< _< (k + 1) -r. We will then show that in each interval

(4) (’i+j-l,Ti+j), j 0,...,1,

there exists at most one eigenvalue of T. Hence, since for s 1,..., (m + 1) these
sets of intervals correspond to the complete set of nonredundant intervals of 7, we
are done. For the proof we make use of the Sylvester theorem, which states that the
inertia of T and F*TF is the same provided F is nonsingular; see Horn and Johnson
[9]. We denote the number of positive eigenvalues of T by r(T). Given a real number
x which is neither an eigenvalue of Tk nor of Hk+2, we construct the matrix F as
follows:

( o )--bk(e(kk))*(Tk xI)- 1 -bk+(em))*(Hk+2 xI) -1
o i.
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Then - xI F*(T- xI)F ( T xIk

and therefore

0 )0 Hk+. xlm

7r(Tk xI) + r(Hk+2 xI) <_ r(T xI) <_ r(T xI) + r(Hk+2 xI) + 1.

However, the inertias of T and Hk+2 do not change inside a nonredundant interval,
as in (4), and therefore the number of eigenvalues of T there is bounded by

r(T xI) r(T yI) <_ 1

for some x _< y and x, y e (i+j_:, /i+j). H
We proceed to reflect on some implications of Theorem 3.1.

(i) Theorem 3.1 is a generalization of Theorem 1 in Hill and Parlett [8], which
states that in each interval

there is at least one different eigenvalue of T. In fact their result is a simple conse-
quence of ours. For let us assume that

wherei_j_<n-(k+l-i) and0<_l_<n-(k+j+l-i). (Note that forj=lwe
ignore /_: and for j / n we ignore n+.) Then there is at least one index r such
that

because _: :fi 0i. Hence, there is at least one eigenvalue of T there. The proof of
this statement as given in [8] is long and tedious and involves the inspection of the
interlacing properties of four sequences of eigenvalues. Our proof of the much more
general result is more simple and straightforward.

(ii) Our bounds are sharper than those in [8]. The number of eigenvalues of T
in the ith interval, as in (5), is exactly equal to the number of eigenvalues of H+2
that are contained there, plus one. Moreover, if Oi_ or 0i or both are equal to an
eigenvalue of Hk+2, then they are, respectively, also eigenvalues of T.

Proof. Consider the ith interval as in (6). Then we observe that

/jTr--1 j+r, r 1,..., 1,

because they both belong to the set . Hence,

j+r E (i--1,0i), r 1,... ,1- 2.

We conclude that so far, the interval contains l-1 eigenvalues ofT and l-2 eigenvalues
of H+2, which is according to our claim. The remaining two extreme intervals may
now increase the size of both of these sets, by the same amount, and the proof now
follows. The last assertion is then obvious.
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(iii) COROLLARY 3.5. In case

is not an eigenvalue of T, and there are exactly i eigenvalues of T before it and
n- eigenvalues after it. Otherwise, in case

. n.4T. andh (- 1) n..o nd (n-)
eigenvalues aer it.

(iv) Theorem 3.1 also implies Theorem 2 of Hill and Parlett, which states the
following for the special case of n k + 2. Let Hn an a, and let a belong to the
ith interval of , i.e.,

a [0i-1, Oil, 1 k + 1.

Then there is exactly one eigenvalue of T in each of the intervals

(0j--l,0j), 1 j k+ 1, j

and in each of the subintervals

(7) (Oi-l,a), (a, Oi).

This first part of their theorem is the conclusion of ours. Next, consider the extended
set of eigenvalues of T+, which we denote by X, i.e.,

Note that from Cauchy’s interlacing theorem the eigenvalues of X strictly interlace
those of O. Let a Xi, i.e.,

Then, beside the two eigenvalues of T that lie in (7), i.e., in

(O_l,X,), (x,o),

there is exactly one eigenvalue in each subinterval

(8) (0j-I,Xj), J 1,..., (i- 1),

and in each subinterval

(9) (Xj,Oj), j=(i+l),...,(k+l).

This is the essence of the second part of their theorem, and is again a simple conse-
quence of ours. By Cauchy’s interlacing theorem, there is exactly one eigenvalue of T
in each of the intervals

(Xj-I,Xj), l <_j <_ k + 2,

and in particular exactly one in the ith and (i + 1)th intervals. Hence, there can be
no eigenvalue of T in the subintervals

(Xi-- 1, Oi--1 ), (Oi, Xi+I),
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and the conclusion in (8) and (9) now follows. In case X : a, the theorem further
bounds the eigenvalues of T in the ith interval of 0 above as follows. For X > a there
is exactly one eigenvalue of T in the subintervals

and for a > X there is exactly one eigenvalue in the subintervals

(i-1, Xi), (a, i).

These conclusions are again an obvious result of our theorem. However, we will give
a much more general result in the next section for which this theorem of Hill and
Parlett is a special case.

(v) Theorem 3.1 slightly modified also holds for general tridiagonal matrices.
However, for the sake of simplicity we have decided to consider first this more easily
verifiable case. The general case is dealt with in 5.

(vi) There are some generalizations of Theorem 3.1 to specially structured full
symmetric matrices. These will also be considered in 5.

(vii) There are some consequences of our theoretical results to the parallel com-
putation of the eigenvalues of very large size matrices. For example, by choosing
k L(n- 1)/2, we can compute the eigenvalues of Tk and Hk+2 in parallel and then
use their interlacing properties to get some sharper bounds for the exact eigenvalues
of T. For example, consider the famous tridiagonal matrix T tridiag(-1, 2,-1),
whose eigenvalues are given analytically by

hi 4 sin2
ir

i 1,..., n.
2(n + 1)’

Let n 1024, and assume for our demonstration that we are looking for the 307h
and 308th eigenvalues which are shown below:

307 0.82195126525, A30s 0.82691048642 ).

For k 511 and rn 512, the related eigenvalues of 0 and/ are

0 0153 0.81848059628,

/ /153 0.81552949467,

0154 0.82840428509

/154 0.82542059370 ).

We conclude that

and that

/307 E 0153 0.81848059628,

)308 E /154 0.82542059370,

/154 0.82542059370 )

0154 0.82840428509 ).

In fact, we have been able to isolate each of these eigenvalues in a subinterval con-
taining that eigenvalue alone. Thereafter, we may use fast iterative methods such as
the QR algorithm to locate that eigenvalue more accurately. We elaborate more on
these applications in 6.
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4. Refined interlacing properties for the eigenvalues of an unreduced
symmetric tridiagonal matrix. We present in this section more refined results
relating the spread of the eigenvalues of a matrix to the eigenvalues of its leading and
trailing submatrices.

THEOREM 4.1. Let there be given r >_ 1 sequences

<. < < } i, r,F()={Y =-< .._-y

that fulfill the conclusions of Theorem 3.1, that is,

() _(k) k=l r, i=1 n.Aie ("/i--l,’[i ),

Let us denote their union by $"

(10) $ {e0 =- < eL _<"" _< e(n-) < oc e(-)+l}.
Then in each interval

(e, e+), 0,..., (n 1),

there is exactly one different eigenvalue of T.
We will prove this result using the following lemma.
LEMMA 4.2. For 1 <_ <_ j <_ n, we have

/(kl) (k2) 1 < kl k2 < r.i-1 <--9/j

Proof. Using Theorem 3.1 we obtain

(k2) (1)Suppose q, < ")/i-1 Then A > Aj, which is a contradiction since _< j.
Proof. Using Theorem 3.1 we obtain

Ai e LO’i-, "/’i max .i_,
l<k<r

k--1

min (k)
l<k<r’’i )"

Since by Lemma 4.2

(k) (k.)
-1 <- " l

_
kl,k2 <_ r, 1

_ _
(n-1),

we may assume without loss of generality that

2(k) k--l, r fori--1, (n-l)"’’
appears consecutively in $. The rest of the proof now follows. [:]

We proceed to reflect on some of the implications of Theorem 4.1.
(i) Theorem 4.1 is a generalization of Theorem 2 in Hill and earlett [8], which is

reviewed for convenience in the fourth implication after Theorem 3.1. Let n k/2, as
is there, choose k n- 1, and apply Theorem 4.1 with r 2. Then the eigenvalues of
Tk,-1 are the eigenvalues in 0, the eigenvalues of Tk, are those in X, Hk,+l ak+2 a,
and Hk,+2 is empty. The result now follows word by word from the conclusion of
Theorem 4.1, and is much simpler than the previous proof based on Theorem 3.1,
which is already a simplification of the proof given in [8].
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(ii) Our result is much more general than the one given in [8] since it applies to
any number of unrelated sequences.

(iii) Theorem 4.1 slightly modified also holds for general tridiagonal matrices.
However, as before, for the sake of simplicity we have decided to consider first this
more easily verifiable case. The more general case will be considered in 5.

(iv) Numerical examples. We display in Table 1 some experiments with random
matrices of order n 128, created and tested with MATLAB [14]. Here, we consider
the sequences corresponding to k 64, 96,112,120 and compute the widths of the
respective enclosing intervals, taking one to four sequences.

TABLE
Interlacing bounds for a random matrix of order n 128.

22
23
24
25

hi r= 1 r=2 r--3 r--4
-5.1882e-01 4.4719e-02 3.3648e’03 1.3152e-12 1.3152e-12
-4.7746e-01 5.7449e-03 1.7208e-15 5.5511e-17 5.5511e-17
-4.7172e-01 1.6467e-02 5.6621e-15 5.6621e-15 2.7756e-15
-4.5525e-01 1.4844e-02 1.8612e-06 1.8612e-06 1.3323e-15

(v) We note that in the transition from one to two sequences we obtain a tremen-
dous gain, possibly more than from the classical sequential iterative methods. Adding
more and more sequences, even in the case they are computed in parallel, may be-
come questionable in terms of the overall computational cost. However, it is possible
to compute only partial bounds for specific eigenvalues (see 6), and in that case it
may become worthwhile.

5. Generalizations. We extend Theorems 3.1 and 4.1 of the previous sections
for general tridiagonal symmetric matrices in 5.1 and give some generalizations to
specially structured full symmetric matrices in 5.3.

5.1. Symmetric tridiagonal matrices. We extend Theorem 3.1 for general
symmetric tridiagonal matrices in the following.

THEOREM 5.1. Let T E A/(n) be a symmetric tridiagonal matrix, and let

(11) 0-- {00 --(:X:) < 01 _’’"

_
Ok < (:X:)--0k+l}, 1 _< k _< (n- 1),

denote the extended set of eigenvalues of Tk. Let

(12) {/o--c < 1 _<""" _</, < -/,+1}, rn=n-(k+l),

denote the extended set of eigenvalues of Hk+2. Let denote their respective union
as in (3). Then in each interval

(13) [fi-1,7i], i 1,..., n,

we can choose a different eigenvalue of T in a unique way.
Remarks.

1. We may have i-1 < i, and yet /i_ or i or both are eigenvalues of T. This
is why we must use the closed parenthesis notation.

2. Let correspond to the sequence of eigenvalues thus chosen. Then we say
that is a legal sequence.

3. By uniqueness we mean that if is a legal sequence, then
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Proof. We first prove existence and then uniqueness. We show that there is at
least one different eigenvalue in each such interval.

(i) Case bk, bk+l 0. For some index 1 <_ ]gl

_
]g and index (k + 2)

_
k2 _< n,

( ) o )Tk Tl,(kl-1) 0
Hk+20 T, 0 H+

where Tl,k and Hk+2,k2 are unreduced. Let be the unreduced matrix

b. ak+l bk+l
bk+l Hk+2,k2

Let C 0 denote the eigenvalues of Tk,k, and let / C denote the eigenvalues of
Ha+2,k:. Let C a/denote the union of these respective two sets. Applying Theorem
3.1 to , with k’ k- (kl 1) and n’ k2 (kl 1), we conclude that there is
exactly one different eigenvalue of in each interval

(4) i E (i--1, i), i 1,..., k2- kl + 1.

However, the eigenvalues of are also eigenvalues of T, and the remaining eigenvalues
of T, namely, those of Tl,(a-l) and of Ha.+l, are simply the eigenvalues in the set
a/- . We next describe how we choose a different eigenvalue from each interval
of (13) that is a subinterval of the same interval of (14). Since these last intervals
are disjoint and cover the whole real line, the proof then follows. Given an index
i, 1 _< _< k2 kl + 1, there are indices l, r, s such that

a/l-- 2 < i-- a/l---- l -- -- a/l+r--1

_
Xi < a/lTr

_
< a/l+s--i

_
a/l+s+l,

where 1 _< _<l _< n-(k2 + 1- 1- i) and 0 _< r _< s _< n-(k2 +l+ 1- ]1- i). (Note
that for 1 we omit a/z-2, and for n (1 + s) we omit a/z+8+l.) We now choose

a/l+j (a//+j--1, a//+j],
e [+-1, +),

a/l+j--1 [all-t-j--l,

j 0,...,(r- 1),

j=(r+l),...,s,

which is indeed a correct choice.
(ii) Case bk O, bk+l 7 O. Here, Hk+.l,k. and k’ 0, n’ k2 k in the

notation above. The same proof then holds. The case bk 7 O, bk+l 0 is similar.
(iii) Case bk ba+l 0. The eigenvalues of T are those of a/together with ak+l.

The proof is now trivial.
This ends the proof for the existence of a legal sequence. The uniqueness follows

from Corollary 5.2.
COROLLARY 5.2. For any legal sequence , we must have

and therefore is a legal sequence.
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of i,
Proof. Let 1 _< i _< n be the minimal index such that i A. By the minimality

i=Aj, i<j_<n,

and therefore A < i _< %. However, in that case, there is no way to choose A in the
subsequent intervals, and this is a contradiction since is a legal sequence. Cl

COROLLARY 5.3. Consider the case where, for some index 1 <_ <_ n,

Then A is an eigenvalue of T of multiplicity at least r but of no more than r + 2.

Proof. We first observe that by Corollary 5.2,

At=Aj E [/j-l,Tj], j=l,...,l+r-1,

and therefore its multiplicity is at least r. The rest follows from the proof of Theorem
5.1. For example, consider the case where bk, bk+l O. Then, if there exists an index
i, 1 _< i _< k2- kl + 1 such that

then the multiplicity of At is at most r / 1, and otherwise, for some index i as above,

and its multiplicity is at least r + 1 and at most r + 2. Cl

We proceed to generalize Theorem 5.1 in the following.
THEOREM 5.4. Let there be given an r >_ 1 sequence as in (3), which satisfies the

conclusions of Theorem 5.1. Let denote their union as in (10). Then

Ai [r(i--1),-r(i--1)+l], i= 1,...,n.

Proof. It is similar to the proof of Theorem 4.1, but based on Theorem 5.1. []

5.2. Specially structured full symmetric matrices. We will present in .this
subsection some generalizations of the results of the previous subsections to full sym-
metric matrices of a special structure.

COROLLARY 5.5. Let A //I(n) be a symmetric matrix as follows:

A v )A vk ak+l Wm

Wm Bk+2

A A/t(k), Bk+2 A/t(m),
v T, wm T",
m=n-(k+l).

Let us denote the extended set of eigenvalues ofA by as in (11) and the extended
set of eigenvalues of Bk+2 by as in (12). Let 7 denote their respective union as in
(3). Then in each interval

we can choose a different eigenvalue of A in a unique way.
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Proof. We will show that A is similar to a tridiagonal matrix T, such that

O(Ak) O(Tk), (Bk+2) =/(H+2).

The rest then follows from Theorem 5.1.
orthogonal matrices such that

Let Vk e jA(k) and Um e J4(m) be

Vnwm bk_t.lem) Vvk bke(kk), Q= 1
u,

where Q is orthogonal. Then

Q*AQ bk
b I A

ak+l bk+l ] k+2 UnBk+2Um,

and k, Ak as well as/k+2, Bk+2 are similar. Finally,by a bottom-up tridiagonaliza-
tion of k and by a top-down tridiagonalization of Bk+2, we obtain the tridiagonal
matrix T similar to . cl

COROLLARY 5.6. Let A E AzI(n) be a symmetric matrix as follows:

A C, I Bk+l .Ad(m T 1),(15) A- Cnk Bk+l m (n- (k + 1)),

where Cmk is a rank-one matrix. Let 0 be as before. Then in each interval

(16) [0i-1,0i], i 1,..., (k -t- 1),

there is at least one different eigenvalue of A. Similarly, let c denote the extended set
of eigenvalues of Bk+. Then also in each interval

there is at least one different eigenvalue of A.
Proof. Since Cmk is a rank-one matrix, there exist orthogonal matrices Vk

and Um+ A/I(m + 1), such that

. ( 0
+lmk k-- 0

where Q is orthogonal. Hence,

Q*AQ (A=
\ bk

0
Q 0 Um+l

ftk Vk AkVk,
* B/)k+l Urn+ k+lgm+l,

and k, Ak as well as k+l,Bk+l are similar. Finally is similar to a tridiagonal
matrix T as before, and the proof now follows from Theorem 5.1. D

We note in passing that this is the same as Theorem 4 in Hill and Parlett [8].
However, we can say much more in the following.

COROLLARY 5.7. Let A J4(n) be a symmetric matrix as in (15), and let r
denote the sequence of mixed eigenvalues of 0 and a. Then in each interval

(18) (r/i--l, r/i), r/i--1 < r/i, i 1,..., (n + 1),
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there are either no eigenvalues, one simple eigenvalue, or two simple eigenvalues.
Proof. We consider the intervals in (18) that belong to a given interval of a. Let

1 < s < (m + 2). Then there exist indices i, l, and r, such that

In case there is some index t such that

/8-1=r/+t-1, 0<t<l+l,

then by Theorem 5.1 there are either no eigenvalues or one simple eigenvalue in each
subinterval

(?i+j--1, ?i+j), ?i+j--1 < i+j, 0 <_ j <_ 1.

Otherwise, let there be an index t such that

Then only here can we have two simple eigenvalues of A.
We could have generalized these results to obtain a bound on the number of

eigenvalues of A in each interval of (16) and (17), in a way similar to Corollary 5.3.

6. Parallel applications. We describe in this section a simple parallel algo-
rithm for computing a few eigenvalues of an unreduced tridiagonal matrix, based on
the interlacing theory developed in the, previous sections. We assume a parallel ar-
chitecture with p independent processors, each having its own local memory, and a
reasonably fast interconnection network that allows, for example, merging of small
sets of numbers to be done efficiently. We then assume for simplicity that T
with N np- 1 and p 2t. We denote the matrix in block form by

T(8)

bl
b) as) c)

b}S__)
a}S_) c}S_)
e}21 Tl(s)

T}) Ad (n8 1),
i 1,...,1,
p/2*, n, 2n,
S 0,...,t,

where in relation to (1) we have

b}s) =bin,-l, a}8) =ain,, c}s) =bin,.

We assume that initially the matrix is subdivided among the processors, each having
in its own local memory the corresponding submatrix

a}) c)
c}) T/(0) b}O)

b}O) a}O) c}O)

We then look for an eigenvalue of T closer to some given real number x.
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(i) Step s 0. For each submatrix

T() i 1 p,

we find an interval x E 0) containing the closest pair of eigenvalues that surrounds
x from both sides and that contains no other eigenvalue of T(). Here, each processor
computes a different interval in parallel. We note that it is not necessary to compute
the pair of eigenvalues exactly, but only to isolate it appropriately. This can be done
using a combination of QR with bisection.

(ii) Step s 1,..., t. For each submatrix

T, i- 1,...,p/28,

we find as above an interval x E Z8) containing the closest pair of eigenvalues that

surrounds x from both sides and that contains no other eigenvalue of T(8). Here,
however, we make use of the corresponding intervals computed in the previous step.
We merge

s) -(8--i) (8--1)
"2i--1 U ’i

and note that from Theorem 3.1 the new interval contains at least three eigenvalues

of T(8), surrounding x from both sides. We then use bisection with possibly the QR
algorithm to eliminate the unnecessary eigenvalues. We expect in practice to have a
small number of eigenvalues in the newly created interval, so this procedure should be
very fast. For parallel implementation, we let a corresponding group of 28 processors
compute in parallel their respective intervals using parallel bisection as in Bar-On [1]
or parallel QR as in Bar-On and Codenotti [3].

(iii) Step s t + 1. We now have a sharp bound for the eigenvalue near x, and
we can use the parallel QR algorithm to locate it accurately.

We note that this algorithm can be extended in a natural way to compute some
or all of the eigenvalues of T. More specifically, we may design a new divide and
conquer parallel algorithm for computing a partial set, say in a given interval [a, b],
or the complete set of eigenvalues of T; see Bar-On [2]. As compared to Cuppen’s
method, it is useful in both cases.

7. Conclusion. We have presented new theoretical results relating the eigenval-
ues of a tridiagonal symmetric matrix to those of its leading and trailing submatrices.
These theoretical results were also generalized to specially structured full symmetric
matrices. We have then applied these results and obtained fast and efficient parallel
algorithms for locating the eigenvalues of matrices of very large order. Further re-
search is still required for the investigations of related results for specially structured
sparse symmetric matrices.
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ON EIGENVALUES OF QUADRATIC MATRIX POLYNOMIALS
AND THEIR PERTURBATIONS*

M. RADJABALIPOUR* AND A. SALEMI:

Abstract. Following the terminology used by Gohberg, Lancaster, and Rodman, the main
results of the paper are as follows. (i) Studying the values of the partial multiplicities of a matrix
polynomial A(A) A2I - )C + K with hermitian coefficients at real eigenvalues Ao and determining
sharp bounds for the highest degree d of the factor (A- 0)d in the bivariate polynomial t(A, e)
det(A(A) -t- AeC). (ii) Finding conditions on general matrices C and K implying that the leading
exponent in the Puiseux expansion of the zero A(e) of t(A,e) 0 near Ao is l/a, where a is the
algebraic multiplicity of Ao.

Key words, eigenvalues, quadratic matrix polynomials, perturbation

AMS subject classifications. 15A18, 47A56

1. Introduction. Let C and K be n n complex matrices and

(I) A(A)=A2I+AC+K; T(A,e)=A(A)+eAC

for (A, e) E C2. A complex number A0 is called an eigenvalue of the matrix polynomial
A(A) of algebraic multiplicity a if

(2) detA(A) ()-)o)af(/) and a _> 1

for some polynomial f with f(A0) : 0. For e small enough, the matrix polynomial
T(A, e) regarded as a polynomial in has exactly a eigenvalues near A0 counting, of
course, the multiplicities. If

(3) t(A, e) :- detT(A, e) (A A0)dh(A, e)

for some bivariate polynomial h satisfying h(A0, e) 0, then exactly d eigenvalues of
T(A, e) are constantly equal to 0. The integer d is called the triviality degree of T at
A0 and is clearly less than or equal to a. The other a- d eigenvalues of T(A, e) near
0 have the form

+ + # 0, e > 0.

The number/3, called the leading exponent of A(e), plays an important role in the
study of the perturbation of quadratic matrix polynomials and is our main focus in
the present paper. Finding partial multiplicities of A(A) at A0 and other multiplicities
such as the triviality degree d are helpful in finding the values of/3. Aside from this,
the concepts of various multiplicities are of independent interest.

In 2, after a brief definition of partial multiplicities and related concepts, we
prove that if C and K are hermitian, A0 is real, and C+20I is semidefinite, then the
partial multiplicities are either 1 or 2. The results of 2 are proved with a condition
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weaker than the semidefiniteness. (See Remark 2.5.) In 3 we find sharp bounds on
d. In 4 we assume C and K are general matrices and study conditions implying

1/a. Both sections generalize results due to [5].
Throughout the paper we will fix the notation established in (1)-(4) and may

give no further reference. A matrix with no entry is called a vacuous matrix and
its determinant is defined to be 1. Also, we may have to use expressions such as
P(1 _< _< 0), which means that no such expression exists.

2. Partial multiplicities. With A(A) as in (1), there exist matrix polynomials
D(A), E(), F(A) such that

A(A) E(I)D(A)F()),

(6) D(A) diag(d (), d2(A),..., dn(/)),

(7) d e C[x], d+ld (i 1,2,...,n- 1),

and E(A),F(A) are products of elementary polynomial matrices. (An elementary
matrix polynomial can be obtained from the identity matrix by one of the following
alterations: (i) interchange of two rows, (ii) multiplication of one row by a nonzero
constant, and (iii) replacement of the rth row by row r plus p times row s for any
polynomial p and r : s. It is obvious that the inverse of an elementary matrix
polynomial is again an elementary matrix polynomial.) There exist positive integers
g, ml, m2,..., mg such that

(8)
(9)

di(A) (/- A0)’’fi(A), fi(Ao) 0 (i 1,2,...,g),
d(0):0 if g+l<_i_<n

for some polynomials fi. The integer g is in fact the geometric multiplicity of 0 as
an eigenvalue of the (numerical) matrix A(),0). Also, the integers rnl, rn2,..., rng are
called the partial multiplicities of A(A) at A A0. Note that rnl _> rn2 _> _> rng _> 1.
The matrix D(A) is called the Smith form of A(A) and is essentially determined by
rn,..., rng. (See, for example, [2, 4].)

Our first main result determines the values of rnl,..., rng in case C and K are
hermitian, C + 20I is semidefinite, and 0 E . In [3] a criterion is given for the
partial multiplicities to be all equal to 1. From now on, we will further fix the notation
established in (5)-(9), which may be used with no reference.

THEOREM 2.1. Let C and K be n n hermitian matrices and let A(A) be as in
(1). Let o be an eigenvalue of A() and C + 20I be semidefinite. Then rn 2

if l <_ <_ j and rni l if j + l <_ <_ g, where

(10) j dim(ker(Cll -- 2o1))and C is the compression of C to kerA()o).
Proof. Since A(Ao) is hermitian, we can decompose Cn as kerA(Ao) (R) kerA(Ao) +/-

with respect to which

(11) A(Ao)= 0 R C2 C22
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where R and C22 are (n-g) x (n-g) hermitian matrices and detR 7 O. Thus kerA(Ao)
can be further decomposed as kerA(Ao) ker(Cll + 2Ao)(R) ker(C + 2Ao) +/-. Hence,
up to a unitary similarity, Cll diag(-2Ao,...,-2)o, Cj+l,j+,... ,egg) and

(12)
#2I 0 6121

B() 0 (#2 + 20#)1 q_ #011 #6122
#C21 #C22 (#2 + 20#)I + #C22 + R

where 011 diag(cj+,l,j+,..., Cgg), # - 0, B(#) A(#.+ o), and j is as in
(10). Since C + 20I is semidefinite, C21 0.

Fix t E {1,2,...,n}. Let the polynomial at E C[#] be the greatest common
divisor of all t t minors of B(#). If I < t _< n- g, then B(#) has a t t submatrix
whose determinant is a polynomial ut(#) such that ut(O) is the determinant of some
invertible t x t submatrix of R.

If n g + 1 < t _< n j, let/(#) be an arbitrary t x t submatrix of B(#). Then
at least t n + g rows of/(#) contain a factor # and hence det(#) #t-,+g(#)
for some polynomial . In particular, if we choose/(#) by omitting the first n- t
rows and columns of B(#), then det[(#) #t-n+Uut(#), where

g

(13) ut(O) (detR) H (2/o + ci) = 0.
i=n--t+l

Hence t(#) #t-n+glt() with kt(O) O.
Finally, if n- j + 1 < t < n, then, for every t x t submatrix /(#) of B(#),

det(#) #2t-2n++j(#) for some polynomial . In particular, if/(#) is obtained
by omitting the first n-t rows and columns of B(#), then det[(#) #2t-2"++Jut(#),
where ut(O) u,_j(O) 0 as in (13). Hence t(#) #2t-2n++Jkt(#) with kt(O) O.

Now, it follows from (5)-(9) and the Cauchy-Binet formula that

where each (Tt is a polynomial with Gt(O) 7k 0, and rng+l mn= 0. Thus,

mn-t+l q- ran-t+2 q- q- mg t n + g, n g + 1 <_ t <_ n j,

mn-t+l q- ran-t+2 q- q- mg 2t 2n + g + j, n j + 1 <_ t <_ n.

Hence mg= rag-1 mj+l 1 and mj mj-1 ml 2. D
COROLLARY 2.2. With the hypotheses of the theorem, g + j a. In particular if

g l, then a l or 2.

Proof. In view of (2) and (5)-(9), a ml +... +mg 2j + g j g + j. rl

The following example, pointed out by P. Lancaster, shows that Theorem 2.1 is
false if C + 2oI is not semidefinite.

o 0Example 2.3. Letn=2andC=[l 0],1 K=[o 1]"
For ,o 0, D(.) diag(4, 1). Thus g 1 and ml 4. Also, by altering C and

K, one may obtain ml 1, 2, or 3.
THEOREM 2.4. Let C and K be hermitian and ;o 0 be an eigenvalue of A(A).

Then d >_ g+j, where j dim{KerCll} and Cll i8 the compression ofC to kerA(O).
Moreover, if C is semidefinite, then d a.
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Proof. Using (12) and noting that # A, it follows that

0 A(1 + )C121 1
A2I + A(1 + ()11 A(1 / )C122

A(1 + e)Ci22 A2I + A(1 + e)C22 + R

where ] is a bivariate polynomial. Thus d >_ g + j. By Corollary 2.2, if C is semidef-
inite, then d a.

The proof of Theorem 2.1 suggests the following remark.
Remark 2.5. In the proof of Theorem 2.1, the semidefiniteness of C/ 2AoI is used

only to establish C121 0. The latter condition is not needed in its full strength.
All we must do is show that for each integer i E [1,j], there exists an/-dimensional

subspace Wi of ker(C11 + 2AoI), such that dimW and

det[I Li]L R

where Li is the operator sending each x kerA(Ao) +/- to the orthogonal projection of
C121x onto Wi. (In the proof of Theorem 2.1, Li was zero due to the semidefiniteness
of C + 2AoI.)

3. Triviality degree. In this section we study the triviality degree of T(A, e) at
A0 e I \ {0}, where C and K are hermitian. We find lower and upper bounds for
d and construct examples to show that the bounds are sharp. Since our results will
throw some light on the structure of the falling part of the Newton diagram of t(A,
we first begin with a definition of this concept. Let

(14) t(A, e)= E tij(A- A0)iej

be the Taylor expansion oft defined in (3) and let F {(i,j)’tij # 0}. Let H
be the lower boundary of the convex hull of F in 2. Note that (a, 0) e H VI F
and (i, 0) H for alli < a. Let N(t;Ao) FCH. The set N(t;Ao), called the
falling part of the Newton diagram of t at A0, plays an important role in determining
the approximate values of the eigenvalues of T(A, e) near A0. (A curious reader can
see [1, 7] for the definition of the Newton diagram itself; it is not needed in the
present paper.) Reorder the set N(t; Ao) as {(xo, y0), (x, y),..., (xk, yk)} such that
a xo > Xl > > xk dand 0 Yo < Yl < < Y. (Note that H must
intersect the line x d.) It is known that if k _> 1 and (yi Yi-1)/(xi-1 xi)
for some { 1, 2,..., k}, then T(A, e) has an eigenvalue A(e) near Ao of the form (4).
Conversely, if T(, e) has an eigenvalue of the form (4), then/ (yi-yi-1)/(Xi-l-Xi)
for some i {1,2,...,k} [1, 7]. Note that d a if and only if N(t; Ao) {(a, 0)} if
and only if all eigenvalues of T(A, e) near A0 are constantly equal to A0.

Now we state and prove the main result of this section.
THEOREM 3.1. Assume C and K are hermitian and o is a nonzero real eigen-

value of A(A). Then dim(kerA(Ao)n kerC) <_ d <_ nttllityCll, where Cll is the
compression of C to kerA(Ao).
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Proof. Let

(15)

(17)
(18)

Decompose kerA(Ao) as WI W2 (R) W3 such that W1 kerA(Ao) f3 kerC, W2 is the
orthogonal complement of W1 in kerCl, and W3 is the orthogonal complement of
kerC in kerA(Ao). Then, with respect to this decomposition,

t(A, ) defT(A, e) det(A(A) + eAC)

det

xI 0 0 0
0 xI 0 yC121
0 0 xI -4- yClll yC122
0 yC2 yC22 xI + yC22 + R

where Cll is an invertible hermitian matrix, C22 and R are as in (11), and ] is a
bivariate polynomial. Thus (- Ao)[t(A, e) and hence d > r.

Let tpq#Peq be a nonzero term in the MacLaurin expansion of t(#+0, e) such that
m p + q is minimal. Let W3 W31 (R) W32, where W32 _1_ W31 ker(Cll + 2oI).
Then, with respect to Cn W1 (R) W2 (R) W31 @ W32 ] kerA(Ao) +/-, we have

E tpqitPq det
p+q--m

2Ao#I 0 0 0 0
0 2Ao#I 0 0 0
0 0 -2AeI 0 0
0 0 0 2ttAoI + #( + eAo 0
0 0 0 0 R

where 7 is the part of Gill restricted to W32. It follows that m g,

ts,g-s (-1)g-8-2-A-s-(det)(detR) # O,

t+=,__= (-1)--=2g-=A-8-2det(2AoI + )(detR) # O,

and ti,g_i 0 for i < s or > s + u, where u dimW32. Thus d
COROLLARY 3.2. The convex hull of the set F {(i,j) tij 7 0} contains the

points (s, g-s) and (s+u, g-s-u) as extremal points, where u g-s-nullity(2AoI+
C and C is as in (11).

COROLLARY 3.3. If s r n g, then d r, where r and s are as in (15) and

Proof. If s r n g, then C2 is a square matrix. With this assumption we
claim the coefficient t,n_ in the MacLaurin expansion of t(# + Ao, e) is nonzero. It
can be easily verified that the sum of the terms in which It has the least power r is

0 0 AoeC21 ]E t,vItev (2A)Itdet 0 AoeCl AoeC122
v_O AoC’21 A0(C’22 A0C22 -[- R
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In particular, the coefficient tr,n-r of the term #ren- is

t,_ 2A(detC21)(detC121)(detC11).

If C21x 0, then Cx 0 and x E kerA(io) N kerC. Thus x 0. This implies
that detC21 and hence detC2 are nonzero and thus tr,n_ 0. Therefore, d _< r
and hence d r. El

COROLLARY 3.4. If C is nonnegative, then d r.

Proof. If C is nonnegative, so is C1 and hence kerCl c kerC, where C1 is as
in (11). Then s r d. El

The following examples show that the triviality degree d can be any number
between r and s. (See (15)-(16).)

Example 3.5. Let C= i0 -1 -1 0 01] and K 1]" Then A(1) [0 ]" Obviously,
detA(1) 0, r 0, and s 1, where r and s are as in (14)-(15). By Corollary 3.3
(or 3.4),d=0. Thusd=r-0<l=s.

Example 3.6. Let

C= 1 0 0 and K= 1 -1 1
0 0 0 1 -1

Then

A(1)= 0 0 1 and T(1, e)= e 0 1
0 1 0 0 1 0

Here detA(1) 0 defT(l, ) for all e E C. Hence A0 1 is an eigenvalue of both
A(A) and T(A, e) for all e C. In particular d _> 1. Since s 1, r 0 < d s 1.

Example 3.7. Assume 0 < p < q < u are given integers. Let C (resp., Kt) be the
p p zero matrix. Let C" (resp., K") be the matrix C (resp., K) of Example 3.6. Let
C’" (resp., K’") be the matrix C (resp., K) of Example 3.5. Now, let C (resp., K)
be the direct sum of one copy of C’ (resp., K’), q-p copies of C" (resp., K"), and
u-q copies of C"t (resp., K"). Then A0 1 is an eigenvalue of the corresponding
A(A) for which r p, d q, and s u. (See (15)-(16).)

4. Leading exponents. Recall that the positive number in (4) is called a
leading exponent. In this section we assume C and K aregeneral n n matrices
and study necessary or sufficient conditions to imply 1/a. Note that/ 1/a
if and only if N(t;A0) {(a, 0), (0, 1)}. In this case /0 is necessarily nonzero. In
fact 0 0 would imply 0 detA(O) defT(O, e) and hence d >_ 1. Thus N(t; O)
{(a, 0), (xl,y),..., (d,p)} for some p _> 1. Therefore, either d a, in which case all
eigenvalues of T(A, e) are constant, or a > d _> 1, in which case the smallest possible
3 is 1/(a- d- 1) >_ 1/(a- 1) > 1/a. Also, we proved in [6, Thin. 3.1] that N(t; A0)
cannot have a point below the line x + y g and, consequently, if/3 > 0 is a leading
exponent then/3 _> 1/(a-g + 1). Therefore, if/-- 1/a then g 1.

Our results in this section are stated in terms of the algebraic multiplicity b of 0
as an eigenvalue of A(A0). Note that

(19) det(zI- A(A0)) zbv(z),
where v is a polynomial with v(0) # 0. Hence 1 < g <_ b. In particular, if A(A0) is
hermitian, then g b. At this end, to justify the study of the eigenvalues of A(A)
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with non-hermitian coefficients, we remark that if

d3y d2y dy
dt-- B--t-t + D- + Ey O,

then letting Y Ydy/dt] we have the second-order differential equation

d2y[o-IldYdt2 + D B -+ 0 0 ]Y=0,E 0

in which the coefficients need not be hermitian.
Now, we state and prove the main result of this section.
THEOREM 4.1. Let C and K be arbitrary n n matrices and let o 7 0 be an

eigenvalue of A(A). Then, with the notation of (1)-(4) and (19),/ 1/a < 1 if and
only if b 1 < a.

Proof. Assume 1/a < 1. Then g 1 and N(t;,0) {(0, 1), (a, 0)}, which
implies that t(,o, e) eh(e) for some polynomial h with h(0) = 0. Assume, if pos-
sible, that b > 1. Using the Jordan canonical form, we can assume without loss of
generality that A(A0) - J @ R, where J is a b b noninvertible Jordan block and R
is invertible. Thus t(Ao, e) det(A(Ao)+eAoC) eh(e), where h(0) CbAodetR and
C (cj),j=l....On the other hand, detA(A) det[(A2 A0)I + (A Ao)C + A(Ao)]
(A- ,o)](,k), where f is a polynomial such that f(Ao) cbldetR. Since a > 1,
f(,0) 0 and hence Cbl 0. Thus h(0) 0, which is a contradiction. Therefore,
b=l<a.

Conversely, assume b 1 < a. In [6, Thm. 1.1], we showed that N(t; ,ko) has
at least one point on or below the line x / y b. Now, since (0, 0) and (1, 0) are
excluded, (0, 1) e g(t; ,0) and hence/ 1/a.

The following examples show that the condition a > 1 cannot be waived on either
side of Theorem 4.1.

Example 4.2. Let C [o o -1 -0] andK= 1]" Then,0=lisaneigenvalueof
the corresponding A(A) and detA(A) (,- 1)[(,- 1)(,2 + 1)- 1]. Thus a 1. Also,

oA(1) [o o], which implies that g 1 and b 2. Moreover, t(1, e) det(A(1)+eC)
-e, which implies that (0, 1) N(t; 1). Therefore, 1 1/a.

Example 4.3. Let C [0 -1o] and K ]. Then detA(:) (,- 1)
0 0(,k3+A2-A+I). Thus ,0 1 isan eigenvalue of A(,)with a= 1. Since A(1) [o 1],

b g 1. Moreover, t(1, e) -e2, which implies that N(t; 1) {(1, 0), (0,2)}. Thus
=2 1/a.

REFERENCES

[1] H. BAUMGRTEL, Analytic Perturbation Theory for Matrices and Operators, Akademie-Verlag,
Berlin, 1984.

[2] I. GOHBERG, P. LANCASTER, AND L. RODMAN, Matrix Polynomials, Academic Press, New York,
1982.

[3] , Quadratic matrix polynomials, Adv. Appl. Math., 7 (1986), pp. 253-281.
[4] P. LANCASTER AND M. TISMENETSKY, The Theory of Matrices, Academic Press, New York,

1985.
[5] H. LANGER, B. NAJMAN, AND K. VESELI(, Perturbation of the eigenvalues of quadratic matrix

polynomials, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 474-489.
[6] M. RADJABALIPOUR AND A. SALEMI, On eigenvalues of perturbed quadratic matrix polynomials,

Integral Equations Operator Theory, 22 (1995), pp. 242-247.
[7] M. M. WAINBEI:tG AND W. A. TIENOGIN, Theorie der Losungsverzweigung bei nichtlinearen

Gleichungen, Academie-Verlag, Berlin, 1973.



SIAM J. MATRIX ANAL. APPL.
Vol. 17, No. 3, pp. 570-593, July 1996

1996 Society for Industrial and Applied Mathematics
O09

COMPUTATIONAL TECHNIQUES FOR REAL LOGARITHMS OF
MATRICES*

LUCA DIECI, BENEDETTA MORINIf, AND ALESSANDRA PAPINI:

Abstract. In this work, we consider computing the real logarithm of a real matrix. We pay at-
tention to general conditioning issues, provide careful implementation for several techniques including
scaling issues, and finally test and compare the techniques on a number of problems. All things con-
sidered, our recommendation for a general purpose method goes to the Schur decomposition approach
with eigenvalue grouping, followed by square roots and diagonal Pad approximants of the diagonal
blocks. Nonetheless, in some cases, a well-implemented series expansion technique outperformed the
other methods. We have also analyzed and implemented a novel method to estimate the Frecht
derivative of the log, which proved very successful for condition estimation.

Key words, real logarithm of a matrix, conditioning, Pad approximants, series expansions,
eigendecomposition approaches, error analysis, implementations

AMS subject classifications. 65F30, 65F35, 65F99

Some notation. M E ]R2n2n is called Hamiltonian if MTJ + JM O, where

T is called symplectic if TTJT J; equivalently, T-1 -JTTJ. A(T) (A(T),
1,...,n} will indicate the spectrum of T and p(T) the spectral radius of T. The
notation # O(x) means that - c 0 as x - 0, and c is a constant. A (R)

B (ajB)i,j=l ]Rn2xn2n is the Kronecker product of A and B. We write IIAII
IIAll2 for the 2-norm of a matrix A and IIAllF for its Frobenius norm. Analogously,
for a linear operator L(A) Z ]R’x --. L(A)Z ]Rx, we write IIL(A)II
maxllzll=lllL(A)ZII for the operator norm induced by the 2-norm of matrices and
IIL(A)III maxllzllF=llli(A)ZllF for that induced by the Frobenius norm.

1. Introduction. In this work, we address the. issue of finding a real logarithm
of a real matrix. This problem has a precise and complete answer from the theoretical
point of view, but from the computational point of view much work is still needed. A
main motivation for carrying out the present work is to provide careful implementation
for, and assess the performance of, the most promising techniques to compute real
logarithms of matrices. We focus on real matrices, but much of what we say in this
work can be adapted to the complex arithmetic case.

Undoubtedly, in comparison with other branches of scientific computation, lin-
ear algebra software is placed on very solid ground, the LAPACK and LINPACK/
EISPACK libraries being the measure of excellence by which to assess quality soft-
ware. The high-quality Matlab system also has in these computational linear algebra
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components its work-horse. However, there are some linear algebra problems that have
not yet found their way into proper implementation and high-quality software. We
believe that finding the logarithm of a matrix is one of these instances. In fact, more
generally, computing functions of a matrix requires more work. (Interestingly, this is
one of the very rare instances in which the Matlab implementation can give rather
inaccurate answers.) The general lack of good software for functions of a matrix is all
the more bothersome since computing functions of a matrix is a common engineering
requirement (for the logarithm, see [LSI-2], [SS]). We think that a source of trouble is
caused by looking at the computational task as a general task rather than addressing
it in a case-by-case way, depending on the function at hand. Not surprisingly, the exp-
function, which has been singled out for its importance for a long time, enjoys more
personalized and robust implementations. We hope that our work will lead toward
more robust implementations for the log function.

In the remainder of this section we briefly review some of the theoretical results
we need. In 2 we address the sensitivity (or conditioning) issue for the log-function.
The key ingredient is naturally the Frecht derivative of the log, and all throughout
this work we try to characterize its norm. In 3 we give an algorithmic description of
the methods we have chosen to implement and discuss some of the error’s issues for
them. In 4 we discuss finite precision aspects of the methods and also the general
issue of ameliorating convergence and rescaling. We also present a new technique for
estimating the condition number of the log problem, which has proven very reliable
and somewhat efficient. In 5 we give details of appropriate implementations for the
methods, including cost estimates. Finally, 6 contains examples and 7 conclusions.

Given a matrix T ]Rnn, any n n matrix X such that eX T, with eX

the matrix exponential of X, is a logarithm of T, and one writes X log(T). As
is well known (e.g., see [He] and [Wo]), every invertible matrix has a logarithm (not
necessarily real). Among the logarithms of T, in this work we are only interested in
those that are primary matrix functions of T [HJ], [G], [GvL], [Hill. As usual, these
can be characterized from the Jordan decomposition of T (e.g., see [GvL, 1.11.1-2]).

Of course, to guarantee that X log(T) is real (assuming T is), one needs a
further restriction than mere invertibility. The most complete result is the following.

THEOREM 1.1. (see [C], [HJ]). Let T E ]nn be nonsingular. Then, there exists
a real X log(T) if and only if T has an even number of Jordan blocks of each size

for every negative eigenvalue. If T has any eigenvalue on the negative real axis, then
no real logarithm of T can be a primary matrix function of T.

We will henceforth assume that we have a real logarithm of T and that it is a
primary matrix function of T. Finally, it has to be appreciated that a logarithm can
be uniquely characterized once we specify which branch of the log function (acting on
complex numbers) we take. For example, there is a unique X log(T) such that all
of its eigenvalues z satisfy -r < Im(z) < ; this is known as the principal logarithm,
and we will restrict ourselves to this case from now on.

In many applications, there is extra structure that one is interested in exploiting.
For example, different techniques can be devised for the cases when A(I- T) is inside
the unit circle and/or when e(A(T)) > 0. Inter alia, the latter case arises for sym-
metric positive definite T, a situation in which T has a unique symmetric logarithm
[HJ]. Also (see [Si] and [YS]), if T is symplectic (orthogonal), then there exists a real
Hamiltonian (skew-symmetric) logarithm. Of course, in these cases we would want
approximation techniques that guarantee we can recover the desired structure. This
question was recently addressed in [D]; in the present work, we will use and extend
some of the results in [D].
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Not much work has been done on computing logarithms of matrices in comparison
to its inverse function, computing matrix exponentials. The references [KLI], [KL2],
[LS I], [LS2], IV] are a representative sample of works on the computation of logarithms
of matrices. With the exception of [KLI-2], finite precision issues are not considered
in these works. To the best of our knowledge, our work is the first attempt to consider
finite precision behavior of several techniques and to implement and compare them.

2. Sensitivity of the problem. Naturally, before computing the logarithm
of a matrix, it is appropriate to try to understand the intrinsic sensitivity of this
function. The works of Kenney and Laub [KL2] and Mathias [M] are important
sources of information on the general topic of conditioning of matrix functions. Our
presentation is explicitly geared toward the log function and is partly different than
these works.

Given a matrix function F(T), where F IRn - ]Rn, the basic issue is to
understand how the value of the function changes as the argument T does. This leads
to a reliance on the Frecht derivative as a measure of sensitivity. From here on, unless
otherwise stated, we use the 2-norm; with minimal changes (if at all), all results hold
true for different norms.

DEFINITION 2.1. Given a matrix function G" T E ]R -- G(T) ]R, a
linear mapping G’(T) Z e lR --+ G’(T)Z ]R is the Frechdt derivative of G
at T if for any Z ]R we have

(2.1) lim
--0

+

The norm of the Frechdt derivative is given by
has a Frechdt derivative, we say that G is differentiable.

With this definition, one has a general way to assess sensitivity for matrix func-
tions. This is a general procedure and can be found (essentially identical) in the works
[KL2], [Hil], [MvL], and references there, in special cases.

Let X # 0 G(T) X, and consider the perturbed input T + AT with corre-
sponding perturbed output X + AX X + AX G(T + AT). For G(T) log(T),
from the relation AX G(T + AT) G(T), upon using (2.1) we can obtain

(2.2)

The quantity

cond(G(T)) :-IIG’(T)[[ IITI]
IlXll

acts as a relative error magnification factor, and it is therefore natural to call it the
condition number of the matrix function G at T. (Notice that, strictly speaking, we
still have to justify the O(IIATII 2) term in (2.2); we will do this in 3.)

Remarks 2.2. (i) It is clear that cond(G(T)) depends both on G and T and on
X. A measure of conditioning that neglects any of these components may be faulty.

(ii) Of course, different functions G might allow for more specialized ways to
characterize cond(G(T)), as is clearly evidenced in the work on the, matrix exponential
(see [vL], [MvL]). One of our tasks in the remainder of this work is to characterize
better the Frecht derivative of the log function, hence cond(log(T)).
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(iii) If X 0, it is of course more sensible to assess absolute errors and, thus, to
replace (2.2) with

We begin with the following elementary result, already in [KL2, Lem. B2], which
is just the chain rule.

LEMMA 2.3. Let F and G be matrix functions such that G(T) is in the domain of
F. Consider the composite function H(T) := F(G(T)). Let G’(T) and F’(G(T)) be
the Frechgt derivatives of the functions G and F, at T and G(T), respectively. Then
the Frechdt derivative of the composite function is characterized as the linear mapping

H’(T) Z e ]Rnxn --+ F’(G(T))G’(T)Z elR’. [

As a consequence of Lemma 2.3, we have (essentially, [KL2, Lem. B1]) the fol-
lowing result.

COROLLARY 2.4. Let F and G be inverse functions of each other, that is,
F(G(T)) T VT in the domain of G, and G(T) in the domain of F; and let F
and G be differentiable, as in Lemma 2.3. Also, let F’(G(T)) be invertible. Then we
have

(2.4) G’(T)Z- (F’(G(T)))-IZ,

and therefore also

(e.5)

Proof. Apply the chain rule of Lemma 2.3 to the relation F(G(T)) T.
LEMMA 2.5. Let G(T) log(T) and F(Y) eY. Then we have

(2.6)

and therefore

cond(T)cond(G(T)) >_
log(T)[I

where

Proof. From [vL, formula (1.3) and p. 972] we have

F’(Y)Z eY(1-s)ZeYsds

and therefore with Y log(T) from Corollary 2.4 we have (take Z I below)

IIG’(T) max eY(1-S)ZeYsd8
-1

where we have used the identity -log(T)= log(T-1) (see [HJ]). [3
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Remarks 2.6. (i) From (2.7) we can get implicit representations for G’(T) in the
case G(T)- log(T), and F(Y)= eY; for example,

T1-sG’(T)ZTs ds.

(ii) In 3, we prove that for positive definite matrices, in (2.6) we have equality.
In [KL2], Kenney and Laub consider matrix functions admitting a series repre-

sentation such as

:=
n--0

with associated scalar series absolutely convergent. In this case, they can represent
the Frecht derivative as the infinite series

nil

(2.9) F’(X) Z E an EXZX--
n=l k=0

Next, they unroll the Frecht derivative by column ordering, call D(X) E lRn2n

resulting matrix acting on the unrolled Z
the

(2.10)
n--1

D(X) E an E(XT)n-l-k (R) xk
n--1 k--0

and then focus on the 2-norm of D(X): IID(X)II2. To proceed with their analysis,
one must realize that [ID(X)II2 is the same as IIF’(X)]lf (see the notation at the
beginning of this work). They have some general results giving a lower bound for
this norm and then show that this lower bound is achieved when X is normal. We
highly recommend a careful reading of their work for details. Notice, however, that
the assumption on being able to represent F(X) as the series (2.8) rules out a direct
application of their theory to the log function. To deal with the Frecht derivative of
the function G(T) log(T), they rely on (2.5) and are thus able to estimate
via estimates on the norm of the inverse of the Frecht derivative of the exponential
function. Their approach can be profitably .used to get some more information on the
norm of the Frecht derivative of the log. Although what follows is not explicitly given
in [KL2], it can be deduced from their approach.

Consider the case of G(T) and F(Y) inverse functions of each other so that
F(G(T)) T. Moreover, let F(Y) be a matrix function for which (2.8)-(2.10) hold.
For example, this is true for G(T) log(T), and F(Y) eY. Let F’(G(T)) be
invertible, and let D(G(T)) be the unrolled Frecht derivative of F(Y) at G(T). Then
we have

]IG’(T)II II(F’(G(T)))-IlI

Let A be the eigenvalues of D(G(T)), and let ],11 ’’" I’n21 One always has the
inequality

1 <_ II(D(G(T)))-II[2
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and if we assume that D(G(T)) be diagonalizable by the matrix S S-1D(G(T))S
diag(A), then the inequality

1
II(D(G(T)))-III2 < cond2(S)I,

is also well known.
G(T) VG(A)V- Now, let T be diagonalizable by V, T VAV-, and so also

Hence for D(G(T)) one has (use [HJ, Prob. 3, p. 249])

D(G(T)) (V-T (R) V) an E(G(A))--k (R) G(A)k (V-T
n--1 k---O

(R)

With S V-T (R) V, putting it all together, we get that for diagonalizable matrices T
the following holds:

(2.11)
1 1<_ II(D(G(T)))-Iil2 lIG’(T)lly <_ cond2(S) i/1---7.!

To complete this discussion, we now recall that normal matrices can be brought to
diagonal form (almost diagonal, i.e., diagonal with possibly 2 2 blocks along the
diagonal to allow for complex conjugate pairs of eigenvalues if we insist on real arith-
metic) with a unitary (orthogonal) matrix. So, let V be unitary above. Moreover,
if T is normal, then so is G(T) [HJ, Prob. 2, p. 439]. Finally, if Y is unitary, so is
V-T and S V-T (R) V [HJ, p. 249]. So, for normal matrices, one has the precise
characterization

(2.12) IIG’(T)IIy
min

l<i<n

In fact, to have cond2(S) 1 in (2.11) we must have all singular values of S equal 1,
and thus (2.12) holds, for the class of diagonalizable matrices, only if T is normal.

Remarks 2.7. (i) In particular, all of the above holds for the function G(T)
log(T). But the above reasoning also holds for many other matrix functions G(T)
not satisfying (2.8) but for which their inverse function satisfies (2.8); among others,
G(T) T/p, p 2,

(ii) Characterization of the eigenvalues of D(G(T)) in terms of those of G(T) is
done in [KL2, Lem. 2.1].

To obtain a relation between IIG’(T)Ill and the operator norm IIG’(T)II, reason
as follows. Let G’(T)Z B(Z) e ]Rn, and let a(Z), a(B(Z)) be the (ordered)
singular values of Z, B(Z), respectively. Then

I]G’(T)I max o’1 (B(Z))
a(Z)=l

max (a21(B(Z)) +... + a2n(B(Z)))l/2
a(Z)+...+a2(Z)=l

and the following inequalities are then simple to obtain:

(2.13) IIG’(T)II < IIG’(T))II < IIG’(T)II

Notice that (2.13) are the usual inequalities between the Frobenius and spectral norms
of matrices.
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Of course, in order for a measure of conditioning of the G(T) problem to be an
effective computational tool, one should be able to estimate IIG’ (T)II (perhaps in some
norm other than the 2-norm) without drastically increasing the expense needed for
the computation of G(T). This seems to be a tall task. Nonetheless, some interesting
ideas are in [KL2] and [M], and some other possibilities are discussed in the next two
sections.

3. Some methods. More on conditioning. Here we present (i) two series
expansion techniques [GvL], [LS1-2], [D], (ii) Pad approximation methods [KL1-
2], [D], (iii) the Schur decomposition approach [GvL], [Matlab], and (iv) an ODE
reformulation approach.

Series expansions. Under appropriate restrictions on the spectrum of T, the
principal logarithm of T can be expressed as a series. In particular, two such series
have frequently appeared in the literature. Computational procedures arise upon
truncating these series.

Series 1. LeG A I- T, and assume p(A) < 1. Then

(3.1)
Ak

G(T) "= log(T) log(/- A) E -.
k--1

Subject to obvious restrictions on spectral radii, from (3.1) we get

 og(T +  og(T) + 0og(T))’Y + E(Y),

and IIE(Y)II <_ O(IIYII2) From this, for the Frech6t derivative we obtain the expres-
sion:

c ln-1
(3.2) G’(T) Y - E EAkYAn-l-k A I- T

n
n--1 k=0

and if ]IA]I < 1,

1 E IIAII "-1 1 1
II’(T)II _< E 1-IIAll 1- IlI- TII"n=l k=0

thatFrom the above, we get that for positive definite matrices IIG’(T)I <_ mineA(T)lAi
is, IIG’(T)II <_ IIT-1]I, which justifies Remark 2.6(ii) for positive definite matrices for
which (3.1) holds.

Series 2. This is obtained from the series expansion (3.1) for log(/+ X)- log(I-
X) log((/+ X)(I- X) -1) via the conformal transformation T (X I)(X + i)-1,
thereby obtaining

(3.3) log(T) 2E 2k + 1
[(T I)(T +/)-l]2k+l

k=0

Notice that the restriction p(A) < 1 needed for (3.1) is now e(A(T)) > 0. Reasoning
as before, if also e(A(T + Y)) > 0, for the Frech6t derivative of log(T) we obtain the
expression:
(3.4)

i
2k

E E BJ(2CYC)B2k-J’ C "= (T + 1)--1 B :- (T I)C(log(T))’ Y 2
2k + 1

k=o j=o
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Padd approximants. Under the assumption p(I- T) < 1, these consist of ap-
proximating the function log(/- A), A I- T with the rational matrix polynomial
Rn,,(A) Pn(A)(Qr(A)) -1, where Pn(A) and Q,(A) are polynomials in A of de-
gree n and m, respectively, in such a way that R,m(A) agrees with n + m terms in
the series expansion (3.1) of log(/- A). This is a universal and powerful tool [BG-M]
that is well examined in the context of log(T) in the works [KL1-2]. It is easy, with
the help of tools such as Maple, to obtain the coefficients of the matrix polynomials
Pn(A) and Qm(A). Based on the error estimates in [KL1], we have only considered
diagonal Pad approximants.

To assess the conditioning of the Pad approximants, we can reason as follows.
n kFor given n,m, let R(A) R,,(A) P(A)(Q(A)) -1 y’k=oakA (y=0bkAa)

Suppose that rather than T we have T+ Y, that is A- Y, instead of A, and IIYII << 1.
Then it is easy to obtain

R(A- Y) R(A) -(E(Y) R(A)F(Y))(Q(A)) -1 / H(Y),

where IIH(Y)I < O(IIYII2), and E(Y) "-’2_,k=lak2.,j=oAJYAk-l-J and F(Y)
j=oA3YAk-I-J are the first-order perturbation terms for P(A) and Q(A).

From (3.5j we obtain

IIR(A Y) R(A)II _< (IIE(Y)II + IIF(Y)II [IR(A)II)II(Q(A))-lll + O(IIYI[ u)

or, in a relative error sense (if IIR(A)II 0),

( ) cond(Q(A))(3.6) IIR(A Y) R(A)II < IIE(Y)II +IIF(Y)II +O(llYl12).[IR(A) [IR(A)[I [IQ(A)

Therefore, we see that for the conditioning of the Padd problem the most impor-
tant factor is the conditioning of the denominator problem. In [KL1], this issue is
investigated in the case IIAII < 1; in particular see [KL1, Lem. 3].

To understand better the term (E(Y)- R(A)F(Y))(Q(A)) -1 in (3.5), we can use
first-order perturbation arguments for the matrix function R(A) to obtain

(E(Y) R(A)F(Y))(Q(A))-1 R’(A)Y.

We also have the following general result.
LEMMA 3.1. Let F(A) ,k=ockA and let R(A) be a Padd approximant

agreeing with the series of F(A) up to the power An+m included. Then R’(A)Y agrees
nTm j-1with E’(A)Y up to the term j=l cJ=oAYA3-1-.

Proof. Write F(A) R(A)+ M(A), so that M(A) has a power series with
terms beginning with Ak+’+l. Now, since F’(A)Y R’(A)Y + M’(A)Y, the result
follows. El

Remark 3.2. For the case of the log, since F(A- Y) log(T + Y), Lemma 3.1
tells us that the conditioning of the Padd problem (hence also of the truncated series
(3.1)) is close to the conditioning of log(T) (essentially the same if IIAII < 1 for high
enough n + m). No extra pathological behavior is introduced.

Schur decomposition approach. When properly implemented, this is an extremely
effective and reliable technique. The basic principles of the technique are general (see
[GvL]), but our adaptation to log(T) seems to be new. Let Q be orthogonal such
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that QTQT := R is in real Schur form (upper quasi-triangular). Moreover, let R be
partitioned as

0 /i,

where we assume that A(R)NA(Rjj) 0, i - j (this can be done in standard ways).
To obtain L :-- log(R), one realizes that L has the same block structure as R and (see
[GvL, 11.1]) can get L from the relation LR RL. The following recursion can be
used to get L [P].
For i 1,2,...,m

(3.7) L log(R)

Endfor i
Forp- 1,2,...,m- 1

For i 1, 2,..., m- p, with j i + p, solve for the Lj:

j--1

LijRjj RiiLij RijLjj LiiRij + E (RikLkj LikRkj)
k--i+l

Endfor
Endfor p.

In general, the R can be the 1 1 or 2 2 blocks of eigenvalues or also much
larger quasi-triangular blocks. If T is normal, then Q brings T to block diagonal
form with either (1, 1) or (2, 2) diagonal blocks, and only (3.7) is required. Otherwise,
solving the Sylvester equation (3.8) is standard (see [GvL, p. 387], and notice that
(3.8) is uniquely solvable since A(R)N A(Rjj) 0). To obtain L from (3.7) is
just a function call if R is (1 1), and also if R E lR22 with complex conjugate
eigenvalues a direct evaluation is possible (see Lemma 3.3), while in M1 other cases
we need some approximation method, e.g., by truncating the previous series or using
Pad approximants (if applicable).

a bLEMMA 3.3. Let A (c d) with complex conjugate eigenvalues i (p 0).
Then

log(A)=aI-4bc+(a_d)2 2c -a+d

where log(p), p2 2 + 2 and cos 1(), 0 <
Proof. The proof is just a simple calculation.
COROLLARY 3.4. Let B 2x2 be nodal with complex conjugate eigenvalues,

that is, B b ab)" With the notation of Lemma 3.3, we have

log(B) ( a )
Moreover, if B is orthogonal, then O. E]

Remarks 3.5. (i) Corollary 3.4, coupled with prior real Schur reduction, guar-
antees that the computation of a real logarithm of a normal matrix T can be done
in such a way that the end result is a real, normal matrix. In particular, this fact
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makes such an algorithm interesting for computing the skew-symmetric logarithm of
an orthogonal matrix, an approach not considered in [D].

(ii) Of course, (-ab ab) can be identified with the complex number z a + ib,
which makes Corollary 3.4 obvious (log z log Izl /iarg z). This observation also
renders more transparent the first part of Lemma 3.8.

ODE approach. This will be a very useful tool to characterize better both log(T)
and its Frecht derivative. The starting point is to embed the problem into a contin-
uous model, similar in spirit to a "homotopy" path.

Let the time-dependent matrix X(t) be implicitly defined as

(3.9) X(t) eX(t) (T- I)t + I, O < t < l.

Notice that X(1) defines log(T) and that X(t) is well defined and real Vt e [0, 1],
because for (T-I)t+ I Theorem 1.1 holds since it holds for T. Since TeZ(t) eX(t)T,
we also have that X(t) satisfies the ODE

(T- I)e-X(t),
(3.10)

X(0) =0.

O_<t_<l,

By construction, (3.10) defines the principal log of (T- I)t / I. Upon using (3.9), we
have the explicit solution of (3.10)"

(3.11) X(t) (T- I)((T- I)s + I)-lds, 0 < t < 1,

and therefore we find the following expression for log(T)"

log(T) X(1) (T- I)((T- I)t + I)-ldt.

Remarks 3.6. (i) Formula (3.12) is also derived in the works by Helton and Wouk
[He], [Wo]. Their interest was in showing that every invertible matrix had a logarithm.

(ii) Computational procedures for log(T) can be obtained by using integration
formulas for the ODE (3.10) or quadrature rules on (3.12). We have experimented
with explicit Runge-Kutta integrators for the ODE (3.10) and several quadrature rules
for (3.12). We found that quadrature rules were consistently less costly. Notice that
the midpoint rule on (3.12) gives the (1, 1) Pad6 approximant; see also Theorem 4.3.

Formula (3.12) can also be used to obtain a new formula for the Frech6t derivative
of G(T) log(T). In fact, upon considering (3.12) for log(T + Z), using first-order
perturbation arguments and some algebra yields

(3.13) G’(T)Z ((T- I)t + I)-1Z ((T I)t + I)- dt

We also notice that using (3.12) for log(T + AT) and expanding the inverse there in
powers of AT justify the O([[AT][ 2) term in (2.2).

Now, from (3.13) with Z I, since

I)t + I)-2dt -(T- I)-I[((T- I)t + I)-] T-
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we obtain liT-Ill < IIG,(T)II, and so

(3.14) liT-Ill < IIG’(T)II < ]i I[((T- I)t +

Moreover, (3.13) and (3.14) can be profitably exploited to gain further insight into

LEMMA 3.7. If T is positive definite, then

Proof. Diagonalize T with orthogonal Q on the right-hand side of (3.14) and
perform the integration. El

LEMMA 3.8. If T E IR22 is normal with complex conjugate eigenvalues a +/- ib,
then

1 0
IIa’(T)I

p sin(0)
where - < 0 < is the argument of the eigenvalues of T and p their modulus. If T
is normal of dimension n, then

1 OkIIa’(T)II > > liT-Ill
k pksin(0k)

where Ok’s are the arguments of the eigenvalues of T (if Ok -O, replace sin1k by 1)
and pk’s their modulus.

Proof. In the (2 2) case T is of the form T (-b ab) with complex conjugate
eigenvalues a +/- ib (and let b :/: 0; otherwise T is positive definite). Then A(t)
((a+/-ib-1)t+l) -1 are the eigenvalues of ((T-I)t+I) -1. Now, ifwe take Z (01 0)l
in (3.13), we get that

fOI]G’(T)II IA(t)l dt.

For a # 0, with some algebra, this integral equals tan-1 h 0
a p sin(0)’ where 0

belongs to (0, r/2), (-,-/2), (-/2, 0), (7/2, ) depending on whether b/a > O,
and b > 0 or b < 0, or b/a < 0, and b < 0 or b > 0. Now, one always has [IG’(T)[[ _<
f0[[((T- I)t + I)-1112 dt, and, because of normality, the norm of ((T- I)t + i)-1
equals IA(t)l. Therefore, as before, we get the reverse inequality

[IG’(T) < 1 0
p sin(0)

subject to the same restriction on the argument. Therefore, the result for T normal
lrand (2 2) follows. If a 0, one simply gets IIG’(T)II- p2"

For general T E JRnn, normal, let Q bring T to the almost diagonal form QTQT.
Next, consider all matrices Z given by all zeros, except that on the diagonal they have
just one 1 or one (0 0) block according to the eigenvalue structure of QTQT and
then (3.15) follows from the previous (2 2) case. El

Remark 3.9. The bound (3.15) indicates that there are two key factors deter-
mining the condition of the log problem. One is, as usual, nearness to singularity, as

factor; the other is nearness to the negative real axis, as evidencedevidenced by the
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by the sin(t?) factor in the denominator. This second fact detects ill-conditioning based
on the restrictions imposed by the choice of primary matrix functions.

Finally, (3.13) can also be used to estimate IIG’(T)IIf directly. We reason similarly
to [KL2] but stress that (3.13) is a representation for G’(T)Z that does not need a
power series representation nor to go through the inverse function (the exponential).
We have the following result.

THEOREM 3.10. Let A(t) ((T-I)t+I) -1, and let D(T) := f (AT(t)(R)A(t)) dr.
Then we have

(3.16) IIG’(T)IIf IID(T)II2.

Proof. Let vec(Z) be the vector obtained by writing the columns of Z one after
another, and so IIG’(T)II maX,,vec(Z),,.=lllvec(a’(T)Z)ll.. But by (3.13)

/0 /ovec(G’(T)Z) vec(A(t)ZA(t))dt (Ar(t) (R) A(t))vec(Z)dt

and the result follows.
Remark 3.11. The above result can be used, in the same spirit as in [KL2,

p. 192], as a starting point for a procedure to estimate ]G’(T)]f. In fact, since
]D(T)]]2 (Amax(DT(T)D(T)))I/2, a power method approach to get the dominant
eigenvalue is suitable. By noticing that DT(T) D(TT), with A(t) given in Theorem
3.10, a cycle of this power method can be compactly written as follows. "Given

Z0" ]]Z0]]F 1, let Z1 fA(t)ZoA(t)dt, and then Z2 fAT(t)ZAT(t)dt, so
that (][Z2[[F)/2 is an estimate for ][G’(T)[]I. If more accuracy is required, repeat this

z ." In practice, of course, the integral must be replaced by acycle with Z0 := ]z:t
quadrature rule, and we experimented with composite trapezoidal and Simpson rules
and Gauss-Legendre rules. For the initial Z0, we used what we would have gotten

I that is, one first would getafter one cycle of the procedure had we started with

T-1 and then a quadrature rule for the next integral would give some Z2Z1
(e.g., Z2 (T-TT-T-T+16(T-I)-TT-(T-I)-T+T-1) ifwe use the .Simpson

rule). Thus, we used Z0 := Z2/]]Z]]. This choice of Z0 gave consistently better results
than starting with a random matrix. We have experimented with this way to estimate

]G’(T)]I by using at most 10 equally spaced subdivisions for the quadrature rules.
This approach was very inexpensive, of course, but not entirely reliable. Often, it
overestimated the true value (interestingly, almost never underestimated it), so it
revealed itself as a good indicator of ill-conditioning but did not give a good measure
of achieved accuracy. On the other hand, we cannot expect that for arbitrary T, hence
A(t) in Theorem 3.10, a quadrature rule with few points will be accurate; naturally,
when we raised the number of quadrature points, the estimate got better, but this
became too expensive. For these reasons, we turned our attention to a different
technique, which we explain in the next section.

4. Finite precision, rescaling, discretizations. For the two series (3.1) and
(3.3), the asymptotic rates of convergence are determined by p(A), A := I- T and
p(B), B := (I- T)(I + T) -1, respectively. However, the finite precision behavior of a
truncated expansion is influenced by progressively taking powers, that is, Ak for (3.1)
and B2+ for (3.3). Moreover, for’ (3.3) there is also the inverse of I + T with which
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to contend. A worst case analysis tells us that roundoff might be magnified by powers
of IIAII or IIBII, respectively. If IIAII < 1, then (3.1) leads to a safe computation. Also,
when IIAII < 1, for (3.3) we would have IIBII < II(I + T)-IlI, and this can be easily
bounded since I + T 2(I-/_Z), and so (I + T)- 1/2(I- A/2) -1. Then

1 1
I[(I + T)-I[] -< 1 -[[A[[/2 < 1.

So, under the assumption [IA[I [1I- T[[ < 1, the two series (3.1) and (3.3) lead to a
safe computation. Also for the Padd approximants, the assumption on I[AI[ < 1 seems
essential to making progress. Under this assumption, the finite precision behavior of
Pad6 approximants is well analyzed in [KL1]. In particular, see Lemma 3 of [KL1].

Because the transformation to the Schur form is a stable process, the finite pre-
cision behavior of the Schur method is chiefly determined by finding Lii log(Rii) in
(3.7) in case Lemma 3.3 does not apply and by solving (3.8). The former factor is
the usual one. The second factor is carefully analyzed in [Hi2]. One must solve the
following Sylvester equation for Z:

RZ- ZRjj C,

where the spectra ofR and Rjy are disjoint. Ideally, we would like to select the block
partitioning of the matrix R in such a way that all Sylvester equations to be solved are
well conditioned so that no eventual loss of precision in the computation is introduced.
But, of course, to assess the conditioning of a Sylvester equation requires the equation
and its solution, whereasfor the sake of efficiencywe would like to have a criterion
to determine the partitioning of R beforehand. We reasoned as follows. If we call the
Sylvester equation operator, " Z RZ-ZRjj, then -1 is an upper bound for a
relative error magnification factor (see [Hi2]). It is also known that ]]-1 min ]A--]’
where A A(R), p A(Rjj) (see [GvL, p. 389]), and we can easily control this
lower bound by making sure that A(R) and A(Rjj) are sufficiently separated. Of
course, this does not suffice to make the Sylvester equation well conditioned. Still,
after extensive computational experiments, we decided to cluster the eigenvalues so
that A(R)- A(Rj) 1/10, and we have never encountered a problem where a
system (3.8) was ill conditioned, but the log was well conditioned. For this reason, we
think the method should be regarded as stable.

For the ODE approach, a quadrature rule must replace the integral in (3.12).
That is,

i(4.1) log(T) (T I)((T I)t + i)-1 dt "= F(t) dt

must be approximated by a rule of the type

N

(4.2) e .=

k=l

For example, consider a composite Simpson rule (identical reasoning applies to dif-
ferent quadratures) to approximate (4.1). Let F(t) (T- I)((T- I)t + i)-1 =:
(T- I)A(t), with d(t) ((T- I)t + i)-1. The composite Simpson rule with equal
spacing h 1IN (N even) is

h
(F(O)+4(h)+2F(2h)+4F(3h)+...+2F((N-2)h)+4F((N- 1)h) +F(1)).
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It is easy to bound the error as

nh4
log(T)- CSll_< 0<t<lmax liFe-(till.

We can verify that F(k)(t) (-1)k!((T- I)A(t))k+l, from which

(4.4) Fv(t) 24[(T- I)A(t)] 5

which can be used in (4.3) to get error estimates. In case IlI TII co < 1, the error
bound can be sharpened. In fact, we easily get IlA(t)ll _< _-, so that IIF(t)ll _<
24()5, and therefore

(4.5)
4n

h4 coa)log(T) CSII <_
1

Remark 4.1. A direct computational procedure based on a composite quadrature
rule discretization of (3.12) can eventually be very accurate, but in general it will be
expensive unless T is not far from the identity. Still, for low accuracy, a formula like
(.4.2) can be profitably used. For example, a modification of the above proved very
useful in estimating the norm of the Frecht derivative of log(T), as we will see later.

To complete the discussion on quadrature rules, we now give a new equivalence
result about Gauss-Legendre quadratures on (4.1) and diagonal Pad approximants.
Aside from its theoretical interest, this fact allows for a new representation of the error
for diagonal Pad approximants.

LEMMA 4.2. Any quadrature rule of the type (4.2) is equivalent to a rational
approximation of log(T).

N FProof. We have Q "= }-].k=Ick (t) and F(t) (T- I)((T- I)t + i)-1. Since
F(t)F(tj F(tj)F(t)Vi, j, we can rewrite Q as

Q= (T--I) I’Ckk=l H ((T- I)t + I) ((T- I)t + I)
i=l,iTk

from which the claim follows, rn
THEOREM 4.3. Let p(I- T) < 1, and let Q in (4.2) be the N-point Gauss-

Legeudre quadrature rule for log(T). Then Q is the (N, N) diagonal Padd approximant
to log(T).

Proof. With previous notation, and under the stated assumptions, we have

F(t) (T- I)E(--1)k(T- I)ktk
k=0

where the series converges. Therefore,

f01log(T) E(T- I) (--1)k(T- I)kt dt.
k:l

Since N-point Gauss-Legendre rules are exact for polynomials of degree up to t2N-l,
we immediately realize that Q agrees with log(T) up to the term (T-I)2N+1 excluded.
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From Lemma 4.2, Q is a rational approximation to log(T), and thus it must be the
(N, N) diagonal Pad@ approximant.. El

COROLLARY 4.4. Under the assumptions of Theorem 4.3, we have the following
error estimate for the (N, N) diagonal Padd approximants Q to log(T):

log(T) (N!)4
(2N + 1)((2N)!)3 (2N + k) (k + 1)A2Y+k+lk

k--O

where O <_ <_ l and A I- T.
Proof. From standard quadrature errors for Gauss-Legendre rules (e.g., see [AS])

and differentiating under the series of Theorem 4.3, the result follows at once. El
Remark 4.5. The previous results hint that a possible way to use quadrature rules

is first to pass to their rational form equivalent. On the other hand, for diagonal Pad
approximants, it might instead be more desirable to pass to their quadrature formula
equivalent (4.2) to avoid ill-conditioning in the denominator of the rational function.
Moreover, from Theorem 4.3 we see that Gauss formulas are an excellent candidate
for a parallel implementation of Pad approximants.

From the preceding discussion, it has become clear that it would be generally
desirable to have T close to I. This would make the finite precision behavior of the
above techniques much better.

Scaling. An ideal scaling strategy, in the context of computing log(T), is to
precondition the problem so that (for a modified matrix T) T I. In any case, a
reasonable scaling ought to give a T for which [[I- TI[ < 1.

One approach is to find, inexpensively, some X1 approximating log(T) such that
XT TX and then to consider e-ZlT, find its logarithm, and finally recover
log(T) X1 / log(e-XiT). Some ideas on this are in [D]. Also (3.12) can be used in
this light, since any quadrature rule of the type (4.2) gives X XIT TX.

A more systematic approach results from the inverse scaling and squaring proce-
dure of Kenney and Laub [KL2]. The basic idea of this approach is to "flatten out"
the matrix T. It is based upon the identity log(T) log((T1/2k)2k) 2k log(T1/2k)
and the realization that, eventually, T1/2 I. With respect to this scaling proce-
dure, we must consider (i) how to take square roots and which square roots should
we take, (ii) when should we take square roots, (iii) what is the conditioning of the
overall procedure, and (iv) if there are risks involved with this scaling strategy.

With respect to the first issue, we have adopted the choice made by Higham (see
[Hill and also [BH]), thereby relying on a real Schur approach. Under the assumptions
of Theorem 1.1, there are many square roots of T; see [Hil, Thms. 5 and 7]. However,
in our context, to find the principal branch of log(T) eventually, there is only one
choice. We must select the square root(s) according to the lemma below (see also
[KL2, Lem. All).

LEMMA 4.6. Let B E ]Rmm be invertible with no eigenvalues on the negative
real axis. Then B has a unique 2kth root S, i.e., S2 B, .which is a primary matrix

function of B, and such that if A(S), then
(a) -7/2 < arg() < 7r/2k and
(b) e() > 0 for k 1,2,
Proof. A constructive proof can be based upon the method of Higham (see [Hil,

p. 417] for details). El
When to take square roots? Ultimately, it all depends on what algorithm we

use to approximate log(T). For algorithms fully based on truncated series or Pad
approximants, square roots of the full matrix T have to be taken to ensure numerical
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stability and rapid convergence. When using a Schur decomposition approach, the
procedure is only needed to obtain L in (3.7) in those cases for which approximation
techniques are required for the L. One thing to keep in mind is that, asymptotically,
taking square roots gives a decrease in norm by a factor of 2. Therefore, how many
square roots to take depends on which algorithm we eventually use for computing the
log of the scaled matrix.

To examine the conditioning of the inverse scaling and squaring procedure, we
must look at the Frech(t derivative of M(T) 2k log(T1/2k). Let Tj TI/2 j
0, 1,..., k (so To T); and let G and F be the log and square root functions, respec-
tively. Then, upon repeated use of Lemma 2.3, we have

M’(T)Z 2kG’(Tt,)F’(T,_) F’(To)Z.

In other words, unavoidably, the better value for the norm of the Frecht derivative of
the log (because Tk -, I) is being paid by the Frechet derivatives of the square roots.
The problem of estimating the Frechet derivative of the square root function can be
based on Corollary 2.4 by considering S(X) :- X2 and the identity S(F(T)) T.
Therefore, we have the equalities

F’(To)Z (S’(F(To)))-Z, F’(T)(F’(To)Z) (S’(F(T)))-IF’(To)Z,...,

F’(Tk_ (F’(Tk_2)... F’ (To)Z)
(S’(F(Ta_)))-I(S’(F(Ta_2)))-... (S’(F(To)))-Z,

and thus we have

G’(T)Z 2kG’(Tt) {(S’(F(Tk_I)))- (S’(F(To)))-Z}

Formula (4.6) forms the basis of the following algorithm to estimate IIG’(T)ZoII
for a given Z0, and hence to estimate cond(G(T)). This procedure gave us much
better results (both in terms of accuracy and expense) than one directly based on
Theorem 3.10.

Let To T, Tj T1/2, j 1,..., k, where the index k must be chosen so that

III TII w < 1; and let Z0 be given.
(a) Solve

F(Tj)Zj+I + Zj+IF(Tj) Zj j O, 1,... ,k 1

(notice that the F(Tj) stay quasi-triangular if To is such; also, one might already have
the Tj from scaling via taking square roots, but only if square roots of all of T had
been taken).

(b) Since G’(T)Zo 2’G’(T,)Z, we approximate G’(Tk)Zk, by using a quadra-
ture rule on (3.13).

It is obvious that the algorithm is well defined, since the Sylvester equations
(4.7) are uniquely solvable. In terms of computational cost, by using a composite
quadrature rule with N points, at leading order one needs (k + N)n3 flops, plus the
cost of computing the Tj’s if they are not available, which might amount to another
ikn3 flops, plus the initial cost of the Schur reduction of T.6

Next, we show that the above eventually provides a good estimate of
We show this for the composite Simpson rule, but the reasoning applies to any other
quadrature rule.
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THEOREM 4.7. Let T e ]Rnn be given such that III- TJI w < 1, and let
G(T) log(T). Let Z be given, and let G’(T)Z be given by (3.13). Let CS be the
composite Simpson rule with g points (N even) approximating (3.13) so that h 1IN
below. Then we have

2nh4 024
(4.8) IIG’(T)Z CS[I < IIZ]I

3 (l-w)6

Proof. We have

f01 foG’(T)Z A(t)ZA(t)dt F(t,Z)dt,

where we have set A(t) ((T- I)t + i)-1 and F(t, Z) A(t)ZA(t). From standard
quadrature errors, we have

nh4

IIG’(T)Z CSII -< 1- 0<t<lmax
Now, we can verify that A(J)(t) (-1)Jj!A(t)((T- I)A(t))J and that

( k ) A(k-J)(t)ZA(J)(t)F()(t,Z)
j

k

(-1)k! E A(t)((T I)A(t))k-JZA(t)((T I)A(t))J,
j=o

from which it is easy to get

024
IIFiv(t, Z)l <_ 120

(1 w)6 Ilzl[

and the result follows.
THEOREM 4.8. Let T E ]Rnn, G(T) log(T), and E(T) eT. Let Zo of norm

1 be given; and letk be such that III-TII -w < 1, withTa "-T1/2k. LetZ be
obtained from (4.7) so that G’(T)Zo 2G’(Tk)Za. Let CS be the composite Simpson
rule with N points (N even) approximating G’(Tk)Zk from (3.13) so that h 1IN
below, and let G (Tk be invertible. Then we have

(4.9) II’(T)Z 2CSll < nh4 w4(1 -+-w)
IIG’(T)Zoll 9 (1 w)6

Proof. From Theorem 4.7, we have

IIG’(T)Zo 2kCS[I < 2nh4 024

On the other hand, from G’(T)Zo 2G’(Tk)Za, we also have
I[G’(T)Zoll II(G’(Tk))-IlI, and from Corollary 2.4 we get
Therefore, we have

(4.10) IIG,(T)Zo 2kCSII < 2nh4 024
I]G’(T)Zoll 3 (l-w)6
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Now, using (2.7) we have

1 l+w
max Tk(1- s)YTksds < -IITklI <IIE’(a(t))ll

Y:,,Y,I-- 6

Using this in (4.10) gives the result. El
Example 4.9. If h-1 (n)l/a, then w .25 gives three digits accuracy and

w --.35 gives two digits. This is more than acceptable for condition estimation. El
Remark 4.10. Using (4.9) to achieve a good estimate of IIG’(T)I requires an

appropriate choice of Z0. We have found that selecting Z0 according to Remark 3.11
always gave excellent results, and no need arose to iterate the process further. For
our experiments in 6, we always used this choice of Z0 along with (4.9) to estimate
cond(G(T)). This strategy seems to be both very reliable and efficient in comparison
with existing alternatives [KL2].

To complete this section, we ought to warn against some possible risks involved
with the "inverse scaling and squaring" procedure. Its main limitation is exactly its
power. That is, one progressively flattens out the spectrum of the matrices Tj T1/25.
This may lead to an unwanted loss of numerical significance in those cases in which
the original T has close eigenvalues (but not identical) and several square roots are
required to obtain a Tj :IlI- Tj < 1. The risk is that, afte[ many square roots, all
eigenvalues have numerically converged to 1 and are no longer distinct. Our experience
has shown that this might occasionally happen, but only for ill-conditioned problems,
for which lIT12 increases with j, before decreasing.

5. Implementation and expense. In our implementations to approximate
log(T), we have always first reduced the matrix T to ordered quasi-triangular form
via a real Schur reduction. The ordered Schur reduction is standard, and we used rou-
tines from EISPACK and from [St], thereby ordering eigenvalues according to their
modulus. Unless more information is available on T, we always recommend a Schur
reduction prior to an approximation .technique; inter alia, it allows for an immediate
solution of the problem if T is normal (see Corollary 3.4), and it renders transparent
whether or not some methods are suitable for the given problem. In what follows,
we will therefore assume that T is quasi-triangular and not normal: In tune with our
discussion on scaling, we will also assume hereafter that T .has been scaled so that

IIAII < 1, where A I- T. Typically, this has been achieved by progressively taking
square roots of T. To assess the computational expense, we give the leading order
flops’ count of the algorithms; a flop is the combined expense of one floating point
multiplication and one floating point addition.

Both for truncated expansions of the two series and for diagonal Pad approxi-
mants, one needs to evaluate matrix polynomials. Ignoring finite precision consider-
ations, let us first discuss what degree is needed to obtain a desired accuracy for a
given IIAII. We fixed the accuracy to 10-18.

Figure 1 is a graph showing which degrees q are needed as functions of ItAII, to
be guaranteed an absolute error less than 10-18 for approximation resulting by

(i) truncating the series (3.1)
q Ak

k=l

(ii) truncating the series (3.3)
m B2k+l

(5.2) $2 2E 2k + 1’
B (T I)(T + 1)--1, q 2m + 1;

k=0
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(iii) considering the diagonal Pad approximant Rq,q(A).
To obtain the degrees q, we have made sure that the remainders contributed less

than the desired accuracy. This is easy enough to do for (5.1) and (5.2), and for the
Pad approximants we used the explicit form of the remainder from [KL1, Thm. 5].

140

100[-

’5 80

% 0.9

Series /
/

Series

0:1 0:2 0.3 0:4 015

FG. 1.

As an example, for IIAII 0.35, 0.3, we need q 36, 31 for $1, q 25, 21 for
$2, and q 10, 9 for Rq,. (If IIAII 0.35, the (9, 9) Pad4 guarantees an error of
1.152 10-18.)

Naturally, for Pad one also needs to be aware of the condition number of the
denominator Q(A), since this matrix needs to be inverted. Borrowing from [KL1,
Lem. 3], an upper bound on cond(Q(A))is given by Q(-IIAII)/Q(IIAII). Figure 2
shows this upper bound on cond(Q(A)) for the case of q 9 for IIAII e (0, 1). For
example, for IIAII 0.35, 0.3, one has that cond(Q(A)) _< 25.34, 15.66.

10

0.9
IIAII

FIG. 2.

Next, we need to consider the expense associated with evaluating polynomials of
degree q and the q q diagonal Pad. As usual, let T be quasi-triangular of dimension
n. The algorithm we used to evaluate the polynomials is taken from [GvL, 11.2],
and it requires the explicit computation of A2, A3,..., As, where s is a given integer
satisfying 1 _< s _< . Let r q/sJ; then, following [GvL], it is easy to show that,
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at leading order, the evaluation of $1 requires (r + s- 2)n3 flops if sr q and
(r + s- 1)n3 flops otherwise. The choice s- [v/J ensures the minimal flop count.

The cost associated with $2 can be obtained in a similar way, taking into account
the cost of the evaluation of B (T- I)(T + I) -1 (about n3 flops) and observing
that only odd powers of B are required. With q 2m + 1 now we have s
r [rn/sJ, and a leading cost of (r + s + 1)n3 flops if sr m and (r + s + 2) 1n3
flops otherwise.

Finally, the cost associated with Rq,q(A) can be obtained observing that
A2, A3,..., A8 must be computed only once for the two polynomials P(A) and Q(A)
and adding the cost of the evaluation of P(A)(Q(A)) -1. With the above notation, we
have a leading cost of (2r+s-2)n3 flops if sr q and (2r + s) nl3 flops otherwise. In
this case, a better compromise for s is s x/’], which permits us to gain something
in the flop count with respect to taking s [/J.

Figure 3 shows the asymptotic cost associated with $1, $2, and Rq,q(A) having an
error less than 10-is in function of IIAII. For example, if IIAII <_ 0.35, 0.3, $1 requires
about 10 n3 flops, $2 needs 8 n3 flops, and Rq,q(A) needs q 10 and 8n3 flops for

IIAII- 0.35, whereas q 9 and 7n3 flops suffice when IIAII- 0.3. It is interesting to
observe that also using a (12, 12) Pad gives a leading flop count of about 8n3 flops.

n3x 30

25

20

815

Series

Series 2

Pade’

o.g

FIG. 3.

Finally, we must consider the cost of the real Schur decomposition and of taking
square roots. The cost of solving (3.8) is a complicated function of the block sizes; for
distinct eigenvalues, i.e., the triangular case, it amounts to 1/2n3 flops. In any case, the
bulk of the expense is the ordered real Schur decomposition, which costs about 15n3

flops. Then one square root costs about n3 flops (see [Hill). Since taking square
roots, asymptotically, decreases the norm by 1/2, then we see that it makes better
sense, from the point of view of the cost, to take square roots rather than to use a
high-degree approximant. We found that a good compromise is to take square roots
having up to IIAII _< 0.35, followed by the (9, 9) Pad or $2.

6. Examples. In this section we report on some of the problems we have solved
numerically. All computations have been done on a Sparcl0 in double precision
(EPS 2.2 10-16).
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We mainly report on results obtained by the methods that have proven robust
enough to handle the largest portion of all problems considered; for example, we do
not report on results obtained by using (5.1) or by using the ODE approach in either
formulation (3.10) or (3.12) (but see Theorem 4.3). Thus, unless otherwise noted, all
problems below have been solved by the following general strategy.

(i) Schur reduction with eigenvalues’ clustering according to increasing modu-
lus. We used the software in [St] (with minimal modifications) to do this step. The
tolerance for the QR algorithm was set to 2. EPS.

(ii-a) Scaling of diagonal blocks by taking square roots, obtaining up to IIAII <_
0.35, followed by the 9 9 diagonal Pad approximant for these blocks, inverse scaling,
and the use of (3.8). Diagonal blocks in the real Schur form have been considered
distinct if the minimum distance between their eigenvalues was greater than 1/10.
Needless to say, if--after grouping--all diagonal blocks were either 1 1 or 2 2 of
complex conjugate eigenvalues, then we used Lemma 3.3 instead of scaling and Pad
approximants.

(ii-b) Truncated expansion (5.2) on the whole matrix in lieu of scaling by square
roots and Pad approximants if convergence criteria for such series were met.

(iii) Back transformation.
As a measure of accuracy for the computed logarithms, we considered err :=

Ilegc(T) -TII/IITII, where logc(T is our computed approximation to the log. This
essentially boils down to assessing the absolute error in the log itself. To approximate
the exponential function, we used both Matlab functions expm and expm2, which are
a Schur-based technique and a series expansion technique. Typically, expm performed
better, but on occasions expm2 was needed. We also used our own implementation
of the method of scaling and squaring followed by a diagonal Pad approximant to
the exponential, following [GvL, Alg. 11.3.1, p. 558]. In the examples below, we also
report the estimates "cond" of the condition number (2.3). This is done according to
Theorem 4.8.

Many tests were done on random matrices. These were generated by exponenti-
ating the matrices obtained with the randn function of Matlab, which returns entries
in [-1, 1] according to the normal distribution. If a particular structure was desired
(e.g., orthogonal) these random matrices were further manipulated (e.g., taking their
QR factorization).

In the tables below, for the computed logarithm logo T, we report L= log TII
cond, nbl/nrad (the number of diagonal blocks, and the most square roots taken
on any of these blocks), err, q (the number of terms taken for (5.2) directly on T, if
applicable), err2 (the error for (5.2)), and err, (the error obtained by using the Matlab
function logm to approximate log T). Exponential notation is used throughout; e.g.,
2.3 107 is written as 2.3E7. All results are given for the Frobenius norm to conform
to previously published results.

Example 6.1. "Easy" problems. A set of randomly generated positive definite
and orthogonal matrices was considered just to test the technique based on Corollary
3.4. In all cases, accuracy to machine precision was obtained. We also generated more
than 60 general random matrices of dimension between 5 and 100. Also in these cases
we obtained accuracy to full machine precision.

Example 6.2. Symplectic T. We generated a dozen random symplectic matrices
by exponentiating (via diagonal Pad approximants) randomly generated Hamilto-
nian matrices. For some of these matrices we got a very large condition number
(3.2). Nonetheless, we obtained very accurate answers for the computed logarithms.
However, the end result was often far from being a Hamiltonian matrix; that is, the
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Test

1

2

3

4

L cond

6.98E7 4.75E10

5.32 5.0865

6.56 0.9511

5E9 5.67E14

TABLE 1.

nrad err

28 1.2E-8

4 0

5 2.7E-15

34 5.9E-4

q

239

19

129

5

err2

1.1E-8

errm
82.54

0 9E-3

3.7E-16 1.7E-2

5E-13 1.4E15

Test

1

2

3

4

5

6

L

7.48

cond

5.08

53.85 9E6

575.95 6.44E9

2.9997 3.76

1E6 3.33Ell

172.68 5.94E6

TABLE 2.

nbl/nrad err q

2/4 3.5E-15 7949

3/0 9.E-15

3/0 6.2E-14

1/4 2.5E-15 19

1/22 0 1

1/9 3.7E-13 229

err2

1.7E’13
errm

1.1E-15

7.1E-15

5.2E-13

1.5E-16 6.7E-9

0 6.2E-6

2.3E-10 6.4E-10

relevant structure got lost. For these problems, when applicable, using (5.2) directly
was also an effective way to proceed; even though some of the linear algebra (such as
matrix inversion) was done by nonsymplectic methods, the end result was much more
nearly a Hamiltonian matrix than with the Schur method (see [D]).

Example 6.3. "Harder" problems. These problems have been chosen to illustrate
some of the dangers in using the 1ogre function of Matlab. In Table 1, Tests 1-3 refer
to a triangular matrix of dimension 20, with all l’s above the diagonal, and 1/4, 1,
and 4 on the diagonal, respectively. Of course, for these matrices, no Schur reduction
or grouping occurred. Test 4, instead, was chosen to illustrate the potential danger of
taking too many square roots. It is the matrix

1+ 10-7 105 104/0 1 105
0 0 1

In this case, (5.2) is clearly preferred.
Example 6.4. Examples from the literature. These problems have previously

appeared in the literature; see [Wa] and [KL2]. We tested our method to confirm
independently the results of [KL2] about conditioning. In Table 2, Tests 1-6 refer to
Examples 1-6 of [KL2]. We notice that our estimates for cond are in perfect agreement
with the results in [KL2]. For Tests 1, 2, and 3, we also used scaling by square roots
and the 9 9 diagonal Pad( approximant on the whole matrix; this required 5, 8, and
11 square roots, respectively, for the same accuracy.

7. Conclusions. In this work, we provided analysis and implementation of tech-
niques for computing the principal branch of a real logarithm of a matrix T, log(T).
Some of the techniques considered have been around for a while, like Pad approxi-
mants and series expansion. Some other techniques have not been previously analyzed
or even introduced, in particular, the Schur method with eigenvalue grouping followed
by a back recursion and integral-based representations for both the logarithm and its
Frech(t derivative. This latter aspect is related to the conditioning of the problem, an
issue we have addressed in detail, and on which we have given many new results that
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better characterize it. In fact, from the theoretical point of view, our main contribu-
tions are the results about conditioning and those related to the integral representation
of log(T).

From the computational point of view, all things considered, we think that the
most reliable and efficient general-purpose method is one based on the real Schur
decomposition with eigenvalues’ grouping, scaling of the diagonal blocks via square
roots, and diagonal Pad approximants. Also using $2 (see (5.2)), instead of the
Pad approximant, is a sound choice. Moreover, using $2 was definitely the most
appealing choice for poorly conditioned problems. Although all of the programs we
have written are of an experimental nature, we believe they are robust enough to be
indicative of the typical behavior. We hope that our work will prove valuable to people
interested in mathematical software, the moreso since the only existing software tool
that computes the logarithm of a matrix ([Matlab]) does not use a foolproof algorithm
to do so. Moreover, the implementation of Matlab nearly always produces complex
matrices for answers because it uses unitary reduction to complex Schur form.

The problem of reliably estimating the Frecht derivative of log(T) at a fraction
of the cost of computing log(T), or at least without a drastic increase in cost, is truly
an outstanding difficulty. None of the methods of which we are aware succeeds in
this. One technique we have considered, based on Theorem 3.10 and Remark 3.11, is
usually very inexpensive but not always reliable. The other technique we introduced,
based on Theorem 4.8, has at least proven very reliable but, in general, it is at least
as expensive as computing the log itself.

Finally, in this work we focused on the problem of computing one logarithm of one
matrix. Different conclusions are reached if one is interested in computing a branch
of logarithms of slowly varying matrices. In such cases, of course, one should favor
an approach that uses the previously computed logarithms and, thus, more carefully
consider iterative techniques and different scaling strategies. We anticipate some work
in this direction.
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AN ANALYSIS OF ZERO SET AND GLOBAL ERROR BOUND
PROPERTIES OF A PIECEWISE AFFINE FUNCTION VIA ITS

RECESSION FUNCTION*
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Abstract. For a piecewise affine function f R Rm, the recession function is defined by

f(x) :-- lim f(Ax).

In this paper, we study the zero set and error bound properties of f via f. We show, for example,
that f has a zero when fc has a unique zero (at the origin) with a nonvanishing index. We also
characterize the global error bound property of a piecewise affine function in terms of the recession
cones of the zero sets of the function and its recession function.

Key words, piecewise affine function, recession function, error bounds, affine variational in-
equality, linear complementarity problem
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1. Introduction. Consider a piecewise affine function f R - R". This
means that f is continuous and Rn admits a polyhedral subdivision {tl, t2,..., L}
such that

(1) f(x) Ajx/aj on fj (j- 1,2,...,L),

where Aj E Rmxn and aj R". As in the case of a real valued convex function [26],
f admits a recession function defined by [27]

(2) f(x) lira
f(Ax)

Similar to the recession cone of a polyhedral set, the recession function of a piecewise
affine function deals with the behavior of the function at c; for f given by (1), f
is described by (some or all) As which correspond to unbounded ts. The recession
function appears naturally in the investigations of one-to-one and onto properties.
For example, Kojima and Saigal [9], [10] and Schramm [29] investigate the home-
omorphism property of f by imposing conditions on the matrices corresponding to
unbounded js. Scholtes, in [27], formally introduces the notion of recession function
and proves that when f is coherently oriented (meaning that rn n and all the Ajs
have the same nonzero determinantal sign), the injectivity (one-to-oneness) of f is
equivalent to that of f.

The main objective of this article is to describe zero set and global error bound
properties of f via f.

Motivated by existence and stability results in the study of (affine) complemen-
tarity problems (such as linear, horizontal, mixed, and vertical complementarity prob-
lems), affine variational inequalities [2], [6]-[8], [31], [32], and the surjectivity (onto)
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results for piecewise affine functions [1], [18], [29], we prove (in Theorem 4.2) that
if f has a unique zero (namely, the origin) and if the index of f at the origin is
nonzero, then f and all piecewise affine functions equivalent to f will have nonempty
zero sets. Based on the index of f, in Theorem 4.5, we give a necessary and sufficient
condition for f to be a homeomorphism.

The error bound results are useful, particularly in optimization, for sensitivity
analysis, exact penalization, convergence analysis of iterative schemes, etc. The liter-
ature on this subject is vast and we confine ourselves to quoting a few that are relevant
to our study. Many local error bound results in the areas of (affine) complementarity
problems and affine variational inequalities follow from Robinson’s result on the upper
Lipschitzian property of polyhedral multifunctions [24]. When stated in terms of a
piecewise affine function f, it says that locally a constant multiple of IIf(x)ll bounds
the distance between a test vector x and the zero set of f. Motivated by various
applications, Luo and Tseng [13], [15] considered, for functions f arising from the
linear complementarity problem (LCP) and the affine variational inequality problem
(AVI), the question of deciding when a constant multiple of IIf(x)ll acts as a global
error bound for the distance between a test vector x and the zero set of f. In [13],
Luo and Tseng answer this question for the LCP with f(x) := x A (Mx / q) in terms
of the recession cones of the zero sets of f and g(x) := x A Mx. In 5 of this paper we
extend the analysis of Luo and Tseng to piecewise affine functions. By specializing
our main result (Theorem 5.4), we derive new necessary and sufficient conditions for
global error bounds in the. contexts of AVI, LCP, and linear programming (LP). As a
consequence of Theorem 5.4 we prove an error bound characterization of P-matrices.

2. Preliminaries. For a comprehensive treatment of piecewise afiine functions,
we refer to Scholtes [27]. Note that the term "piecewise linear" is also widely used.
We shall say that a finite set {1, 2,..., L} is a polyhedral subdivision of Rn if
each tj is a polyhedral set in Rn with nonempty interior, the union of these Ftjs is
all of R, and the intersection of any two js is either empty or a proper common
face of both. A piecewise affine function can also be introduced without referring to
any polyhedral subdivision [27]: A continuous mapping f from R to R" is piecewise
atone if there exist aifine functions fj Rn - R" (j 1, 2,..., L) such that for each
X Rn,

f(x) e {/l(X),/2(x),..., IL(X)}.

(This equivalent formulation is particularly useful while describing the recession func-
tion.) We write PA(Rn, R") for the set of all piecewise affine functions from R into
R" and write 7)A for the union of all 7),4(Rn, R") as rn and n vary over all natural
numbers.

For a piecewise affine function f R R" and q R", f-q denotes the
function f(x)- q. The zero set of f is denoted by 2:(f). Clearly, Z(f) is a finite
union of polyhedral sets and hence closed. If in addition f is positively homogeneous,
then (f) is also a cone.

We shall say that f, as given by (1), is coherently oriented if rn n and the
determinants of matrices A,A2,... ,AL have the same nonzero sign.

The following result is well known in the literature; see, e.g., Proposition 2.2.7
and Theorem 2.3.1 in [27].

THEOREM 2.1. Let f Rn Rm be piecewise affine. Then
(a) f is Lipschitz continuous.
(b) When rn n, f is coherently oriented if it is one-to-one.
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(c) When rn n, f is a homeornorphism if and only if it is one-to-one.
Every polyhedral set t (in a finite-dimensional space) admits a decomposition

[26]

a c(a) + 0+a,

where C(t) is compact and polyhedral (actually, the convex hull of the extreme points
of t) and 0+t is the recession cone of . (Recall that for a nonempty set E, a vector
r belongs to 0+E if for some u E E, u + Ar E E for all _> 0.)

For vectors x and y, (x, y) denotes the usual inner product and lxll denotes the
Euclidean norm of the vector x in the space (e.g., Rn) under consideration. When
the inner product between vectors x and y is zero, we write x _L y. Throughout this
paper, B denotes the closed unit ball. For a nonempty set E, the dual cone is defined
by

E* :- {y (y, x) >_0 for all xeE}.

For two nonempty sets X and Y and a vector z, we define

d(z,Y)’= inf Iz-yll and e(X,Y)’= supd(x,Y).
yEY xEX

The Hausdorff distance between sets X and Y is defined as

7-t(X, Y) := max{e(X, Y), e(Y, X)}.

Note that some of these quantities may take the value c.
For any two vectors x and y,

x A y := min{x, y},

that is, x A y denotes the componentwise minimum of x and y. For a polyhedral set
E c_ Rn, II:(x) denotes the orthogonal projection of x onto K:. Note that when K: is
the nonnegative orthant, HR (x) max{x, 0} x+ and HR (x)--x max{--x, 0}
X

3. The recession function. For a piecewise affine function f Rn + R", the
recession function of f is defined by (2). The recession function is well defined, since
for each x and large (depending on x) Ax belongs to one polyhedral set on which f
is affine. Note that f f when f is positively homogeneous.

Before we begin our formal study of properties, we present some examples from
complementarity theory and affine variational inequalities. In each example, we spec-
ify both the function whose zeros solve the problem and its recession function. In each
case, the specified functions are piecewise affine. (In Examples 5 and 6, the projection
mapping onto a polyhedral set is piecewise affine; see [25].) While the computation of
the recession function in Examples 1-4 and 7-8 is straightforward, for Examples 5 and
6 we use the formula lim_ H,:(x) II0+:(x) (which follows from the definition
of projection and the decomposition of the polyhedral set K: into its compact part and
the recession cone; see [27], p. 64).

Example 1. The LCP [2]. For M Rnn and q Rn, the problem LCP(M, q) is
to find an x such that

x_>0, Mx + q >_ O, and (x, Mx + q} O.
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For this problem,

f(x)-xA(Mx+q) and f(x)--xAMx.

Equivalently, we may consider

g(x) Mx+-x- + q and g(x) Mx+-x-.
If a vector u solves g(x) 0 then u+ solves LCP(M, q); conversely, if x* is a solution
of LCP(M, q), then z x* Mx* q solves g(x) O.

Example 2. The horizontal linear complementarity problem (HLCP) [31], [32].
For matrices A and B in R"n, and q E RTM, the problem is to find vectors x and y
such that

x>_0, y>_0, (x,y)=0,
Ax- By- q.

For this problem we have, with z (x, y),

xAy ]f(z) Ax By q
xAy/(z)= Ax- By

Example 3. The vertical linear complementarity problem (VLCP) [8]. For matrices
M1,M2, ,Mk in Rmn and vectors ql,q2, ,qk in Rm, the problem is to solve the
equation f(x)- 0, where

f(x) (MlX - ql)/ (M2x -- q2)/""/ (Max
f(x) Mix A M2x A A Max.

Example 4. The mixed linear complementarity problem (MLCP) [7]. For matrices
A R", B Rmxk, C Rkxn, D Raxk and vectors a Rm and b E Ra the
problem is to find z (x, y) such that

Ax + By + a O,
y_>0, Cx + Dy + b >_ O,

For this problem, we have

f(z)= yA(Cx+Dy.b) and

(y, Cx + Dy + b} O.

Ax + By ]f(z) y A (Cx + Dy)

Example 5. The extended linear complementarity problem (XLCP) [5], [16]. Given
matrices M and N in Rren, a vector q Rm, and a polyhedral set K: find z (x, y)
such that

x>_O,y>_O, (x,y}=O,
Mx Ny . + q.

Note that this problem already includes the LCP, HLCP, and the MLCP. The func-
tions for this problem are given by

xAy ]andf(z) Mx- Ny- II:+(Mx- Ny)
xAyf(z) Mx- Ny- IIo+:(Mx- Ny)
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Example 6. The AVI [3], [7], [15], [25], etc. For a matrix M e Rnn, a vector
q Rn, and a polyhedral set/C c_ Rn, AVI(M,/C, q) is to find an x* /C such that

(Mx*+q,x-x*) >_0 for all x/C.

For this problem,

f(x) x II:(x Mx q) and f(x) x II0+:(x Mx).

Alternatively, we can consider the equation g(x) 0, where Robinson’s normal map
g and its recession function are given by

g(x) M(Ibc(x)) + x Ibc(x) + q and g(x) M(IIo+c(x)) + x IIo+c(x).

Note that if u solves g(x) O, then II(u) solves AVI(M,/(:, q); conversely, if x* solves
AVI(M,/C, q), then z x* Mx* q solves g(x) O.

Example 7. The zero-one integer feasibility problem. For a polyhedral set 9
{x Ax <_ a, Bx b} C_ R with 1 denoting the vector of ones,

f(x) (Ax a)+ and f(x) (Ax)+
Bx-b Bx

Example 8. The affine complementarity system. This is a system defined by a
finite number of linear equalities, inequalities, and complementarity conditions. Here
"complementarity condition" refers to a condition where the minimum of a finite
number of variables is set to zero. Examples of such systems include all of the previous
ones and more. Clearly, finding a solution of this system is equivalent to finding a
zero of a piecewise affine function. As an illustration, consider the problem of finding
vectors x, y, z, and u such that

xAyAz--O,
(d- x) A u O,

Ax + By + Cu + p < O,
Dx + My + Nz + q O.

Here (d, p, q) is a triplet of vectors and the capital letters denote matrices. For this
system,

f(w)

xAyAz
(d- x) A u

(Ax + By + Cu + p)+
Dx + My + Nz + q

and f(w)

xAyAz
(-x)

(Ax + By + Cu)+
Dx + My + Nz

In the next result we record some known properties of the recession function (cf.
Propositions A.2.1, A.2.2 and Theorem A.2.1 in [27] and Proposition 3.1 in [28]).

THEOREM 3.1. Let f be a piecewise affine function from R into R". Then
(i) f is piecewise affine and positively homogeneous.
(ii) For any piecewise a]:fine function g Rk R’

(f o g)(x) (foo o g)(x).
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(iii) For any x E Rn and x E Rn,

(3) f(x)= lim
/(iX 4-j,..x_x,

(iv) If rn n and f is coherently oriented, then f is a homeomorphism if and
only iff is a homeomorphism.

Remarks. (a) Item (iii) in the previous theorem can be easily deduced from (ii)
by taking g(x) x+x. Applying (3) we see that if r E 0+Ft and f(x) Ax+a on f,
then f(r) At. Since Rn ["Jj=IL ftj, we have R i..jj=1L0+fry; hence the matrices
defining f come from the set of matrices of f corresponding to the unbounded ftjs.
It should be noted that not every matrix in this set appears in the description of f.
(An example, due to a referee, is f(x,y) := (min[4x + 2,2x, x + 1},y) on R2. This
function has three matrices corresponding to unbounded polyhedral sets, and only two
of these are needed to describe the recession function f(x, y) (min{4x, x}, y).)

(b) In the process of establishing more properties of the recession function, we
shall provide a different proof of (iv); see Theorems 3.3 and 4.5.

Our next result shows that f- f is a bounded (piecewise a/fine) function and
that f(x) can be computed by sequences not necessarily lying on a ray.

PROPOSITION 3.2. For a piecewise a/fine function f we have
(i) supxER, IIf(x)- f(x)l < and
(ii) [Pk 0, pkxk - x*] ===> [pkf(x) --, f(x*)].
Proof. Consider the polyhedral sets fj (as in 2), with f defined by (1). Let C :=

t_J C(gty) and fix x = 0. Then x is a recession direction for some fi; thus ei+Ax fi for
all A >_ 0 and e e C(ft). Fixing e, we have f(x) lim__, (f(e + )x))/A Ax
and

(4) IIf(x) f(x)ll IIf(x) f(e + x) + f(e + x) f(x)l
(5) <_ IIf(x) f(e + x)l + IIAx + Ae + a Aixll
(6) _< 011ll + IIf()ll,

where 0 is the Lipschitzian constant of f. With A := supeEc 01111 + IIf()ll, which is
clearly finite, we hve supR IIf(x)- f(x)ll _< /X. We thus hve (i). The inequality

IIf(xk) f(x*)ll _< llf(xk) f(x)ll + IIf(x) f(x*)ll

(which holds because of the positive homogeneity of f) and (i) prove (ii). []

In many problems involving piecewise a/fine functions, the question of knowing
whether the given function is one-to-one/onto arises. The following result gives nec-
essary conditions in terms of the recession function.

THEOREM 3.3. The following statements hold.
(a) Suppose f 7)flt(Rn, Rn). If f is one-to-one, then so is f and

(7) (f)-I (f-1).

(b) Suppose g PA(R, Rm). If g is onto, then so is

Proof. (a) If f is one-to-one, then (by Theorem 2.1) it is a homeomorphism. Since

f-1 (the inverse of f) is piecewise a/fine, the chain rule (f o f-1) f (f-)
proves the one-to-oneness of f and (7). To see (b), suppose that g is onto. Let
q R" be arbitrary. Then for each natural number k, there exists xk R such
that g(xk) kq. Without loss of generality, we may assume that {xk} belongs to a
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polyhedral set f on which g is affine, say, g(x) Ax / a. Writing xk ek -b kr,
where e E (7(gt) and r E 0+f, we have Aek + kAr + a kq for all k. This results
in q A(0+ft) (since the latter set is polyhedral and hence closed). Thus q Ar
for some r 0+f. Since g(r) Ar (see the previous remarks), we see that gOO is
onto. El

Remarks. We note that (a) reproves a part of Theorem 3.1 (iv); the other part will
be covered in Theorem 4.5. Easy examples on the real line can be constructed to show
that f need not be one-to-one when foo is one-to-one. The converse implication in
part (b) is false. An example due to Sznajder [30] shows that in the LCP setting, one
can have a matrix M for which g(x) x AMx is onto but g(x) :- x A (Mx+ q)does
not take the value zero for some q. In Theorem 4.2, we specify sufficient conditions
for the converse to hold.

To continue our analysis, we need the following definition.
DEFINITION. Let f and g be two piecewise ajfine functions. We say that f and g

are equivalent and write f g if foo gOO. For example, when f is piecewise affine
and p and q are vectors, f p f q.

PROPOSITION 3.4. Let f and g belong to 79A(Rn, Rm). Then f g if and only

sup IlY(x)-
xER

Proof. Suppose f g. Using triangle inequality we see that

sup Ill(x) g(x)ll _< sup Ill(x) :(x)ll + sup IIg(x) g(x)ll,.

where the supremum is tken over 11 of R. Since the two quantities on the right
side of the above inequality are finite (cf. Proposition 3.2), the left side is also finite.
Conversely, suppose that Ill(x)- g(x)ll _< A < for 1 x R, If we replace x by
x, divide the inequality by

Notation. For.two functions f and g in Pjt(Rn, Rm) that are equivalent, we write

Ill gll :- sup Ill(x) g(x)ll.

As an illustration, let f(x) x A (Mx / q) and g(x) x A (Mx + p). Then the
inequality
To give another example, let f be piecewise affine, so that for h f-q and g f-p
we have

4. Zero sets. We have already noted that the zero set of a piecewise affine
function is a finite union of polyhedral sets. The following result specifies a sufficient
condition for the zero set of a piecewise affine function to be bounded.

PROPOSITION 4.1. Suppose that f 79flt(Rn, Rm) is piecewise affine. Then the
following are equivalent.

() Z(y) {0}.
(b) For all g f, Z(g) is bounded.
(c) For all q e Rm, the set z(f q) (= {x" f(x) q}) is bounded.
(Note that in (b) and (c) the sets may be empty.)
Proof. Suppose that g f and Z(g) is unbounded. Then there exists a sequence

{x} such that g(xk) 0 and []x]] --. oo. Without loss of generality, we may
assume that the sequence #kx

k (of normalized vectors) converges to, say, x*, where
#k :---][xkl[ -1. By Proposition 3.2, g(x*) 0. Since f g and [[x*][ 1, (a)
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cannot hold. Thus we have (a) (b). Since for any q, f-q f we have (b) == (c).
Suppose that (a) is not true, so that f(u) 0 for some nonzero u. Then u is a
recession direction of some polyhedral set on which f is given by the affine function
Ax + a. It follows that 0 f(u) An. For any u in this polyhedral set and for
all k, f(u / ku) f(u). Thus with q f(u) condition (c) fails. This proves the
implication (c) (a). [2

Coming to the existence of zeros, we present the following result, whose hypothesis
and proof technique have become standard in the study of existence and stability
aspects of nonsmooth equations; see [5]-[8], [20], [21]. For notions such as degree and
index we refer the reader to [12] or [19].

THEOREM 4.2. Let f PA(R, R). Suppose that
(i) Z(f) {0}, and
(ii) index (f, O) O.

Then for all g f, Z(g) is nonempty and bounded. Moreover, every such g is onto.
Proof. Consider any g f. The previous proposition proves the boundedness of

2(g). For x e R and t e [0, 1], define h(x, t) "= tf(x) + (1 t)g(x). Then for each
t, h is piecewise affi.ne in x. A standard argument using normalized vectors (like the
one in the previous proposition) along with condition (i) shows that the zeros of h(., t)
lie in some bounded (open) set T. On this set, h is a homotopy joining f and g.
Since no zero of h can lie on the boundary of T by the homotopy invariance property
of degree, the degree of g at 0 relative to this open set is the same as the index of f
at zero. Therefore by condition (ii), this degree of g is nonzero, which means that g
will have a zero. Thus the nonemptiness of Z(g) is established. Applying this to g-q
with q Rn arbitrary, we prove the ontoness of g. [3

Remarks. Condition (i) in the previous theorem reduces to the so-called R0-
condition in the linear, horizontal, vertical, mixed, and extended linear complemen-
tarity problems. In the presence of (i), condition (ii) can be replaced by the following
equivalent condition.

(ii)’ For some g* f and a bounded open set 7)

_
2(g*), deg (g*, 79, 0) : 0.

(The proof of the previous theorem shows that (ii) implies (ii)’. The reverse implica-
tion can be seen by considering the homotopy h(x, t) := (1 t)g*(x) + tf(x) on a
suitable bounded open set and using the excision property of the degree; see Theorem
2.2.1 in [12].) We also remark that the nearness property of the degree [12, Thm. 2.1.2]
allows us to state the following stability principle: Let the conditions of the theorem
hold. Let g f, 2(g) C_ (9, where (9 is a bounded open set. Then for all continuous
functions h (from (9 -- R) that are close to g on (9 we have (h) (9 : 0. For
some recent results on the (local) stability of a nonsmooth function at a zero see [21];
Theorem 1 in this reference, specialized to f, gives the ontoness of f.

In the following corollary, the hypothesis is akin to the R-condition of the LCP.
COROLLARY 4.3. Let f E PA(Rn, R). Suppose that
(i) Z(f) {0} and
(ii) there is a g* f such that Z(g*) {x*} and in a neighborhood of x*, g* is

affine.
Then the conclusions of the previous theorem hold.

Proof. We verify condition (ii)’ described above. Let T be the (open) neighbor-
hood of x* on which g* is given by the affine function Ax+a. Since x* is the only zero
of g*, A is nonsingular. By definition, deg (g*, :D, 0) sgn det A 0. This completes
the proof. [2

As an illustration, suppose f, described by (1), has all Ajs nonsingular. If for
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some e E int tj (for some j), f(x) f(e) x e, then taking g* := f- f(e)
and x* := e, we see that f is onto. In the previous corollary, the condition that g* is

affine in a neighborhood of x* defines the notion of "nondegeneracy," studied in [33].
The conclusion of the previous corollary remains the same if Z(g*), instead of being a
singleton, consists of an odd number of nondegenerate points. Many existence results
in complementarity theory and affine variational inequalities, such as Theorem 1 in
[8], Theorem 1 in [7], Proposition 3 in [6], and Theorem 5.2.4 in [31], follow from the
previous two results.

It is well known [23], [27] that a coherently oriented piecewise affine function is
onto. The same conclusion is obtained if the coherency condition is imposed on the
matrices corresponding to the unbounded polyhedral sets js; see Chien and Kuh
[1] and Ohtsuki, Fujisawa, and Kumagai [18]. The following result obtains the same
conclusion with further weakening of the hypothesis.

COROLLARY 4.4. Suppose that for f PA(R,Rn), f is coherently oriented.
Then conditions (i) and (ii) of Theorem 4.2, and hence its conclusions hold. In par-
ticular, f is onto.

Proof. Since the matrices involved in the function f are nonsingular, Z(f)
{0}. Pick a vector q in the range off that does not come from any of the boundaries
of the polyhedral sets defining f. (This can be done because the matrices of f
are nonsingular, and the images of the polyhedral sets defining f are n-dimensional
while the images of the boundaries are at most (n- 1)-dimensional.) Let g* := f-q.
Then Z(g*) is finite and every zero of g* is nondegenerate. As in the proof of the
previous theorem, we see that for any bounded open set T containing g(g*), index
(f, 0) is the same as deg (g*, :D, 0); the latter number is the sum of the indexes of
g* at the zeros of g*. Following the proof of Corollary 4.3, we see that these indexes
have the same nonzero sign. Thus the hypothesis and conclusions of Theorem 4.2
hold.

Remarks. Apart from the onto property, coherently oriented piecewise affine func-
tions have other interesting properties. It is well known (see, for example, Theorem
2.3.1 in [27]) that a piecewise affine function is coherently oriented if and only if it
is an open map. Schramm [29] has shown that when f is coherently oriented, the
cardinality of (f- q) is the same as q varies over the complement of an exceptional
set (of measure zero). Another property (that we shall use in our next result) is the
following. Let f be coherently oriented and let q* be arbitrary; let x* Z(f- q*).
Then index (f- q*, x*) is nonzero. This is known [9, Thm. 3.3] and can be seen as
follows, x* is an isolated zero of f as the matrices corresponding to f are nonsingular.
If U is an open neighborhood of x* not containing other zeros of f- q*, then f(U)
contains q* and is open. We can pick a vector p in f(U) sufficiently close to q* so that
each element in Z(f-p) is nondegenerate; see the argument in the proof of Corollary
4.4. By the nearness property of the degree [12, Thm. 2.1.2], index (f- q*,x*) is
equal to deg (f- p, U, 0), which in turn is equal to the sum of the indexes of f-p
at each of its (nondegenerate) zeros in U. Since. f is coherently oriented, all these
indexes have the same nonzero sign. Thus index (f- q*,x*) is nonzero and its sign
is the same as the sign of the determinant of any matrix defining f.

The following result (whose proof is based on degree theory) recovers Theorem
3.1 (iv).

THEOREM 4.5. Suppose that f Pjt(R’, R). Then the following are equivalent.
(a) f is one-to-one.
(b) f is coherently oriented and f is one-to-one.
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(c) f is coherently oriented and index (foe, O) 4,1.

Proof. Suppose (a) holds. It is well known that f is coherently oriented [27,
Thm. 2.3.1]. That fo is one-to-one follows from Theorem 3.3. Thus (a) == (b).
Since the index of a one-to-one function about any point is 4-1, we have (b) (c).
Now suppose (c). (We remark that under the assumption that f is coherently oriented,
f is coherently oriented and hence Z(f) {0}. So the index of f at zero is
defined.) By the previous remarks (applied to fo), the index of f at the origin is
nonzero and its sign is the same as the sign of the determinant of any matrix describing
f (also of f). The previous corollary shows that f is onto. For any q E Rn, let 7)

denote an open set containing the finite set Z(f- q). As in the proof of Theorem 4.2
we consider a homotopy joining f-q and f and conclude that deg (f- q, 7:), 0)
index (f, 0) 4,1. Now the degree of f q at zero over 7) is the sum of the indexes
of f q at each of its zeros. Since these indexes (which are nonzero by the previous
remarks) and index of fo at zero have the same sign, we conclude that there can be
only one element in (f -q). This completes the proof of the theorem. []

We remark that the implication (c) == (a) in the previous theorem improves
a result of Kojima and Saigal [9] which says that f is one-to-one when f is coher-
ently oriented and for some matrix B, the matrices tAj / (1 t)B (with t E [0, 1]
and Ajs corresponding to unbounded polyhedral sets defining f) are all nonsingular.
This is because, under this nonsingularity condition, h(x,t) "= (1 t)fC(x) + tBx
defines a homotopy between f and the mapping x - Bx on some bounded open
set containing the origin so that the index condition in (c) holds.

Although the previous theorem specifies a necessary and sufficient condition one-
to-oneness, in practice it is not easy to verify these conditions. Note that these
conditions are imposed on the matrices defining f. For characterizations based on
conditions on the polyhedral sets tj, the interested reader may consult [10], [11], [28],
and [29]. As far as the normal map g of Example 6 is concerned, Robinson [25] has
shown that g is one-to-one whenever it is coherently oriented. It would be interesting
to see if this result could be proved by verifying the index condition in part (c) of the
previous theorem using, say, homotopy arguments.

5. Global error bounds. Our starting point is the following result due to
Robinson [24].

THEOREM 5.1. Suppose that f is piecewise afflne. Then there exist positive
numbers and p such that

(8) d(x,Z(f)) <_ allf(x)l whenever IIf(x)ll <_ p.

An application of this result to the recession function of f along with the observation
that f is positively homogeneous proves Corollary 5.2.

COROLLARY 5.2. Suppose that f is piecewise a]fine. Then there exists a positive
number such that

(9) d(x,Z(f)) <_ llf(x)ll for 1 x.

In preparation for our main result in this section, we prove the following elemen-
tary proposition.

PROPOSITION 5.3. Let X and Y be two nonempty sets in Rn that are unions of
a finite number of polyhedral sets. Then e(X, Y) < cx if and only if O+X c_ O+Y.
Hence 7-l(X, Y) < oc if and only if O+X -O+Y.

Proof. Suppose that e(X, Y) < c and let w be a recession direction for X. Then
for some x X and all natural numbers k, xk :- x /kw X. Corresponding to xk,
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there exists a yk E Y such that d(x, y) < e(X, Y). Without loss of generality, we can
assume that all yks belong to one polyhedral set, say, Y1 contained in Y. Now writing
y ek + krk, where e E C(Y1) and rk 0+Y1, we see that IIx + kw-(ek + krk)ll <_
e(X, Y). Dividing this inequality by k and letting k , we get w lim r, proving
w 0+Y1 C_ 0+Y. This argument shows that 0+X C_ 0+Y. Conversely, suppose that
0+X C_ 0+Y; let x* X1 C_ X with X1 polyhedral. We write x* e* + r* with
e* e C(X1) and r* e 0+X1. Then d(x*, Y) < d(x*, y*), where y* d* + r* belongs
to Y and d* e C(Y). Since d(x*,y*) d(e*,d*) E 7 "= sup{d(u, v)’u e C(X), v e
C(Y)} < oc, we see that e(X, Y) < 7 < oc. The statement involving the nausdorff
distance is immediate. [3

THEOREM 5.4. Suppose that f is piecewise affine from Rn into Rm with Z(f). Then the following are equivalent.
(a) There exists/ > 0 such that

(10) d(x,Z(f)) < llf(x)l for all x e Rn.

(b) There exists > 0 such that

(11) Z(g)

_
Z(f) + /llf IIB for agZ f.

(c) There exists > 0 such that

(12) Z(f) Z(f) +/[[f- fl]B.

(d) 7-l(Z(f),Z(f)) < oc>.

(e) O+z(y) Z(f).
Proof. (a) (b): Assume (a)and take any g f. If x e Z(g), then

d(x,Z(f)) < llf(x)- g(x)l < [If gl[. The inclusion in (b) is immediate. Since

f f, (b) (c). Assuming (c), we get e(Z(f), Z(f)) < flllf-fl[ < c. From
Corollary 5.2 and the implication (a) (b) above, we deduce that e(Z(f), Z(I)) <
oc. Thus (d) follows. The previous proposition shows that (d) and (e) are equivalent.
We now show that (d) == (a). Assume that (d) holds, and let a and p be as in
Theorem 5.1. We show that (a) holds with

e(Z(f) Z(f)) + ce(p + Ill fli)
max ,

P

Fix an x e Rn. In view of (8), we can assume that IIf(x)[I _> p. The triangle inequality
gives

d(x,Z(y)) d(x,Z(:)) e(Z(y),Z(f))<_ +IIf(x)ll IIf(x)ll IIf(x)ll

The second term on the right side of the above inequality is less than or equal to
e(z(:)’z(:)). If f(x) 0, i.e., d(x Z(f)) 0, then the left-hand side of thep
above inequality is bounded by . When f(x) 0, we have

(13)

(14)

d(x,Z(f)) d(x,Z(f)) IIf(x)[I
IIf(x)ll IIf(x)ll IIf(x)ll

-<(x+ll:-:ll).,
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It follows that in all cases, d(x,Z(f)) <_ l[f(x)ll, This completes the proof of the
theorem.

DEFINITION. A piecewise affine function f is said to have the global error bound
property (GEBP, for short) if condition (a) in the previous theorem holds.

To obtain an easy consequence of Theorem 5.4, assume that Z(f) {0}. Then
by Proposition 4.1, for any g f, Z(g) is bounded. When Z(g) # 0, the implication
(e) ==, (a) of the previous theorem proves the following.

COROLLARY 5.5. Suppose that f is piecewise affine and Z(f) {0}. For any
g f with Z(g) , there exists a positive constant (g) such that

d(x,Z(g)) < (g)llg(x)ll for all x.

6. Global error bounds for the AVI, LCP, and LP. In this section we apply
our previous error bound analysis to the AVIs, LCPs, and LP. Recall (Example 6)
that AVI(M, K, q) is to find a solution of the equation f(x) 0, where

(15) f(x) x- IIc(x- Mx -q).

Fixing M and L:, we wish to find all q such that the global error bound property (10)
holds for f(x). Let S(q):= Z(f) q} and , Z(f). By the description of f in
Example 6, we see that ,5 {r" (Mr, s r} > 0 V s E 0+K}. Since 0+K: is a cone,
we have

g {r’r e O+IC, Mr e (0+K:) *, (Mr, r) 0}.

If , {0}, then by Corollary 5.5, for every q, f will have the global error bound
property.

So assume that # {0}. We proceed to find all q satisfying the condition

0+S(q). Since 0+S(q) is always a subset of 8 (as a consequence of (3)), we assume
that c_ 0+S(q). Fix r S. Then for some u in S(q) (depending on r) we have
u + Ar S(q) for all A _> 0. This means that

(M(u+Ar)+q,x-(u+Ar))>_O forall O,xK;.

With (Mr, r) 0 (recall r e 3) this becomes

(Mr, x-u}-(Mu+q,r)>_O for all x

Since (Mu + q, x u) >_ 0 for all x K:, the previous statement is equivalent to

(16) (Mu+q,r)=O and (Mr, x-u)>_O for all xe.

(For full derivation, see Proposition 4 in [6].)
To summarize, f has the global error bound property for a q if and only if for

each r , there exists a u E ,.q(q) such that (16) holds. Note that when ,.q(q) is
convex, (16) should be satisfied for all r , and for all u ,.q(q).

For further analysis, we need some definitions. We shall say that a matrix M is
copositive on a set if the quadratic form (Mx, x) is nonnegative on that set. Note that
when M is copositive on the cone 0+/E, we have

r e 0+, (Mr, r) 0 == (M + MT)r e (0+K) *.
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We shall say that M is copositive-star on 0+E [4] if M is copositive on 0+ and

r E == --MTr (0+K:) *.

For example, M is copositive-star when it is either positive semidefinite or copositive-
plus on 0+K: (defined, in addition to the copositivity, by the condition r , =
Mr + MTr 0.) Following Iusem and Pang, we shall say that M is a positive-
semidefinite-plus matrix if it is positive semidefinite and

(Mr, r) 0 == Mr 0

or, equivalently, if M ETQE, where Q is a positive-definite matrix and E is ar-
bitrary; see [15]. Note that for a positive-semidefinite matrix M, (Mr, r} 0
(M + MT)r O.

THEOREM 6.1. Suppose that one of the following holds.
(a) M is positive semidefinite-plus.
(b) K: has an extreme point c such that M is copositive on - c and

(17) r == Mr-- MTr--O.

Then. for a q e Rn, ,(q) 0 and f (given by (15)) has the GEBP if and only if

Proof. Suppose that S(q) and the GEBP holds for f. For any r ,, there
exists an u E S(q) such that (Ms + q, r) 0. Since MTr 0 under both conditions
(a) and (b), we have (q, r) 0. Thus q +/- ,. For the converse, suppose that q _l_

Note that M is copositive-plus on 0+. (In the case of (b), the copositivity of M on
c implies that of M on 0+K.) From q _l_ and (17), we have Ms* + q * for

any u* . This shows that q * M(), i.e., AVI(M,K, q) is feasible; see [6].
Using Theorem 7 and Corollary 7 in [6], we see that q(q) . For any u S(q) and
any r E , we easily verify (16). Thus f has the GEBP.

Our next result deals with the (generalized) LCP on a polyhedral cone. Note that
in the case of the nonnegative orthant, the function f given by (15) reduces to

(18) f(x) x A (Mx + q).

THEOREM 6.2. Let ]C be a polyhedral cone.
(a) Suppose M is copositive-star on ], S(q) , and f has the GEBP. Then

(b) Suppose M is positive semidefinite. Then S(q) and f has the GEBP if
and only if q _1_ , and S(q) +/- M(,).

Proof. (a) Fix r e ,. Then for some u e S(q), we have (16). Since E is a cone,
upon putting x 0 and x 2u successively in (16), we get (Mr, u) 0. From the
first equation in (16) and the fact that --MTr K*, we have (q, r} _> 0. Adding the
first equation in (16) and (M u} 0 and noting that (M + MT)r *, we see that
(q, r) <_ 0. We thus have q _l_ .

(b) Assume (q) and that f has the GEBP. The proof of the previous, theorem
shows that q _l_ . To show S(q) +/- M(,), let r E ,. Then for some u $(q), (16)
holds. Since S(q) is convex (because M is positive semidefinite) we can replace u by
any v in this set. This leads to, as in the first part, (Mr, v) 0, proving S(q) _1_ Mr.
Since r is arbitrary, we have S(q) _1_ i().

To see the converse, suppose that q _[_ . Since M is positive semidefinite and
q ,*, AVI(M, K:, q) (which is the same as the generalized LCP(M, IC, q)) has a
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solution (cf: [4, Prop. S]). The condition ,S(q) _1_ M(,) along with (M + MT)r 0
for all r E ,S proves (16) for any u E $(q) and r 8. Thus f has the GEBP. [5

Our next result deals with the LCP formulation of the primal-dual LP [2]. For a
matrix A and vectors b and c, we consider

(19) M= A 0
and q= -b

In this setting,

r,s >_ 0, Ar >_ o, AT8
_
0}

and

"u, v > O, du > b, dTv < c, (c, u) (b, v}

THEOREM 6.3. Consider f given by (18) with M and q previously described.
Then 8(q) and f has the GEBP if and only if

(20) r >_ O, Ar _> 0 == (c, r} 0,
s

_
O, ATs

_
0 == (b, s) O.

Proof. In view of part (b) of the previous theorem, it is enough to show that (20)
is equivalent to q _k , and ,S(q) M(,). Since, in ,, r and s can vary independently
of each other, the condition q _[_ S is easily seen to be equivalent to (20). To complete
the proof we show that q +/- , implies S(q) _[_ M(). To this end, let q _1_ , and
consider (r, s) e , and (u, v) e S(q). Then (c, r} (b, s/and

s Ar

We have

0 <_ (Ar, v)= (r, ATv)<_ (r,c)- (s,b)<_ (s, Au)= (u, ATs)<_ O.

This proves, in particular, (Ar, v) (ATs, u), i.e., (u, v) _1_ M(,). This completes the
proof. []

The previous theorem shows that f given by (18) is not a good choice as far
as the global error bound analysis is concerned in the LP setting. Fortunately, for
the LP, the set S(q) can be described as the solution set of a finite number of linear
inequalities; the well-known Hoffman’s error bound analysis is applicable.

7. An error bound characterization of P-matrices. Matrices with all prin-
cipal minors positive are called P-matrices. It is known in the context of LCP [2,
Prop. 5.10.5] that for a P-matrix M, q(q) (the solution set of LCP(M, q)) is nonempty
for every q and there is a positive number/3 independent of q such that

(21) d(x,S(q)) <_ llx A (Mx + q)ll for all x.

The next result proves the converse of this statement.
THEOREM 7.1. Suppose that for a matrix M, S(q) 0 for all q, and for some

/ > 0, (21) holds for all q. Then M is a P-matrix.
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Proof. Let f(x) x A (Mx + q) and g(x) x A (Mx + p), where q and p denote
vectors. Then f g and If- gll-< liP- qll. The proof of the implication (a) (b)
in Theorem 5.4 shows that

S(p) S(q) +  llp- qlIB for all p, q.

This Lipschitzian property along with the assumption that 8(q) : for all q implies,
thanks to a recent result due to Murthy, Parthasarathy, and Sabatini [17], that M is
a P-matrix.

To derive a consequence of the previous theorem, suppose that for some positive
vector e, LCP(M, e) has a unique solution, namely, zero. (We note that positive-
semidefinite matrices, copositive matrices, and semimonotone matrices share this
property.) If (21) holds for this M and for all q, then Theorem 5.4 shows that
LCP(M, 0) has zero as the only solution. It follows that M is a regular matrix [2] and
hence 8(q) : 0 for all q. The previous theorem is applicable and we conclude that M
is a P-matrix.

Acknowledgments. I would like to thank R. Sznajder, P. Tseng, and Y. Zhang
for discussions and helpful comments, and the referees for their suggestions.

REFERENCES

[1] M. J. CHIEN AND E. S. KUH, Solving piecewise linear equations for resistive networks, Circuit
Theory Appl., 3 (1976), pp. 3-24.

[2] R. W. COTTLE, J.-S. PANG, AND R. E. STONE, The Linear Complementarity Problem, Aca-
demic Press, Boston, MA, 1992.

[3] M. FEIRIS AND J.-S. PANG, Nondegenerate solutions and related concepts in aJne variational
inequalities, SIAM J. Control Optim., 34 (1996), pp. 244-263.

[4] M.S. GOWDA, Pseudomonotone and copositive star matrices, Linear Algebra Appl., 113
(1989), pp. 107-118.

[5] , On the extended linear complementarity problem, Math. Programming, forthcoming.
[6] M. S. GOWDA AND J.-S. PANe, On the boundedness and stability of solutions to the aJfine

variational inequality problem, SIAM J. Control Optim., 32 (1994), pp. 421-441.
[7] , Stability analysis of variational inequalities and nonlinear complementarity problems

via the mixed linear complementarity problem and degree theory, Math. Oper. Res., 19
(1994), pp. 831-879.

[8] M. S. GOWDA AND R. SZNAJDER, The generalized order linear complementarity problem,
SIAM J. Matrix Anal. Appl., 15 (1994), pp. 779-795.

[9] M. KOJIMA AND R. SAIGAL, A study of PC homeomorphisms on subdivided polyhedrons,
SIAM J. Math. Anal., 10 (1979), pp. 1299-1312.

[10] , On the relationship between conditions that insure a PL mapping is a homeomorphism,
Math. Oper. Res., 5 (1980), pp. 101-109.

[11] D. KUHN AND R. LhWEN, Piecewise aJfine bijections of R and the equation Sx+ -Tx- y,
Linear Algebra Appl., 96 (1987), pp. 109-129.

[12] N. G. LLOYD, Degree Theory, Cambridge University Press, Cambridge, UK, 1978.
[13] X.-D. Luo AND P. TSENG, On a global projection-type error bound for the linear complemen-

tarity problem, Linear Algebra Appl., forthcoming.
[14] Z.-Q. Luo AND J.-S. PANG, Error bounds for analytic systems and their applications, Math.

Programming, 67 (1994), pp. 1-28.
[15] Z.-Q. Luo AND P. TSENG, On the global error bound for a class of monotone airing variational

inequality problems, Oper. Res. Lett., 11 (1992), pp. 159-165.
[16] O. L. MANGASAPdAN AND J.-S. PANG, The extended linear complementarity problem, SIAM

J. Matrix Anal. Appl., 16 (1995), pp. 359-368.
[17] G. S. R. MURTHY, T. PARTHASARATHY, AND M. SABATINI, On Lipschitzian Q-Matrices, Tech.

report, Statistical Quality Control and Operations Research Unit, Indian Statistical In-
stitute, Madras 600 034, India, July 1994.

[18] T. OHTSUKI, T. FUJISAWA, AND S. KUMAGAI, Existence theorems and a solution algorithm
for piecewise-linear resistor networks, SIAM J. Math. Anal., 8 (1977), pp. 69-99.



PIECEWISE AFFINE FUNCTIONS 609

[19] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970.

[20] J.-S. PANG, A degree-theoretic approach to parametric nonsmooth equations with multivalued
perturbed solution sets, Math. Programming, 62 (1993), pp. 359-383.

[21] , Necessary and suJficient conditions for solution stability of parametric nonsmooth
equations, in Recent Advances in Nonsmooth Optimization, D.Z. Du, L. Qi, and R.S.
Wommersley, eds., World Scientific Publishers, Singapore, 1995, pp. 261-288.

[22] J. REN, Computable Error Bounds in Mathematical Programming, Ph.D. thesis, Computer
Sciences Department, University of Wisconsin, Madison, WI, August 1993.

[23] W. C. RHEINBOLDT AND J. S. VANDERGRAFT, On piecewise a3Cfine mappings in Rn, SIAM J.
Appl. Math., 29 (1975), pp. 680-689.

[24] S. M. ROBINSON, Some continuity properties of polyhedral multifunctions, Math. Program-
ming Study, 14 (1981), pp. 206-214.

[25] S. ROBINSON, Normal maps induced by linear transformations, Math. Oper. Res., 17 (1992),
pp. 691--714.

[26] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[27] S. SCHOLTES, Introduction to Piecewise Differentiable Equations, Institute fair Statistik und

Mathematische Wirtschaftstheorie, Universitt Karlsruhe, 7500 Karlsruhe, Germany,
May 1994, Preprint 53/1994.

[28] , Homeomorphism Conditions for Coherently Oriented Piecewise AJfine Mappings, Re-
search report, Institute fair Statistik und Mathematische Wirtschaftstheorie, Universitt
Karlsruhe, 7500 Karlsruhe, Germany, June 1994.

[29] R. SCHRAMM, On piecewise linear functions and piecewise linear equations, Math. Oper. Res.,
5 (1980), pp. 510-522.

[30] R. SZNAJDER, Private communication, September 1994.
[31] ., Degree Theoretic Analysis of the Vertical and Horizontal Linear Complementarity

Problem, Ph.D. thesis, Department of Mathematics and Statistics, University of Maryland
Baltimore County, Baltimore, MD, May 1994.

[32] R. SZNAJDER AND M. S. GOWDA, Generalizations of P0 and P-properties; extended vertical
and horizontal LCPs, Linear Algebra Appl., 223/224 (1995), pp. 695-715.

[33] ., Nondegeneracy Concepts for Zeros of Piecewise AJne Functions, Research report,
Department of Mathematics and Statistics, University of Maryland Baltimore County,
Baltimore, MD, October 1994.



SIAM J. MATRIX ANAL. APPL.
Vol. 17, No. 3, pp. 610-620, July 1996

() 1996 Society for Industrial and Applied Mathematics
011

A CHAIN RULE FOR MATRIX FUNCTIONS AND APPLICATIONS*
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Abstract. Let f be a not necessarily analytic function and let A(t) be a family of n x n matrices
depending on the parameter t. Conditions for the existence of the first and higher derivatives of
f(A(t)) are presented together with formulae that represent these derivatives as a submatrix of f(B),
where B is a larger block Toeplitz matrix. This block matrix representation of the first derivative is
shown to be useful in the context of condition estimation for matrix functions. The results presented
here are slightly stronger than those in the literature and are proved in a considerably simpler way.
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1. Introduction. Let f be an analytic function. It is well known that

0 A 0 f(A)

We generalize this by showing that

(1.1) f(A A (f(A)o f(A+tW)l:)f(A)
when A and W are square matrices. One can generalize this idea to obtain formulae
for higher derivatives.

Our results improve on the results in the literature in several ways. First, [3, 2, 7]
all require that A(t) be continuously differentiable in order to conclude that f(A(t))
is merely differentiable. Second, our method of proof and our expression for the
derivative are considerably simpler than those in [3, 2, 7]. Finally, our formula for the
derivative is more useful (easier to evaluate and probably more accurate) for numerical
computationssee 5 and the discussion following Theorem 2.1.

Throughout we let D denote an open subset of or . We let M denote the
set of n n complex matrices and Mn(D, m) denote the set of n n matrices that
have spectrum contained in D and largest Jordan block of size at most m. Let f be
m- 1 times continuously differentiable on D. Given A M(D, m) we define I(A)
by

(1.2) f(A) r,(A),

where rA,f is any polynomial that interpolates f and its derivatives at the roots of
the minimal polynomial of A. That is, if is an eigenvalue of A of index p then

f(i)(A) r(AI(A), i 0,1,...,p 1.

We discuss the many ways to define f(A) later in the section. By considering the
Jordan canonical form of A one can check that the right-hand side of (1.2) is indeed
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Higham August 30, 1995. This research was supported in part by National Science Foundation grant
DMS-9201586 and by a Summer Research Grant from the College of William and Mary.
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(na.mathiasna-net.ornl.gov).

The book Matrix Differential Calculus with Applications in Statistics and Econometrics [11]
does not address the subject of this paper.
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independent of the interpolating polynomial chosen--see, for example, [7, Thm. 6.1.9
(b)] for the details.

We now give three useful properties of functions defined on matrices by (1.2). A
simple generalization of [7, Thm. 6.1.28], using the continuity of the divided differences
that arise in the interpolation problem, yields Lemma 1.1.

LEMMA 1.1. Let f be m- 1 times continuously differentiable on D. Then f is
continuous on M(D, m).

This fact is crucial in obtaining (1.1). The definition (1.2) implies the desirable
property

(1.3) f(SAS-1) S I(A) S-1.

This will also be used in the proof of (1.1). An immediate corollary of the definition
(1.2) is that f(A) depends on f only through its first few derivatives on the spectrum
of A, as follows in Lemma 1.2.

LEMMA 1.2. Let A E Mn(D, m). If for each k 1, 2,..., m

I() (A) g() (A), i O, 1,..., k 1

for all eigenvalues of A of index k then

I(A) g(A).

There are a number of ways to extend a scalar-valued function to matrices. Rine-
hart discusses eight different definitions and shows that many are identical and that
all but one are essentially the same in the sense that if for some function f and matrix
A two definitions are applicable then the resulting value of f(A) is the same in either
case [15]. Some of these definitions are also mentioned in [7, Probs. 6.1.14-15, 6.2.1
and Thm. 6.2.28].

In [7, Def. 6.2.4] the notion of a primary matrix function derived from a scalar stem
function was defined--it is essentially the same as our definition of f(A). However, the
starting point in [7] was (1.3) and the requirement that f be a continuous function on
M(D, n). The relation (1.2) was proved as a consequence of these two requirements.
The reason for our approach is that if m < n then we can consider functions that are
defined on M(D, m) but not on Mn(D, n).

One could define f(A) via a contour integral or via a power series, assuming in
either case that the scalar function could be expressed in the same way. If one were to
use these definitions then one could derive formulae for the derivative of f(A(t)) quite
easily. However, if A(t) is a Hermitian family of matrices then its spectrum would
be real for all t and so it would be reasonable to consider f(A(t)), where f is defined
only on a subset of the real line rather than an open subset of , and so f could be
differentiable without being infinitely differentiable. The question of differentiating
such functions of a matrix arises in the study of monotone matrix functions (see, e.g.,
[7, 6.6]). For such functions we would not be able to define f(A) by a contour integral
or a power series.

Section 2 contains our main result. Theorem 2.1 is a formal statement of the
formula (1.1). This is perhaps the most important result in the paper. The question
of differentiating f(A(t)) has also been considered by Horn and Johnson [7, 6.6],
Dalecki and Kren [3] (Hermitian case only), and Dalecki [2]. We compare Theorem
2.1 with their results.

In 3 we give an upper bound on the size of the Jordan blocks of certain block
upper triangular matrices. This bound is used in 2 and 4 and is only necessary
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because we want to consider functions f that are not infinitely differentiable and want
to require only the weakest possible differentiability conditions on f. We generalize
Theorem 2.1 to higher derivatives in Theorem 4.1.

In 5 we present an application of Theorem 2.1.

2. The first derivative. In this section we give a basic formula for the first
derivative of f(A(t)). In 4 we generalize it to the kth derivative of f(A(t)). The
following theorem is our basic result.

THEOREM 2.1. Let f be 2m- 1 times continuously differentiable on D. Let A(t)
be differentiable at to and assume that A(t) e Mn(D, m) for all t in some neighbor-
hood of to. Then

(2.1)
dt f(A(t)) f A(to) A’(to)

t=to 0 A(to) 12

The 12 on the right-hand side means "take the 1, 2 block of the matrix" on the
right-hand side.

Proof. Take e = 0 and let

f ( A(to)o A(to+e!-A(tO)
+ )

Then

Sf S-1 A(to) S-
0 A(to + )

S

Sf ((A(to) 0 S-
0 A(to+e)//

s ( f(A(to)) 0)10 f(A(to + )) S-

(S(Z(to))0 f(A(to + ,))

Now let e - 0. Because f is 2m- 1 times continuously differentiable and the largest
Jordan block of the matrix on the left-hand side is at most 2m (Lemma 3.1), the
continuity of f (Lemma 1.1) implies that the limit of the left-hand side exists and is

f ( A(to) A(to) )0 A(to)

Since the limit on the left-hand side exists so does the limit on the right-hand side.
The 1,2 block of this limit is f(A(t))lt=to. This gives the desired result.

We have used Lemma 3.1, a bound on Jordan block size, in proving this result. If
we had made the stronger assumption that f is 2n-1 times continuously differentiable
(rather than merely 2rn-1 times) then it would not have been necessary to use Lemma
3.1.

Typically, one will know only that the size of the largest Jordan block of A(t)
is bounded by n, so one would usually apply this result with m n. That is, in
general f must be 2n- 1 times continuously differentiable in order that f(A(t)) be
differentiable. If A(t) is Hermitian for all t, then it is also diagonalizable, and hence we
may apply the result with rn 1 and can conclude that f need only be continuously
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differentiable in order that f(A(t)) be differentiable. In this case, or more generally
when A(t) is diagonalizable, the derivative can be expressed in a form involving a
Hadamard product [7, Thm. 6.6.30].

Let us compare our result with those in the literature--Dalecki and Kren [3,
Tam. 1] (Hermitian case only), Dalecki [2], and Horn and Johnson [7, Thm. 6.6.14].
For comparison we state part of [7, Thm. 6.6.14], which is representative of the other
two results also.

THEOREM 2.2. Let f be 2n- 1 times continuously differentiable on D. Let A(t)
be continuously differentiable on D. Then

1. f(A(t)) is continuously differentiable on D.
2. Let to E D be given and let PA(to)A(to)(’) be the Newton interpolating poly-

nomial that interpolates f and its derivatives at the zeros of the characteristic
polynomial of A(to) A(to). Then

A(t))
d
pA(to)$A(to)(A(t))

t--to t----to

3. For each t e D let Al(t),...,A(t)(t) denote the distinct eigenvalues of A(t)
and let rl(t),..., rt(t)(t denote their respective multiplicities as zeros of the
minimal polynomial of A(t). Let A1 (t), At,(t (t) denote the Frobenius co-
variants of A(t) (defined in [7, Eq. (6.1.40)]) and let Af(u,v) denote the
divided difference (f(u)- f(v))/(u- v). Then

d
t,(t) rj(t)-I rk(t)--I

1 0t+m
d-f(A(t))= l!m!OuOv, Af(u’v)

j,k--1 /--0 m--0 u----)j(t),v--Ak(t)

Aj(t)[A(t) ;j(t)I]
d
A(t) Ak(t)[A(t) Ak(t)I]"

All the results in [3, 2, 7] require that A(t) be continuously differentiable at t0
in order to conclude that f(A(t)) is differentiable at t t0. Our result is stronger
than theirs in this respect since we require only that A(t) be differentiable at t0.
Horn and Johnson go on to show that under the stronger assumption of continuous
differentiability f(A(t)) is also continuously differentiable.2 In Corollary 2.3 we show
that the formula (2.1) easily yields the continuous differentiability of f(A(t)) when
A(t) is continuously differentiable. In fact, the continuous differentiability of f(A(t))
seems quite natural given the formula (2.1), while it seems rather surprising if one
looks at a formula for the derivative like those in [7, 3, 2] which involve obenius
covariants or eigenprojections-quantities that may not even be continuous.

Theorem 2.1 shows that if one can evaluate f at a matrix then one can also
compute the derivative of f(A(t)) using the same method--we exploit this in the last
section. om a computational point of view our formula (2.1) is superior to those
in [2, 3, 7]. In particular, there is no need to know the eigenvalues of A(to), as is
required by the formula in part 2 of Theorem 2.2. Part 3 of Theorem 2.2 requires
that one also know the obenius covariants/eigenprojections of A(to). Having the
formula depend on the eigenvalues and possibly eigenprojections could be a source
of serious error in numerical computation since the eigenvalues and eigenprojections
may be very ill conditioned.

2 One can check that the continuous differentiability of A(t) is used in an essential way in proving
the differentiability of f(A(t)). See [7, top of p. 525], for example.
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Our proof of Theorem 2.1 is much simpler than the proofs of the corresponding
results in [7, 3, 2] because most of the work is in proving that f is continuous on
M2n(D, 2m). Another nice feature of the formula (2.1) is that it allows one to obtain
a similar formula for higher derivatives by a simple inductive argument. We indicate
how to this at the beginning of 4.

Theorem 2.1 covers the Hermitian and non-Hermitian cases together. The argu-
ments in [2, 3, 7] do not. So it may appear that our approach is superior in this respect.
It is not. If one were to develop the arguments in [2] or [7, proof of Whm. 6.6.14] more
carefully then one would see that the differentiability of f(A(t)) is guaranteed by f
having 2m- 1 continuous derivatives at each eigenvalue A of A(to), where m is
such that for all t in some neighborhood of to every Jordan block corresponding to
an eigenvalue in a neighborhood of A of A(t) has size at most m.3 In particular, the
more careful argument would cover the Hermitian case. (This more careful approach
still requires the continuous differentiability of A(t).)

A possible weakness of all these results, Theorem 2.1 included, is that they require
f to be continuously differentiable in order to conclude that f(A(t)) is differentiable.
Whereas if A(t) were a scalar function then it would be sufficient that f be merely
differentiable.

Now we show that the continuous differentiability of A(t) guarantees that of
f(A(t)).

COROLLARY 2.3. Let f be 2n- 1 times continuously differentiable on D and
A(t) e Mn(D,n) be a continuously differentiable function of t. Then f(A(t)) is
continuously differentiable.

Proof. From Theorem 2.1 we know that the derivative of f(A(t)) is the 1, 2 block
of f((t)), where

(t) ( A(t) A’(t) )0 A(t)

The matrix (t) is a continuous function of t since A(t) is continuously differentiable.
Since f is 2n- 1 times continuously differentiable we know that f(.(t)) is continuous,
and thus

d
d-f(A(t)) [/((t))]12

is also continuous.
We shall say no more about continuous differentiability.

3. Bounds on Jordan block size. It is useful to have a bound on the size of
the Jordan blocks of block upper triangular matrices. The bound can be derived from
results due to Friedland and Hershkowitz [4, 3] and Hershkowitz, Rothblum, and
Schneider [5, Thm. 5.9]. Meyer and Rose also prove this result [13, Thm. 2.1]. For
completeness we include a simple proof, which is different from those in the previously
mentioned papers.

LEMMA 3.1. Let A be a block upper triangular matrix with square main diagonal
blocks A, i 1, 2,..., m that are not necessarily of the same size. Fix E and let
k be the index of in. A. Then the index of i in A is at most kl + k2 +... + kin.

Proof. It is sufficient to consider the case A 0 and m 2. The general case can
be derived from this by considering A- AI and by using induction on m.

3 This point has been noted [2, between lines 18 and 19].
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To show that the index of 0 in A is at most k / k2 it is sufficient to show that

rank (Akl +k2 -rank

This is implied by

(3.1) rank (Ak+) < rank (A++)

since rank (XY) <_ rank (X) for any matrices X and Y for which XY is defined. We
shall prove (3.1).

Let r be the number of nonzero eigenvalues of A. Then using the block upper
triangularity of A we have

(3.2) rank (Ax+k+) _> rank (A++l) + rank (A2k,+2+1) >_ rl + r2.

Let k k + k2. Then

Ak+k I All
0

( AlklO
( AI lo
( Alamo

(o+
0

Since the index of 0 in AI is kl it follows that the rank of Ak] is rl and hence the
rank of the first term in the sum is at most r. In the same way the rank of the second
term is at most r2. Since rank is subadditive we have

rank (Ak+) < r + r2 < rank (A+2+1),

as required. The second inequality is from (3.2).

4. Higher derivatives. Now let us consider higher derivatives. One approach
is to use induction and Theorem 2.1. This would give us

d 2

dt2f(A(t)) f 0 0 A(to) A’(to)
0 0 0 A(to) 14

for the second derivative. Since we have a 4n 4n matrix on the right-hand side
one might expect that 4n- 1 continuous derivatives are required of f, but a careful
analysis of the Jordan structure of the 4n x 4n matrix shows that 3n- 1 derivatives are
sufficient. This approach can be generalized to higher derivatives and one can derive
Theorem 4.1 from it, but this is a rather roundabout and unnatural development.



616 ROY MATHIAS

Given n n matrices Ao, AI,... ,Ak let T[Ao, A1,..., Ak] denote the n(k + 1)
n(k + 1) block upper triangular block Toeplitz matrix with i,j block equal to Aj-i
for j _> i. So, for example,

Ao A
T[Ao, A, A.] = 0 Ao

0 0

THEOREM 4.1. Let A(t) be k times differentiable at to and assume that A(t) E
Mn(D, m) for all t in some neighborhood of to. Assume that f is (k + 1)m- 1 times
continuously differentiable on D. Then f(A(t)) is k times differentiable at t to and

[ A(1)(t)(4.1) f T A(to), A(k)(to)] )
T J’(A(to)), f(A(to))

1 d
k! dtf(A(t))

Proof. Take 0 e0 < el < < ek. Let A{A(e, +,..., e+j) denote the jth
divided difference of A at the j + 1 points t + e,..., t + e+j. That is, AtA A(t)
and for j > 0

A{A(e,e+,... e+j)-- A{-A(e+’""e+J)- A{-1A(e’""e+J-1)
(t + (t

Let TA(e), Tf(e), and S(e) denote the (k + 1)n (k + 1)n block upper triangular
matrices with i,j block equal to A-A(e,... ,ej), A{-(f(A(e,..., ej)), and

-1

respectively, for i _< j. If i > j the ij block is 0 because the matrix is block upper
triangular. Let D(e) be the block diagonal matrix with i, block equal to A(to + (i-
1)e). All these matrices depend on e, but we suppress this dependence in the case of
S for simplicity of notation. Note also that in the limit as e goes to 0

TA(e) -- T A(to) A(1)(t) A(k) (t) ]1! k!

We now demonstrate that

(4.2) TA(e)S SD(e)

by induction on k. The result is immediate when k 0 since then S I and
TA(e) D(e).

Let us assume that (4.2) is true for k- 1 and prove it for k. Since by assumption
the result is true for k- 1, every block on the right-hand side must be the same as
that n the left-hand side except perhaps for the 1, k / 1 block. We shall show that this
block is also the same by explicitly computing it. The 1, k + 1 block on the left-hand
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side is

k+l k

(TA(e)S)I,k+I E A{:IA(e’ ej-1) ek e-I
j=l

(e e_l) 21A(eo,..., e_) (e e-l)
j=l /=1

]_1(e e-l) 21A(eo,..., e-l) (to + e (to + e-l))
j=l /=1

-1

[(k--/-1)]/=l (tok),

which is the 1, k + 1 block of the right-hand side, desired. The lt equality follows
from the fac that the penultimate quantity is a multiple of the Newton form of he
polynomial that interpolates A(t) at the points to + co, to + el,..., to + e evaluated
at the point to + e. This can be found in most numerical anMysis texts; see, for
example, [1, Eq. (a.ll)].

Since S is nonsingular it follows from (4.2) that S-1Ta(e)S D(e). Thus we
have

(4.3) f(TA()) Sf(S-1TA()S)S-1 Sf(D(e))S-1 TI,(e).

One can check that

[ A(1) (t) A()(to) ]lim TA(e) T A(to) i’i ’"" k!0

Lemma 3.1 ensures that the largest Jordan blocks of TA(e) are of size at most (k/ 1)m,
and so Lemma 1.1 ensures that f(TA(e)) is continuous at e 0. As e --. 0 that is the
limit of the term on the extreme left in (4.3), and so the limit of the extreme right
term must also exist and be the same. If

lim Aof(A(e,...
e--0

exists then f(A(t)) is necessarily j times differentiable at to and the limit is the
derivative. This gives the result. [3

Notice that the right-hand side of (4.1) depends on f only through f(0(A) for
i 0, 1,..., (k + 1)m- 1 and in the spectrum of A(to). Consequently, if

f(i)(A) g(i)(A), i O, 1,..., (k + 1)m- 1

for all A in the spectrum of A(to) then

dj
-d-g(A(t))

t=to t--to
j 0,1,...,k.

In the case k 2 this observation is [7, Thm. 6.6.14, part 4]. If we further specialize
to the case where g is the polynomial that interpolates f and its derivatives at the
eigenvalues (counting multiplicities) of A(to) @ A(to) then we obtain part 3 of the
same theorem in [7].
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5. Applications to condition estimation. Often one wishes to compute the
condition number for the problem of computing f(A). That is, one wishes to find

(5.1) inf max
0 IIEII<

IIf(A + E) f(A)ll

for some norm I1" II. (Actually, the relative condition number, i.e., the quantity in (5.1)
multiplied by the factor IIAII/IIf(A)II, is more commonly used. It is easily obtained
given (5.1) and so we will consider only (5.1).) One can show that (5.1) is equal to

(5.2) max liLy(A; E)II
IIEII<,

where LI(A; .) is the Frchet derivative of f at A and can be evaluated by

d
(A+tE)(5.3) Ly(A; E) f ,t--0

If one can evaluate LI(A; E) for various values of E and if one takes II, to be the
Frobenius norm then one can use a power method [8, 12] or a Lanczos-type method
[12] to estimate the quantity in (5.2). However, we know that

(5.4) Ly(A; E) If ( A E
0

The utility of this observation is that there are special methods to compute f(X)
when f is a function with special properties--for example, the sine or cosine [16], the
exponential [14], the logarithm [8], the square root [6], and the matrix sign ([9] and the
references therein). These special methods immediately yield methods for computing
the directional derivative. Furthermore, one can use error analysis and perturbation
theory for the function f to obtain error analysis and perturbation theory for its
derivative. We illustrate this with the matrix sign function.

The matrix sign function is the matrix function obtained by taking D to be
the complex plane, excluding the imaginary axis, and f to be defined by f(z)
sign (Re(z)). It is defined for any matrix with no eigenvalues on the imaginary axis.
Note that f is infinitely differentiable on D.

One way to compute sign (A) is by the Newton iteration

1
(Ai / A-1(5.5) A0=A, Ai+l= ), i=0,1,...,

which is globally convergent to sign (A), assuming of course that A has no eigenvalues
on the imaginary axis. This iteration can be accelerated by scaling; see [i0] for the
details. For simplicity we omit scaling here. The iteration is quadratically convergent
to S sign (A). One can show that

1
IIA,/ Sll IlSll II,A- ATXll + O(IIA-

where I1" is the spectral norm (or any other submultiplicative norm). The main ideas
in the proof of (5.6) are the use of the Neumann series for the inverse and the fact
that all the quantities that arise (Ai, A-1, and S) are polynomials in A and therefore
commute. When IIAi- A-lll is small we have IISII IIAi+lll, and so (5.6) gives an
approximate upper bound on the error in Ai+l as an approximation to S.
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One can compute Lsign(A, E) by applying the Newton iteration (5.5) to

B =- B =- 0 .4

By induction we have

(Bi) (Bi)22 Ai.

Let Ei (Bi)2. Explicitly computing Bi+ (Bi + B-1)/2 gives

1
(Ei AIEiA)(5.8) Ei+l- (Bi+1)12

This iteration for Ei is precisely what was derived in [8, Thm. 3.3]. One can obtain a
stopping criterion by applying the error bound (5.6) to the matrices Bi. In particular,

IIE,+ Lsign(A;E)ll I[(B,+1)12 -(sign_
IIBi+l- sign (B)I
1< -Ilsign (B)ll IIB B-lll 2 + O(llS B-ll3)

-8
1< -(lISII + Ilnsign(A,E)ll) (I]Ai- AII + IIEi + AT*EiATIlI)2

-8
+O((]A A;lll + lEi + AIEiA;IlI)3).

Notice that

so we have an approximate upper bound on IIE+ Lsign(A;E)l in terms of the
known quantities A, A-, A+, and E+. This is useful because we generally do
not need to compute Lsign(A; E) as accurately as sign(A), and so can stop the iteration
(5.8) before the iteration (5.5). Although the iteration (5.8) is not new, the bound on

IIE+I Lsign(A; E)II is new.

Acknowledgment. The present proof of Theorem 4.1 is based on an idea pro-
vided by an anonymous referee. The original proof was very roundabout and unnat-
ural.
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FURTHER STUDY AND GENERALIZATION OF
KAHAN’S MATRIX EXTENSION THEOREM*

DAO-SHENG ZHENG

Abstract. In 1967, Kahan obtained a matrix extension theorem: Suppose H E Cl is Her-
mitian and B Csl. Denote the spectral norm of

by IIRII2. Then there exists a W Csx8 such that

is Hermitian and IIAII2 IIRII2. Kahan did not give an explicit expression for W. We show that one

may take

(1) W---BH(62I-H2)tB*,

where At denotes the Moore-Penrose generalized inverse of A. Furthermore, the inequality

(2) B(6I + H)tB 61

_
W

_
61- B(6I- H)tB

gives the "general solution formula" for W in Kahan’s theorem, where A

_
B means A and B are

Hermitian and A- B is positive semidefinite. A by-product of (2) is the inequality

(3) 26I >_ B[(6I -}- H) + (6I- H)t]B*.

In this paper we also consider the following problem: Suppose H Cll is normal, B C , and

How can we find a Hermitian W and a matrix B1 such that liB111. 118112 and 11.4112 11112, where

Key words. Hermitian matrix, matrix extension theorem, general solution of extension theo-
rem, pseudoinverse form of solution

AMS subject classifications. 47A20, 15A09, 65F30

1. Introduction. In this paper, A E Cmn means A is an m-by-n complex
matrix. A > B A >_ B) means A,B are both Hermitian matrices and A- B is
positive definite (positive semidefinite). The Moore-Penrose generalized inverse of
matrix A is denoted by A [2, Chap. 1]. IIAII2 is the 2-norm (spectral norm or largest
singular value) of A [3, pp. 56-57].

In [5, pp. 231-233], Parlett quoted an important matrix extension theorem, which
is given by Kahan in [4] and has not been published in any journal. The theorem is
called "Kahan’s theorem" in this paper.
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THEOREM (Kahan [4], 1967). Suppose H E Cx is Hermitian, B e Csx

R= B

and O IIRll2. Then there exists a Hermitian matrix W Csxs such that

(11). A [ HB B*

satisfies
(1.2)

In his proof, Kahan pointed out that for any a > 0, if one sets

W -BH(a2I- H2)-IB*,

A= B W
then a >_ IIAII2 _> IIWII2. Using meromorphic function theory, gahan proved hat

(*) lim W W

exists, and W satisfies (1.1) and (1.2).
Kahan’s theorem has important applications in matrix perturbation theory [5,

Chap. 11]. But Kahan did not give an explicit form for W; his result was purely
existential.

It is natural to seek an explicit representation for W. Indeed, an explicit expres-
sion for W in (,) can be given by the formula

(1.3) W -BH(02I- H2)tB*.

In general (contrary to a statement given without proof in Parlett’s book [5, p.
232]), solutions to Kahan’s extension problem are not unique. A "general solution
formula" for Kahan’s theorem is given by the inequality

(1.4) B(I + H)tB I W OI- B(I- H)B*.

Both (1.3) and (1.4) can be used to compute W numerically, but from the per-
turbation theory of generalized inverses [9, pp. 136-140], [8], we can show that (1.4)
is better than (1.3) for numerical computation.
om (1.4) we can obtain a by-product. If H H*,

and 0 I111,

(1.5) 2OI B[(OI + H) + (pI- H)t]B*.

If in Kahan’s theorem the matrix H is positive definite, then there is a positive-
definite extension A if and only if

(1.6) BHtB < W < 0I- B(OI- H)tB*.

The inequality (1.6) can be used to compute W, e.g., W (BH-B + pI- B(0I-
H) B*) satisfies (1.6).
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Kahan’s theorem can also be modified to consider the following problem: Suppose
H E Czz is non-Hermitian and B E C8z. How can we find a Hermitian W and a
matrix B1 such that I]Bll]2 ]IBII2 and IIAII2 ]IRI]2 if

Section 2 is preliminary. Formula (1.3) is obtained in 3. Inequality (1.4) is
obtained in 4. Equation (1.6) is obtained in 5. Extension to a normal matrix is
discussed in 6.

2. Preliminary.
DEFINITION 2.1. A > 0 (A >_ O) means that the Hermitian matrix A is positive

definite (positive semidefinite). A >_ B means A, B are both Hermitian and A-B >_ O.
LEMMA 2.1 [7, pp. 315-316]. If A >_ B and B >_ C, then A >_ C.
DEFINITION 2.2 [2, Chap. 1]. Suppose A 6 Cmxn. If X 6 Cm satisfies the

following equations:

AXA- A, XAX X, (AX)* AX, and (XA)* XA,

then X is called the Moore-Penrose generalized inverse (or pseudoinverse) of A and
X is denoted by At.

LEMMA 2.2 [2, Exercise 22 of Chap. 1]. Suppose U e Cm’, V Cn are two
unitary matrices, and A Cmn. Then

(2.2) (UAV) V*AtU*.

LEMMA 2.3 [10], [7, p. 288]. Suppose H cnx; then HH* H*H if and
only if there exists an [io], matrix Q such that

(2.3)
LEMMA 2.4. Suppose

Q HQ A diag(h,...,h,).

H l C(’+8)xnR= B

H diag(h,...,hr,...,h), Ihl Ih12 [hlr > Ih+ >_ >_ Ihnl. B
(B1, B2) and B (b, b). If IIRII2 I[HII2, then B O.

Proof. Denote 0 --IIRII2. From [7, Chap. 6], [3, p. 60], IIRII2 _> IIHII2. So
02 --ILRI]29, --I]R*RII2 ]IH*H + B*B]I 2

_
]]H*Hll 2 ]hl[ 2 02. The diagonal

elements of g*g / B*B are {Ihl 2 + bb} for i 1,..., n. Hence

02 >_ Ih2l + bb >_ Ih[ 2 02 (i 1,...,r).

Thus we have b 0, i 1,..., r. E]
LEMMA 2.5 [1]. Suppose

is Hermitian, E E CnXn, and G E CkXk. Then A >_ 0 if and only if
(2.4) E >_ O, G- FEtF* >_ O, and rank(E,F*) rank(E).

LEMMA 2.6. Suppose A is the same as in Lemma 2.5. Then A > 0 if and only if
(2.5) E > 0 and G- FEtF > 0.
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LEMMA 2.7 [6], [9, p. 136]. Suppose A, {As} E Cm’ and lim_ocA-- A.
Then

(2.6) lim A A

if and only if

(2.7) lim rank(As) rank(A).

LEMMA 2.8 [9, p. 140], [8]. Suppose A Cm’, A A + E, and rank(A)
rank(.); then

1(2.s) 11 >-

Moreover, if rank(ffl) > rank(A), then

1
(2.9) IItll _>

IIEII
3. Pseudo-inverse form of W.
THEOREM 3.1. Suppose H e Cx is Hermitian, Q[Q I and Q[HQ

diag(hl, ,h) A, B C8x

and O IIRII. Let

w -BH(e Z- *,

(3.2) A

Then

H
B W

(3.3) W =-(BQ)A(p2I- A2)t(BQ)* W* and IIAII- IIRII.
Proof. It is well known [3, p. 60] that if X is a submatrix of Y, then IIYII. >_ IlXll.

So IIAII2 _> IIRII2 . To prove IIA[12 IIRII2 , we need only show that IIAII2 _< .
Taking

I81
we have

A (BQ,)* ](3.4) Q*AQ BQt W

From Lemma 2.2, we have
(3.5)

B *=W*B * A2 t, r.B. _BQA(2I_ A2)t(Q)W QQHQQ(a02I- Q Q)

Equations (3.4) and (3.5) mean that in the proof of Theorem 3.1 we can assume H h
and Q I.

In order to prove IIAII2 _< 0, we need a lemma.
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LEMMA 3.1. Suppose

A CIxl

with

0 IIRII2 > IIAII2, a >_ , and

A B* ]A= B W

W -BA(a2I- A2)-IB*.

Then

(3.6) [IAII2 _< a.

Proof. We first set

Then

D BA(a2I- A2) -1.

W -DB* -BD*.

Consider the matrix

D I [a2I-A2l 0 IM=

Because of

(a2I- A2 B*B)D* AB* B*W (a2I- A2)(a2I- A2)-IAB* AB* 0

and

we have

D(-AB* B*W) + a2I- BB* W
D(-AB*) + a2I BB* DB*(-DB*) DB*DB*

-BA(a2I A2)-AB BB* + a2I
a2[I- B(a2I- A2)-IB*],

M=[a2I-A2-B*B 0 ]0 aX
with

(3.7) X I- B(a2I- A2)-B*.

Since IIRII2 _< a, we have a2I- R*R a2I- A2 B*B >_ O. If we can show that
X _> 0, then M >_ O, a2I- A2 >_ O, and I[AI]2

_
(7. To this end, let

N= D I [a2I-RR*] I D*
0 I

A computation shows that

[a2I-A2 0 1(3.8) 0 _< g
0 a2X

where X is given by (3.7). It follows from (3.8) that X
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Now we continue to prove [JAIl2 < "0. There are two cases.
Case I. "0 -IIRI[2 > ][HII2 -[hl[. In this case, taking a "0 in Lemma 3.1, we

obtain

(3.9) IIAII2 ,
Thus, Theorem 3.1 is proved for Case I.

Case II. I[HII2 --IIRII2 "0. In this case, suppose hi,..., ht are the eigenvalues of
A and

(3.10) Ihl-- Ih,-I > [h,-/l "" Ihzl.
From Lemma 2.4, we have

(Z.l) =o.
Assume

(3.12) bl bt 0, bt+l O, r

_
t

_
1.

Ift=l, thenB=0. We can takeW=0andA=[h 0
0 0]" And then IIA]12 IIRI]2

IIAII2. Consequently, only the case t < needs to be further considered.
Write

B2=(bt+ bz), A=[A 0 10 A2
with

(3.13)
Then we have

A diag(h, ht).

(3.14) A= 0 A2 B 0 A20 B2 W

A2= [A2B2 W

From Lemma 2.4, we have

Iht+l IIA2112 < A2

with

Let a "0, and

(3.15) W2 -B2A2("02I A)-B 2 |
[ B2

From Lemma 3.1, we have

A("02I A2)t [ A1 ("210- A21)t
Because of

(3.16) hr+ hz )---diag 0,...,0, "02_ jh,.+12,"’, 02 ihtl 2
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we have

So we have

Hence we have

W__(0, B2) IA 0 ] A2o A (- (o,)*

B2A2(02I- A2)-IB W2.

A2 A2.

and Theorem 3.1 is proved for Case II. ]
It is not difficult to prove the following corollary.
COROLLARY 3.1. Suppose H E Czt is Hermitian,

AH Q Q, A diag(h,...,h) [hi[ ." ]hl

h BQ (0,...,0, b+,...,b) (0, Be), b+ O, and Be (b+i,...,b).

For any a, e a > ]ht+[, take

(a.s) w -A(- A)*$ -.:h(:- h)-i.,

(3.19) Aa [ H B* JB W
Then [[A[[u I[R[[e.

Corollary 3.1 means that when [ht+[ < a O, any Wa given by (3.18) satisfies
Kahan’s theorem.

Notice that when a > 0, (3.18) is still valid. om Theorem 3.1 we obtain the
following proposition.

PROPOSITION 3.1. In Theorem 3.1 we have

(3.20) lim W lim [-BH(a2I- H2)-IB*] -BH(02I- H2)tB W.
0+o 0+o

Proof. If [[R[2 > [Hl[2, then a2I- A2 > O2I- A2 > 0 and

W -BA(02I- A2)-B*
so we can easily prove (3.20).

If ][R[]2 ]]H[12, from Lemma 2.4 and (3.18), we have

W -B2A2(02I- A)-B
and

W -B2A2(a2I- A)-B.
Remark 3.1. Theoretically, the matrix W in Proposition 3.1 coincides with the

matrix W in Kahan’s theorem. But if we want to compute W by (3.20) numerically,
a difficulty might appear when 0 []H][2. In this ce, we have rank(02I- H2) <
for H Ctxt. om Lemmas 2.7 and 2.8, if the computed value of rank(02I- H2) is
greater than its theoretical value, the computed value of [[(02I H2)[12 must be very
large. In fact, when [[R[[2 ][Hll2, by Lemma 2.4, we have bl b 0 in (3.12).
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However, because of rounding error, we will not obtain equation (3.12) exactly. And
when a > and a , from (3.14)-(3.17), the computed W might be very large.

Fortunately, this difficult can always be removed by using the results of 4 in this
paper, except in only one extreme case.

4. General solution formula for Kahan’s extension theorem.
THEOREM 4.1. Suppose H E Cx is Hermitian,

R- B

--IIRII, w c is germitian, and

A= [H B*
B W

Then IIAII2 IIRII2 if and only if
(4.1) B(I + H)B I < W < I- B(I- H)*B*
or, equivalently,

(4.1’) BQ(pI + A)(BQt) I <_ W <_ I- BQt(I- A)(BQt) *,

where QQt I and A QHQt.
Proof. From [3, p. 60] we know that [IAII2 _> IIRII2; hence

I- A _> 0 and oI + A _> 0.(4.2)

Now

From Lemma 2.5, I- A _> 0 is equivalent to the three conditions: (1) I- H >_
0, (2)I- W- B(I- H)*B* >_ O, (3)rank(I- H,-B*) rank(I- H).

In the theorem, (1) is always true. We can show (3) is also true. In fact, if
> IIHII2, then I- H is nonsingular, and (3) holds. If IIHII2, from Lemma 2.4,

(3) is also true. Hence we obtain

Similarly we have

I- A >_ 0 W <_ I- B(eI- H) B*.

I + A >_ 0 : W >_ B(OI + H)*B* I. [J

Remark 4.1. We may use Theorem 4.1 to compute numerically a W that satisfies
Kahan’s theorem. From (4.1), we know that

Wu=I-B(I-H)*B*
and

Wt B(I + H)B I
are two solutions of Kahan’s theorem.

When we compute Wu or Wt, there may be three different cases.
(1) IIRII2- IIHII2 is not too small. In this case both W and Wt can be computed

with high accuracy.
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(2) IIR[Ie -IlHlle is very small,

and the eigenvalues of H are

H

Ai >_.-. >_ A.
Assume
can be computed with high accuracy.

(3) The conditions of R and H are the same as in case (2), but max{llRII2-
A1, I]RII2 + At} is very small. Then it is very difficult to obtain a good approximation
matrix of W or

We regard the case IIRII2 )1 --)l in case (3) as the extreme case.
From Remarks 3.1 and 4.1, we can say that (1.4) is better than (1.3) for computing

W

(4.3)

and

(4.4)

Combining Theorem 3.1 with Theorem 4.1 we obtain the following theorem.
THEOREM 4.2. Suppose H, R, B are the same as in Theorem 3.1; then

B(OI + H)*B* OI < -BH(02I- H2)*B <_ OI- B(OI- H)*B*

2I >_ B[(I + H)* + (I- H)*]B*.

5. Extension to a positive-definite (semidefinite) matrix.
THEOREM 5.1. Suppose 0 < H E Ctt, B Cst,

R- B

0 Ilnl12, W C is Hermitian, and

B W

Then A > 0 and ][AI[2 -IIRII= if and only if

(5.1) BH-B < W <_ OI- B(OI- H)*B*.
Proof. From Lemma 2.6 and Theorem 4.1, A > 0, and I]A]]2 I]RII2 :> d > 0

and (4.1) holds => (1) g > 0, (2) W- BH*B* > 0, and (3) B(OI + H)*B* OI <_
W <_ I- B(0I- H)tB*.

Since H > 0, we obtain [7, p. 143] H-1 > 0 and I + H > H. So (OI + H) -1 <
H-, B(OI + H)-B* I <_ BH-1B*.

Similarly we have Theorem 5.2.
THEOREM 5 2 Suppose 0 < H Ctxt B C8xt

H

o- [Inl12, W e c is Hermitian, and

H
B
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Then A >_ 0 and IIAII. -11RI1. if and only if

(a) rank(H,B*) rank(H),
(5.2) (b) BHtB <_ W,

(c) B(OI + H)tB OI <_ W <_ OI- B(OI- H)*B*.
Proof. By aemma 2.5 and Theorem 4.1, A >_ 0 and IIAII2 IIRI]2 if and only if

(1) H _> 0, (2) W-BHB* >_ O, (3)rank(H,S*) rank(H), and (4) B(COI+H)*B*-
OI <_ W <_ OI- B(COI- H)B*.

Remark 5.1. For a given matrix

R- B

there may be no W that satisfies the conditions in Theorems 5.1 and 5.2. For example,
in Theorem 15.1, assume R [5]. Then co x/, BH-B 2, COI-B(COI-H)tB
1o

Remark, g.2. In (15.2), condition (a) cannot be removed. For example, take R
[0]. Then, if (a) is removed we obtain 0 < W < 0 and A [0 o], which is not positive
semidefinite.

6. Extension to a normal matrix. In this section, we consider the following
problem: Suppose H E C t is normal,

and B E C. How can we find a matrix

A=[HB
with W W* such that IIB II IIBII and IIAll2 ]lRlle? Here we don’t require
that A be normal.

When H Ctt is normal, Lemma 2.3 ensures that there exists a unitary matrix
Qt such that

(6.1) *HQ Q A diag(hl,..., hp, O, O) Ih[ >_... >_ [hp[ > O.

It is easy to show that there exists a unitary diagonal matrix gt such that

(6.2) D A diag(hl[,..., [hp[, 0,..., 0).

The two simplest ces of (6.2) are

D diag([h [,..., [hp[, 0,..., 0).

THEOREM 6.1. Suppose (6.1) and (6.2) hold, H C is normal, B Csxt,

and O IIRII. Take

(6.3) B BQt-*Q, W -BQD(o2I- A2)(BQt) W*
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or

(6.4) BQt(QI + D)t(BQt) I <_ W <_ I- BQt(I D)t(BQ)*.

Let

B W

Then I[BI[[2 --[[B[I 2 and I[AI[2 [IR][2.
Proof. It is obvious that [[B1[[2 ][BI[2.
To prove [JdiJu [[RJJu, as in Theorem 3.1, take

Q=[Qt 0]0 I

so that

BQ W

om (6.2), we have

0 I BO W BO W

Here M and W can be regarded as A and W in Theorems g.1 or 4.1, respectively.
Hence we obtain

D
I]R][2 and IIA[[2 [[M][2 ][R[]2.

Acknowledgment. I am grateful to Professor R. A. Horn and the referees for
their help and suggestions.
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ON THE JACOBI MATRIX INVERSE EIGENVALUE PROBLEM
WITH MIXED GIVEN DATA*
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Abstract. In this paper, we discuss the problem of constructing a 2n x 2n Jacobi matrix J2n
such that its eigenvalues are given distinct values A1,A2,...,A2n and its leading n n principal
submatrix is a given n n Jacobi matrix Jn. We give some sufficient and necessary conditions for
the solubility of the problem and propose a new fast algorithm for solving this problem. We also
present some numerical results.
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1. Introduction. An m m matrix Jm is called a Jacobi matrix if it is of the

0/1 2

form

() J

0 ". O/m_

where ai and i are real and all/i are positive
In this paper, we will discuss a class of inverse eigenvalue problems for Jacobi

matrices as follows.
PROBLEM DD (double dimension). Given an n n Jacobi matrix Jn and a set of

distinct eigenvalue (Ai}n, construct a 2n 2n Jacobi matrix J2 whose eigenvalues
are the given values { }n and whose leading n n principal submatrix is exactly J,.

The continuum version of this problem is concerned with the following practical
question: given a violin string of variable density in 0 _< x <_ L, can the string be
extended to 0 < x < 2L and vibrate with given tones 1, 2,

In 1979, Hochstadt [6] proved that the solution of Problem DD is unique if it
exists. In 1984, Dieft and Nanda [2] showed that the space of matrices Jn which
can be completed a J2 with fixed spectrum {Ai} is the section of a cone by a
hyperplane. In 1987, Boley and Golub [1] proposed a numerical method for solving
Problem DD, but this method needs to compute all the eigenvalues and eigenvectors
of J, which is very time consuming. In 1989, Dai [3] gave sufficient and necessary
conditions for the solubility of Problem DD, but the result is somewhat complicated
and its proof is very lengthy and tedious. In view of this case, in this paper we first
give some new sufficient and necessary conditions for the solubility of Problem DD
that seem to be more concise with a simpler proof. Then we propose a new numerical
method for finding its solution which does not need to compute the eigenvalues and
eigenvectors of J. Hence, it is faster than the method proposed by Boley and Golub.

Throughout this paper we will use ei to denote the ith column of the identity
matrix of size implied by context and xT to denote the transpose of a vector x.

Received by the editors October 7, 1991; accepted for publication (in revised form) by G. H.
Golub September 1, 1995. This paper is a China state major key project for basic researches.

Department of Mathematics, Peking University, Beijing 100871, People’s Republic of China
(xsf@sxx0.math.pku.edu.cn).
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2. Preliminary lemmas. In this section we first give some preliminary results
which play a fundamental role in this paper. Much of this material can be found
elsewhere (see, e.g., [2]-[4]) and is included here for the reader’s convenience.

LEMMA 2.1. Let Jm be an m x m Jacobi matrix defined by (1) (m _> 2). Then
for any integer k with 1 <_ k < m the vector

z(k) k+l 2 and k) ()satisfies that +2
() .) 0, +1 are deter-

mined completely by a!,.. ak and 2,..., k.
Proof. The proof is by induction of k. The lemma is trivially true for k 1.

Noting that Jel J,J- el, we have

i- 2,3,...,m- i,

where 2 < < m. Thus it follows from these relations that the lemma is also true for
k l, assuming that it is true for k 1. By mathematical induction, the lemma
is established.

LEMMA 2.2. Let J2n be a 2n 2n Jacobi matrix, and let J, be the leading principal
submatrix of J2 of order n. Then

(2) eTi J2nel T ke Jel

for each k 1,2,...,2n- 1.

Proof. Partition J2, as follows:

J
TJ2n n+lelen

By Lemma 2.1 it is easy to know that

(3) Jk2nel

for each k 1,2,...,n- 1 and

Jel I n+ln 2.(4) Jnel el

Notice that

eTTn+k (Jnel )Ta2n Vl (Jnel)

for each k 1, 2,..., n- 1. The lemma immediately follows from (3) and (4).
LEMMA 2.3. Let Jn and Jn be two n n Jacobi matrices. If

(5) eTi Jn el eTl nel

for k 1, 2,..., 2n- 1, then Jn Jn.



634 SHU-FANG XU

Proof. Using (5) for k- 1, 2, we have

and

and so 2 2 since 2, 2 are positive. Assume that we have proved that

ai=Gi, i=l,2,...,m-1,

(6) =/, 2,3,...,m,

where 2 _< rn _< n. Then, by Lemma 2.1, we have that

(7) Jnm-lel jnm-lel --(l,...,m,0,...,0)T

with m /m’’’/2 > 0, 1,...,m-1 determined completely by Ol,...,OZm_ and
/2,..., m--1.

Now we first prove that Cm m. Using (5) for k 2m- 1 we have

(JZ-lel)TJn(Jnm-lel) elT.}r_n2m-lel elTjn2m-lel
(8) (jnm-lel)TJn(J

Substituting (7)into (8) and using (6)we obtain

20xTJ._lX + 2.Z.-1 +. .
xTJ._x + 2.Z.-1 +. ,

where

X--- (1, ,m--1)T

0 ". Om_2

Thus 2mOm m2G,, and so it must have am am- since m > 0.
Next we prove that +1 +1. It follows from (7) that

Jnmel JnJnm-lel (ri1,..., rim, rim+l, 0,..., O)T

Jnmel JnJn-lel (ri1,..., r/m, m+l, 0,..., 0)T

where rim+l mm+l,. m+l m/m+l, and ril,..., rim are determined completely
by a1,..., am and/2,...,/,. Hence, using (5) for k 2m we get

2 TT2m .T72mri _.t_ _Jl._ ri2m _{.. rim+ e d el e el

+’" + +
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and so

2 2 2 22
?/m-Fl

which implies that #,+1 m+l since m+i, #m+i, nd m are positive. By mthe-
matical induction, the lemma is established.

Lemm 2.4 is bic nd important result from the inverse theory for the Jcobi
matrix.

LEMMA 2.4. Let AI... A2n be 2n distinct real numbers, wi$h Ai < A2 < <
2n 2 I Then thereA,, and let wi,w,...,w, be 2n positive numbers with =lW

exists a unique 2n x 2n Jacobi matrix J2, such that its eigenvalues are the given
values A and the first components of its normalized eigenvectors are exactly w.

Proof. See [] for the proof.

3. Sufficient and necessary conditions. In this section we will devote our-
selves to establishing some necessary nd sufficient conditions for the solubility of
Problem DD. The following theorem is the main result in this section.

THEOREM 3.1. Suppose an n x n Jacobi matrix J, and a set oI distinct real
numbers AI < A2 < < A2n are given. Then there exists a unique 2n x 2n Jacobi
matrix J2, such that J2, has the given eigenvalues A and its leading n x n principal
submatrix is exactly J, iI and only il

1 1 1 1 1
A1 Ai-I Cl )i+I A2n

(9) Ai det A2 A2__ c2 A2+ A

n-1 2n-1 ),2n-1 2n-1)i--i C2n--1 "’i+I /2n

for i 1, 2,..., 2n, where

T k(10) ck el Jnel, k- l,2,...,2n-1.

Remark 1. Dai [3] has proved that

>0

(11) AA+I>0, i=1,2,...,2n-1,

are the sufficient and necessary conditions for the solubility of Problem DD. Obviously,
conditions (9) imply conditions (11). And we will see that the proof of Theorem 3.1
is very simple.

Proof of Theorem 3.1. Let us first prove that conditions (9) are necessary. Assume
that J2n is the unique solution of Problem DD. Then by Lemma 2.2 we have

(12) T k T kJ.el
for k 1,2,...,2n- 1 and

(13) J QAQT,

where A diag(A1,..., A2n) and Q is the orthogonal matrix of the normalized eigen-
vectors.

Substituting (13) into (12), we have

(14) t1A 2r + WnA2n ck, k 1, 2,..., 2n 1,
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where ck are defined by (10) and

(5) (,... ,) Q,

i.e., wi is the first component of the ith normalized eigenvector. Hence, we have

() 1 + +... + .
Writing (14) and (16) in matrix-vector form, we have

(17) V(l,...,2n)X --c,

where V(AI,... ,A2n) denotes the Vandermonde matrix, i.e.,

g()l,..., )2n)

x- (21,...,n)T, C’- (1, C1,...,C2n_1)T.

Let A be the determinant of V(A1,..., A2n). By Gramer’s rule we have

2=As/A i=1 2, 2n(18) wi

where Ai are defined by (9). Since

A det(V(A,..., A2n)) II (Aj Ai) > 0
l<_i(j<_2n

and the first component of any eigenvector of a Jacobi matrix is nonzero, we know
that

Ai=Aw>0, i=l,...,2n.

This shows that conditions (9) are necessary for the solubility of Problem DD.
We now prove that conditions (9) are also sufficient..Assume that conditions

(9) are true. Then the linear system (17) has a positive solution x, i.e., if x
(Xl,...,X2n)T satisfies (17), then x > 0 for i 1,...,2n. Thus we can define the
first components of the normalized eigenvectors of J2, which we want to find as

(9) v.
By Lemma 2.4 there exists a unique 2n 2n Jacobi matrix Jn such that its eigen-
values are the given values A1, A,..., An and the first components of its eigenvectors
are exactly w. Let Jn be the leading n n principal submatrix of Jn. Then, by
Lemma 2.2 and the definition of w, we have

2n 2n===i--1 i--1

for k 1,..., 2n- 1. Thus, by Lemma 2.3, we know that J Jn. Hence, J. is the
solution of Problem DD. This completes the proof of Theorem 3.1.
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4. Numerical methods. The process of the proof of Theorem 3.1 provides us
with a recipe for finding the solution of Problem DD if it exists. In summary, the
method is as follows.

METHOD I.
Step 1. Compute ck eT kJnel for k 1,...,2n- 1.

d2Step 2. Solve the Vandermonde system (17) for x 1,... ,wn)T.
Step 3. Construct the Jacobi matrix J2n from the spectrum data {Ai}n and

2n{wi}l i.e., compute a 2n2n Jacobi matrix J2n such that J2n has eigenvalues
Ai and eigenvectors with the first components wi.

In practice, Step 2 of Method I can be completed by using Algorithm 5.6-2 of
[5]. As has been pointed out in [5], the algorithm is a fast Vandermonde solver
and .frequently produces surprisingly accurate solutions, even when the Vandermonde
matrix is very ill conditioned.

There are many effective numerical methods to complete Step 3 of Method I, such
as the algorithm of [8] and the Rutishauser algorithm of [1]. For details see [1], [8],
and references contained therein.

Now we show how to carry out Step 1 of Method I in practice. Let u() e. We
then iteratively define u(k) by

(20) u() Jnu(-)

for k 1,..., n. It is easy to see that

elTu(), 1 _< k _< n,
(21) ck (U(k_n))Tu(n), n < k <_ 2n- 1.

Thus we can use (21) to calculate ck without computing the power J. But this process
often suffers from overflow. Note that for any real number r 0, the Vandermonde
system

(22) ?2n--1 )TV(r/l, r/2, r)2n)X (1, rCl, r2.c2,... C2n-1

has the same solution as the system (17), so an easy way to avoid overflow in the
calculation of u() is to determine () from () ]n(k-l), where (0) el and
in IIJnll J,. As a result, instead of solving system (17) in Step 2 of Method I, we
need to solve the Vandermonde system

(23) V(rA, rA2,..., rA2)x d,

where d (1,1,... ,c2-)T, r IIJll, and

{ eT()’
Ck ((k-n))T(n),

l<_k<_n,
n<k<2n-1.

In order to compare this method with the method in [1], we briefly describe the
method of [1] as follows.

METHOD II.
Step 1. Compute the eigenvalues and the normalized eigenvectors v() of J,

and set ev(), where 1 < 2 <:"" < n.
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TABLE
The operation count for Methods and II.

Method

Method II

Step 1 Step 2 Step 3 Total
(flops) (flops) (flops) (flops)

n2n2 10n2 48n2 -5-

28n2 16n2 48n2 92n2

Step 2. Compute

/

for i 1,...,2n, s 1,...,n, and compute

n

s--1

for 1,...,2n.
Step 3. This is the same as Step 3 of Method I.
Table 1 shows the approximate amount of arithmetic for each step of Methods I

and II, in which a flop means a floating point operation. The amount of arithmetic for
Step 2 of Method II is based on the results of [7]--18n2 to compute the eigenvalues
plus 10n2 to find the eigenvectors by inverse iteration. Observe that the cost of Steps 1
and 2 of Method II is about three times as high as Method I.

5. Numerical example. We have applied Methods i and II to a number of
examples collected from the literature. To illustrate their behavior, we give two
examples here, both of which were carried out on a PC 486/33 microcomputer in
single precision using NDP Fortran 386.

In the following examples J2 denotes the computed solution of Problem DD
found by either Method I or Method II, and the matrix norm I1" is defined as
[IAI[ minl_<,_<. [aj[ for an rn x rn matrix A [a].

Example 5.1. It is well known that the 2n 2n Jacobi matrix J2 with all diagonal
elements -2 and all codiagonal elements 1 has eigenvalues

jr 1) j 1 2n.(24) Aj=2 cOS2n+l ""’

We have used Methods I and II to reconstruct this Jacobi matrix from its n x n
leading principal submatrix and the Aj defined by (24) for n 5, 10, 15, 20, 25, 30, 35,
40, and 45. The numerical results are shown in Table 2.

Example 5.2. Let the 2n x 2n Jacobi matrix J2n be as follows:

--i 1 2n--1
2n

1 2n--1 2n--1 2 12n 2n
2n--2
2n

2n

1--
0 1
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TABLE 2
The computational results of Example 5.1.

Method Method II

112n J2nll CPU time 112n J2nll CPU time

n (seconds) (seconds)
5
10
15
20
25
30
35
4O
45

10
20
30
40

0.8750 10-6

0.1187 10-5

0.1350 10-5

0.1269 10-4

0.9730 10-4

0.3670 10-4

0.8750 10-4

0.1387 10-4

0.9870 10-4

0.06
0.10
0.18
0.21
0.35
0.61
0.99
1.53
1.98

0.1114 10-5

0.3609 x 10-5

0.6394 10-5

0.4250 10-5

0.7700 x 10-5

0.1467 x 10-5

0.1269 10-4

0.8457 10-5

0.9244 10-5

0.06
0.11
0.22
0.27
0.55
0.88
1.32
1.92
2.64

TABLE 3
The computational results of Example 5.2.

Method

2n J2n CPU time

(seconds)
0.3669 10-4 0.28
0.2330 10-4 0.40
0.5670 10-4 0.69
0.1727 10-4 1.58

Method

0.3250 10-5

0.6782 10-5

0.2587 10-5

0.3657 10-5

cPU time

(seconds)
0.37
0.59
0.97
2.12

To the best of our knowledge, there is no simple formula for its eigenvalues. There-
fore, we have first applied the EISPACK subroutine TQL1 to compute its eigenvalues,
then applied Methods I and II to reconstruct it from its n n leading principal sub-
matrix and the computed eigenvalues for n 10, 20, 30, 40. The numerical results
are given in Table 3.

The previous examples show that the computational time requirement for Method
I is really less than Method II, but its computational precision is slightly lower than
Method II.

Acknowledgments. The author is very grateful to the referee for valuable com-
ments. He also thanks Professor G. H. Golub for helpful suggestions.
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ON THE DERIVATIVES OF MATRIX POWERS*
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Abstract. We compute the derivatives of rational powers of a positive-definite matrix when
this is either a function of a matrix or a scalar variable. In the latter case the result is generalised
to real powers. The usefulness of the results found is shown in two statistical applications.
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alised eigenvalues, optimal experimental design
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1. Introduction. Matrix derivatives are often used in statistical applications,
and explicit formulae for the derivatives of functions commonly used are particularly
welcome. In one sense (see, for instance, [3]), the theory of matrix derivatives is not
necessary, because each matrix derivative is simply a collection of scalar derivatives.
However, as it is generally recognised that matrices ease algebraic manipulations and
greatly simplify results, matrix derivatives can be a powerful tool in many statistical
applications such as multivariate analysis, likelihood theory, or the theory of optimal
design of experiments; see [5].

There are a number of currently used definitions of a derivative of a matrix func-
tion of a matrix variable, which differ in the arrangement of the scalar derivatives in
a matrix form. We follow the approach suggested by Magnus and Neudecker [5] and
define the derivative via the vec-operator of the differential. This is essentially an
extension to matrix functions of the concept of differentiability of a vector function
of two or more variables. Using this approach, we find the derivatives of rational
powers of a positive-definite matrix that is a function of a matrix variable. We fur-
ther compute the derivatives of real powers of a matrix that is a function of a real
variable. The expression found for the derivative generalises the well-known result
that df(x)P/dx pf(x)p-ldf(x)/dx, where f(x) is a real function of the real variable
x. We also characterise the set of positive-definite matrices such that the derivative
of the square root assumes a simple form.

In the next section we recall the rules of differentiation of matrices. In 3 we
apply these rules to compute the derivatives of powers of matrices. In 3.1 we consider
rational powers of a matrix that is a function of a matrix variable. In 3.2 we consider
real powers of a matrix that is a function of a real variable. Special attention is then
directed to the square root. The usefulness of the results presented is shown in two
statistical applications given in 4 and 5.

2. Some preliminaries. Let A [aij] (1 _< i,j

_
n) be an n n symmetric

matrix. We denote by A _> 0 a nonnegative-definite matrix and by A > 0 a positive-
definite matrix.

Suppose A > 0 and let A1 _> A2 _> _> An be the eigenvalues of A, with
corresponding eigenvectors "/i. We denote by F the matrix whose columns are the
eigenvectors of A, so that FFT FTF In, and by A the diagonal matrix of the

Received by the editors March 8, 1995; accepted for publication (in revised form) by R. Bhatia
September 22, 1995.

Department of Actuarial Science and Statistics, The City University, Northampton Square,
London ECIV 0HB, UK (p.sebastiani@city.ac.uk).
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eigenvalues of A, say A diag(A1,..., An). Then the spectral decomposition of A is

(1) A FAFT.

If A > O and (1) holds, the rational power of A is defined as follows; see [6].
DEFINITION 2.1. If A > O, the matrix Ap/8, p :t:1, :i:2,... and s E Af, exists

and is given by

(2) Ap/q diag (,k/q,...,)n/q).
For p 1 and q 2, (2) is the square root of A. Note that Ap/q and A have the same
eigenvectors. If A > O then Ap/q > O. If A >_ O then Ap/q >_ 0 and is defined only
for p EAf. Clearly Definition 2.1 can be generalised to any real power.

Let vec denote the vec-operator and let (R) denote the Kronecker product, defined
as A (R) B [aijB]. We shall be considering matrix functions of the real variable
x A’ C , say A(x). If aj(x) are differentiable for all i, j, then the derivative of A
with respect to x exists and is the n x n matrix

(3) d- [-x
see [5, p. 174]. The matrix application A(x) is a special case of a matrix function
of the matrix variable X, say A(X), X $ c 7nxq. If aid(X) are differentiable
functions of X for all i, j, we can compute the derivative of A(X) with respect to
X. This has been defined in various manners (see, for instance, [7]). We will follow
the approach suggested by Magnus and Neudecker in Chapter 5 in [5] and define the
derivative via the vec-operator of the differential as follows.

Suppose that A(X) is an m x p matrix, and let S. If A is differentiable at X,
the differential of A at X with increment is the m x p matrix dA(X,f(), defined
by

(4) vecdA(X,f() J(X)vec2.
The mp x nq matrix J(X) in (4) is called the derivative of A at X and we use the
notation

dA
(5) d- J(X).

Note that this approach generalises the concept of differentiability of a vector function
of two or more variables; in fact J(X) is the Jacobian of vecA with respect to vecX.
When X x, x n, (5) is vecdA/dx, from which dA/dx can be recovered.

Thus if we can compute dA(X, X), the derivative of A at X is then easily obtained
by vectorising the differential to obtain the product form (4), so that the derivative
is J(X). Magnus and Neudecker in Chapter 8 in [5] give the differentials of some
important matrix functions. In some cases the differential dA(X, X) can be easily
computed via the directional derivative of A at X in the direction X, defined as

d
(6) DA(X)(2)

t=0
A(X + tf().

An application of the chain rule shows that

(7) vecDA(X)(f() vecdA(X,) J(X)vec.
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This approach seems to be particularly useful when A(X) is a matrix power; see [1].
Suppose now that X is itself a matrix function of the matrix variable Y E P c

TrxS, and consider A{X(Y)}. It is well known (see [5, p. 91]) that, assuming differ-
entiability, the derivative of A{X(Y)} can be computed via the chain rule and is the
mp x rs matrix given by

dA dA dX
(8)

dY dX dY

When Y y, y e 74, (8) becomes vecdA/dy (dA/dX) vecdX/dy, which yields the
derivative of A with respect to y in vector form and then the matrix form (3) can be
recovered.

3. The derivative of the rational power of a matrix. In this section A will
be an n n positive-definite matrix. We first give some results on the derivative of
powers of matrices.

3.1. Matrix functions of a matrix variable. The proof of the next two lem-
mas can be found in [5], or easily derived from Examples 2.1 and 2.2 in [1], by using

LEMMA 3.1. If s is a positive integer, s Af say,

dA_1
A_dASdA (As-J (R) AJ-1 and

dA
-A-I (R)

j=-i

By applying Lemma 3.1 and the chain rule (8), it is easy to prove the next theorem.
THEOREM 3.2. Let s,p Af, r := -s, and q :- -p. Then

dA - A+j_I(9)
dA E(A-J (R)

j=l

(10)
dA/
dA

-1

(11)
dA1/r

-1

)dA
-(AI/ (R) A/r) (A(+J)/ (R) A-(J-1)/r)

\=

dAP/
(12)

dA
\j=l j=l

--1

(13)
dAq/

dA

-1
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For example, let s- 2 in (10) so that we have

dA1/2
dA (I (R) A1/2 / A1/2 (R) In) -1

The results given can then be used to compute the derivatives of more complex matrix
functions by using the chain rule (8). Of particular interest are real valued functions
of rational powers of A. See Chapter 15 in [8] for general results.

Suppose now that X x. Then (8) leads to vecdAP/8/dx dAP/8/dA vecdA/dx,
which collects the scalar derivatives in a vector form. Unfortunately there does not
seem to be a simple way to arrange its elements in a matrix. This is the subject of
the next section.

3.2. Matrix functions of a real variable. In this section A will denote an
n n matrix whose elements are regular functions of the real variable x, x E A’. We
suppose that A > O for all x E X, so that Ap/s exists for all s, p. The next result
follows by the definition of a derivative given in (3).

LEMMA 3.3. Let A(x) diag (a(x),...,an(x)) > O. Then

(14)
dAP/ PAdAA(p-)/- e T.
dx s dx

Remark. Special cases now follow:

p s dAp/‘ pA(p_8)/(2 __dAA(p-)/(2= 2----;then dx s dx
dAp/s P dAA(p_s)/sa=0;then
dx s dx

p s dAp/s p A(p_s)/s dA-----; then
s dx s dx

We want to extend (14) to matrices that are not diagonal. We will need the following
lemma, whose proof is straightforward.

LEMMA 3.4. Let F be an orthogonal n n matrix with elements that are regular
functions of x. Then

1. dF/dx -r(dr/d)r and dFT/dx -r(dr/d)r.
2. (dF/dxFT)T --dF/dxFT, that is, dF/dxFT is skew symmetric.

In the next theorem we extend the result given in Lemma 3.3. If FAFT is the
spectral decomposition of A(x), in general both F and A will be functions of x. If
dF/dx O, we define

drr(15) F :=
dx

and note that, from Lemma 3.4, FT -F.
THEOREM 3.5. Let A(x) > 0 for all x A’. Then

.(16) dAP/-PA(dA
dx s

+ H,p, A(p-)/8-, a 7,

where

(17) H,p, "= S-A-FA+ s-AP/-FA-(P-)/ FA + AF.
P P
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Proof. Using the general rules of differentiation we have

dA dFAFT
(18) d--- dx

dAFT AF,FA+rx
and similarly

dAP/8
(19) FAp/8 + F ?’’:7- FT AP/F.

dx dx

By applying Lemma 3.3 we have that (19) simplifies to

(20)
dAP/S FAP/s + PFA dAA(p_s)/s_rT
dx s -x AP/F, a 7,

so that

PAs ( sA-FAI+p
dAp/ pAs dAA(p-)/-a
dx s dx

s-Ap/S-aFAa-(P-S)/s + AF- FA} A(p-s)/s-a.
P

Note that when c (p- s)/(2s), the matrix H,p, is symmetric. If s 1, p -1,
and a -1, then (16) gives the well-known result" dA-1/dx -A-I(dA/dx)A-1.
Ifp 1, s 2, and a -1/2

(21)
dA1/2 -1A-1/2 (dA )dx 2 -x + H-.5,1,.

with

(22) H-.5,1,2 2A1/2FA1/2 AF- FA,

which is a skew symmetric matrix. A simple consequence of Theorem 3.5 is Corollary
3.6.

COROLLARY 3.6. If the eigenvectors of A do not depend on x, then (14) holds.
The converse of Corollary 3.6 does not hold in general; the case s 1,p -1,

and c -1 is a counterexample. We can show that the converse of Corollary 3.6
does not hold if the eigenvalues of A are not simple. Suppose in fact that A > O, so
that (14) holds if and only if H,p,8 0 for all c, that is, if and only if

(23)
SA-FAI+a sAp/S-FA-(P-)/ + AF- FA 0 V c 7.
P P

If we take the vec-operator, the matrix equation (23) is equivalent to the system of
linear equations:

A- A-(P-S)/S(R)AP/-)+(In(R)A) (A(R)In)}vecF O.(24) (R)

Because the matrices in (23) commute, they can be diagonalised by the common
orthogonal transformation F F (R) F, so that (24) can be transformed into

(25) (A1 A2 + A3 Aa):T
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with A’s the diagonal matrices with the eigenvalues of the corresponding matrices.
Note that the elements of A1 are a permutation of those of A2, as are those of A3 and
A4. Thus the rank of the matrix (25) is at most 2n(n- 1) if the eigenvalues are all
simple. Suppose now A1 A2. Then the rank of (25) is at most 2n(n- 2), which is
less than n2 if, for instance, n 3. This is sufficient to conclude that the null matrix
is not in general the unique solution of (23). A sufficient condition to have H,p,8 0
for all a is given in the next corollary.

COROLLARY 3.7. If the matrices A and F commute, then H,p,8 0 for all a,
so that

dA/ PA
dAA-=--,

dx s -x a E T,

Finally, a trivial consequence of Theorem 3.5 is Corollary 3.8.
COROLLARY 3.8. If Hc,p,s 0 for all a, then the matrices dA/dx and A(p-)/s

commute.
Clearly, the result given in Theorem 3.5 and the corollaries following it can be

generalised to any real power r of the matrix A:

(26) dAr=rA(dA ,)A--,dx -x + Ha r T

where

(27)

Example 1. Let x > 0 and

A(x) - l x l + x - I I 0 x2
1

Clearly A(x) > O for all x > 0, and for any real r

l+xr

For any real a we can compute

A xa [ 1 + xa

L 1-xa l+xa

and

Ar-l-a Xr-l-a [ 1 + Xr-

2 [ 1 Xr-l-a

It follows that

dAr rxr-1 [ 1 + 2x
dx 2 1 2x

1 2xr ] dA 1
1 + 2xr

and
dx 2

1+2x
1 2x

1 2x
1+2x

It is then straightforward to verify that

dA
dx

dA A,._
_

rA-x V a.
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To end this section we consider a special property of the derivative of the square
root of A.

COROLLARY 3.9. Expression (21) simplifies to

(28)
dA1/2 1=A_I/2dA
dx 2 dx

if and only if the matrices dA/2/dx and A1/2 commute.
Proof. Since A(x) > O, so is A(x) -1/2 and hence (28) holds if and only if

H-.5,,2 O. Thus, from (22), (28) holds if and only if

(29) 2A1/2FA/2 AF + FA.

The identity (29) holds if and only if

A1/2FA/2 AF FA- A/2FAI/2.

If we now add the matrix FA1/2(dA1/2/dx)FT to .both sides, we obtain

( FdA/2FT-A1/2F)A/2 FA1/2 + dx

(FAI/2 + FAI/2dAI/2A-/2FT- A1/2F)
By noting that A1/2(dA/2/dx)A-1/2 dA/2/dx, we have from (19) that the last
identity holds if and only if

A/2dA1/2 dA1/--A/2, r’l
dx dx

4. The derivatives of the generalised eigenvalues. The perturbation theory
of generalised eigenproblems is the mathematical background underlying the deriva-
tion of influence functions in multivariate analysis; see [9] and [10]. In this section
we start by recalling the definition of a generalised eigenproblem, and we then find
an explicit expression for the derivative of the generalised eigenvalues and related
eigenvectors when they are functions of a real variable.

DEFINITION 4.1. Let A and M be n n symmetric matrices and M > O. The
generalised eigenvalues of A are the solutions of the equation

(30) det(A AM) 0.

All vectors a O, such that Aa AMa, with i a solution of (30), are called generalised
eigenvectors of A relative to .

Note that if M > O, then the solutions of equation (30) are the eigenvalues of
M-1/2AM-1/2 with the same multiplicities. If v is an eigenvector of M-1/2AM-1/2,
with eigenvalue A, then a M-1/2v is a generalised eigenvector of A relative to A.
Moreover, if vTv 1 then aTMa 1.

Suppose now that A and M are regular functions of x. Hence the generalised
eigenvalues of A will be functions of x. We shall compute the derivative of the gener-
alised eigenvalues of A in closed form using (21)..
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THEOREM 4.2. Let A and M be symmetric matrices, n n and M > O. Suppose
that the eigenvalues and eigenvectors ofM are regular functions of x E U, U an open
subset ofT. If, for x xo, o :-- A(xo) is a simple solution of (30), with corresponding
generalised eigenvector ao := ao(xo), then there exists a set N(xo) containing xo and
two functions N(xo) - T+ and a N(xo) nn, ), a Ca with (xo) o and
a(xo) co, such that

Aa- AMa, aTMa-- 1 Vx N(xo).

Moreover, for the eigenvalues with multiplicity 1

d aT (dA dM)d-- -x -x a Vx e g xo

Proof. Let B be M-1/2AM-1/2. If, for x xo, Ao is a simple solution of (30),
then it is a simple eigenvalue of B. Let vo be a corresponding normalised eigenvector.
B is a regular function of x and hence (see [5, p. 158]) there exists a set N(xo)
containing xo and two functions N(xo) T+ and v:N(xo) --, Tn, A, v Ca
such that Bv Av and vTv i for all x e N(xo), with A(xo) Ao and v(xo) vo.
Also,

d) vTdBv(31) d-- -x V x e N(xo).

By recalling that a M-1/2v, with M differentiable, the first part follows. Now put
v- M-1/2a and B M-I/2AM-/2 in equation (31). Then

d_ aTM1/2 d(M-1/2AM-1/2) M/2a
dx dx

aTMI/2 ( dM-1/2d----AM-l + M-1/2dAM-1/2dx + M-/2AdM-/’----2dx M1/2a

(32) aTM1/2dM-1/2d..___Aa + a-xadA + aTA dM-1/2M1/2a’d----
From Theorem 3.5,

) 1
dx 2 +H-’5’-1’2 M- =--M-2 + H-1,-1,2 M-1/2

with

H-.5,-,2 -2A/2FA/2 + FA + AF -H-,-1,2,

which are both skew symmetric matrices. If we substitute Aa AMa in (32) we
obtain

aTdA laT (dM )-x a- - -x + H_.,_, + H_,_,. a,

which equals

aTdA dM
a--x a aT---x
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5. The directional derivative of (traceAr) 1/r. In the classical theory of op-
timal design of experiments it is common to consider optimality criteria that are
nondecreasing and concave real functions defined in a subset of the positive-definite
matrices, say c 7’n; see [11]. A family of coherent optimality criteria (see [2]) is

(I)(Y) := { (traceVr)detY1/n,1/r’ r <:rl,=r0. 0,

A powerful tool for verifying that a design is (I)-optimal is the directional derivative
of (I) at V1 in the direction of V2, that is,

d
traceO(V(t)),F(VI, V2) - t=o

where V(t) := V + tV2. We now compute the directional derivative of (.). The
proof of the following result is straightforward.

LEMMA 5.1. If A(x) > 0 for all x, then

(33)
d (traceAr)l/r ()dx

(traceAr)l/r_ltrace At_
dA

If we now let r 0 in (33) we have the well-known result; see [4, p. 356]"

ddetA/_ 1_ detA1/ntrace(A-idA)dx n -x
An application of Lemma 5.1 yields

A-(traceV[)i/r-ltrace(V-lv2) r < 1 r 0,
det Vl/ntrace(VlV2), r 0
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SECOND-ORDER SYSTEMS WITH SINGULAR MASS MATRIX
AND AN EXTENSION OF GUYAN REDUCTION*

SANJAY P. BHATt AND DENNIS S. BERNSTEINt

Abstract. The set of consistent initial conditions for a second-order system with singular mass
matrix is obtained. In general, such a system can be decomposed (i.e., partitioned) into three coupled
subsystems of which the first is algebraic, the second is a regular system of first-order differential
equations, and the third is a regular system of second-order differential equations. Under specialized
conditions, these subsystems are decoupled. This result provides an extension of Guyan reduction
to include viscous damping.

Key words, second-order differential equation, singular mass matrix

AMS subject classifications. 34A30, 70J05, 93A99

Notation.
n (c)

rank A (def A, ind A)
AZ(A) (7(A))
AT
A > (_>)0

real (complex) numbers,
real vectors (matrices) of dimension n (n n),
ijth element of the matrix A,
rank (defect, index) of the matrix A,
nullspace (range) of the matrix A,
transpose of the matrix A,
symmetric positive- (nonnegative-) definite matrix,
subspace S1 orthogonal to the subspace 32,
direct sum of the subspaces S1 and 2,
intersection of the subspaces Sl and $2,
equal by definition.

1. Introduction. Singular linear systems, that is, linear systems of the form
E Ax, where the matrix E is singular, have been studied extensively. Such
systems arise in singular perturbation problems [1], optimal control [2], and large
scale interconnected systems and economics [3].

An interesting property of singular systems is the existence of impulsive behavior
for certain initial conditions. Although for consistent initial conditions the system
behaves like a regular linear system, initial conditions that are not consistent lead
to impulsive behavior by which the state is instantaneously transferred to the set of
consistent initial conditions. A familiar example is the sparking that often occurs
when two electrical subsystems are suddenly connected together.

In the present paper we study the matrix second-order equation M+CO+Kq
0, where M, C, and K denote nonnegative-definite mass, damping, and stiffness
matrices, respectively. This equation represents a special case of a singular system
when the mass matrix M is singular. A second-order system with singular mass
matrix may arise from a singular perturbation problem [4] or may represent a large
scale system with algebraic constraints placed on the state variables of the component
subsystems. Our goal is to investigate the properties of this second-order equation in
the case in which M is singular.

Received by the editors May 20, 1994; accepted for publication (in revised form) by C. Meyer
October 3, 1995. This research was supported in part by Air Force Office of Scientific Research grant
F49620-95-1-0019.

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109-2118
(dsbaeroengin.umich.edu).
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In applications it is often the case that M is not singular but rather contains
terms that are numerically small. It is then standard engineering practice to as-
sume that these terms are zero, in which case M is singular. However, if the initial
conditions are restricted to lie in the set of consistent initial conditions, then the be-
havior of the system is governed by a regular system of linear differential equations
of reduced dimension. This is the idea behind Guyan reduction [5], which is a model-
reduction technique widely used for analyzing structural vibrations of large undamped
mechanical systems. Certain finite element modeling techniques involving massless
coordinates may also give rise to second-order models with singular mass matrices [6,
pp. 107-109]. Although numerical simulations of such systems can be problematic
because of the impulsive behavior of the model, such problems can be avoided by
restricting the initial conditions appropriately. Singular mass matrices also arise in
nonlinear multi-degree-of-freedom mechanical systems [7].

The purpose of this paper is to determine the set of consistent initial conditions
for matrix second-order systems with nonnegative-definite mass, damping, and stiff-
ness matrices and to construct a reduced model for such systems when the states are
restricted to lie in this set. These results are obtained by specializing known results
relating to singular systems to the second-order case. It is shown that a second-
order system can be decomposed (i.e., partitioned) into three coupled subsystems of
equationsmthe first is algebraic, the second is a regular system of first-order differen-
tial equations, and the third is a regular system of second-order differential equations.
This result is used to obtain an extension of Guyan reduction to include viscous
damping.

2. Preliminaries. We begin by introducing some definitions concerning the lin-
ear system

(1) E(t) Ax(t), x(O) c,

where t >_ 0, x(t) E Tn, E, A E 7n, and where E may be singular. In the
definitions to follow, a solution is assumed to be analytic. In general, the singular
system (1) admits nonanalytic solutions in the form of distributions [8].

A vector c n is a consistent initial condition if the initial value problem (1)
possesses at least one solution. It is easy to see that the set of consistent initial
conditions of (1) is a linear subspace. The system (1) is tractable if the initial value
problem (1) possesses exactly one solution for every consistent initial condition c.
The following proposition, which is stated and proved as Theorem 9.2.1 in [9], gives
a necessary and sufficient condition for (1) to be tractable.

PROPOSITION 1. The system (1) is tractable if and only if there exists C such
that rank(E A) n.

If A (: and rank(AE- A) n, then we define (AE- A)-IE. Recall that
the index of a matrix A, denoted by ind A, is the smallest nonnegative integer k such
that rank Ak rank Ak+l. The^following lemma gives some properties of/ that
are independent of A whenever E is defined. This lemma is stated and proved as
Theorem 9.2.2 in [9].

LEMMA 1. Suppose 1,2 C satisfy rank(AlE- A) rank(A2E- A) n.
Then ind/1 ind/, and n() n(2), where k ind/.

The following proposition, which follows from Theorem 9.2.3 of [9], characterizes
the set of consistent initial conditions of (1).

PROPOSITION 2. Suppose that (1) is tractable, let C be such that rank(AE
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A) n, and let k ind . Then the set of consistent initial conditions of (1) is

3. Second-order systems with singular mass matrix. In this.section, the
results stated in the previous section are specialized to the matrix second-order system

(2) Mi + Cgt + Kq O,

where q E 7r and M, C, K E Tr denote symmetric nonnegative-definite mass,
damping, and stiffness matrices, respectively. This system can be rewritten in the
first-order form (1) by defining

x=
4 0 M A= -K -C

Note that if the mass matrix M is singular then E is also singular.
Before proceeding further, we state the following useful lemma.
LEMMA 2. Suppose that P, Q r and P >_ 0 and Q >_ O. Then Af(P + Q)

.hf(P) v Af(Q) and

rank(P + Q) rank [ P 1Q

The following theorem is an application of Proposition 1 to (2).
THEOREM 1. The system (2) is tractable if and only if M + C + K > O. In this

case, E- A is invertible.
Proof. Since

)E A -()M + C) I 2M + ,C + K 0 -)I I

it follows that

rank(AE- A) r + rank(/k2M +/kC + K).

If M + C + K > 0, then rank(,k2M + ,kC + K) r for 1. The result now follows
from (3) and Proposition 1.

Conversely, suppose there exists nonzero x 7 such that (M + C + K)x O.
Then, since M, C, and K are nonnegative definite, it follows from Lemma 1 that
Mx Cx Kx 0. Thus (A2M + AC + K)x 0 for every A C. Consequently,
(3) implies that rank(AE- A) < 2r for every A C. It now follows from Proposition
1 that (2) is not tractable, as required.

If M + C + K > 0, then it follows from (3) that rank(E A) r + rank(M +
C + K) 2r so that E- A is invertible.

Since we are interested only in systems possessing unique solutions, we shall
assume that M +C +K > 0 throughout the rest of this paper. In this case, it follows
from Theorem 1 that the matrix E A is invertible. We define 2t?/ M + C+K and

(E- A)-E. Note that

h?/-(M + C) /I/-M ]
_/lr-lK /1/-1M J

The following lemma gives a few properties of/.
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LEMMA 3. The matrix , satisfies rank/)2 rank M + rank(M + C). Further-
more, the llowing statements are valid.

i) ind E <_ 2.
ii) ind , <_ 1 if and only if M + C > O.
iii) ind , 0 if and only if M > O.
Proof. Let

Ykl 1Yk2

and yk+l /)+ly for k 0,1,2, where yl, Yk2 E 7r for k 0,1,2,3.
suppose/)ayo =/)Yl =/)Y Ya O. Then Ey (E- A)ya O, that is,

NOW,

(4) Y2 ----//-I[(M + C)y 4- MyI2] 0

and

My22 MJI-I(-KyI + My12) 0.

Therefore 0 My21-My22 My11. Premultiplying (4) by ylW/Q yields y1TiCy11 0.
Since C is nonnegative definite, it follows that Cy11 0. Using (M + C)y11 0 in
(4) gives My12 O. Thus

My11 Cy11 MyI2 O.

Note that in deriving (6), no use was made of the fact that yl =/y0. Thus it is true
in general that/2y 0 implies

M 0 y 0.

The converse can be easily verified. Thus

[ cM
Hence

rank/2 rank M + rank
C

Since M and C are nonnegative definite, it follows from Lemma 1 that rank/2
rank M + rank(M + C).

To prove i) it suffices to show that Af(/3) c_ Af(/2). Using (6) we compute
ylTlYll yT01 (M 4- C)yl 4- yTo2MyI 0. Since/ is positive definite, it follows
that yll 0. This together with (6) implies that y22 21}/-1(-Ky1 4- My12) 0. It
now follows from (4) that Y2 0. Thus/)3y 0 implies that/)2y 0. This proves
i).

To prove ii) note that the index of is less than 2 if and only if rank/)2 rank
Since rank/92 rank M + rank(M + C) and rank/) rank E rank M + r, it
follows that ind/ < 2 if and only if M 4- C is positive definite.

Finally, ind /) 0 if and only if rank E 2r. Since rank /) rank E
r 4- rank M, it follows that rank E 2r if and only if M is positive definite.
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The following theorem uses Lemma 3 to determine the set of consistent initial
conditions of (2).

THEOREM 2. The set of consistent initial conditions of (2) is given by T().
Furthermore, ifM+C > O, then the set of consistent initial conditions of (2) is given

Proof. The results follow from Proposition 2 and Lemma 3. [:1

The second part of Theorem 2 is a special case of Proposition 8.2.1 in [10].
COROLLARY 1. The dimension of the subspace of consistent initial conditions of

(2) is rank M + rank(M + C).
Proof. The result follows from Theorem 2 and Lemma 3.

4. Model reduction. In this section it is shown that the second-order system
(2) can be decomposed into a system of algebraic equations, a regular first-order
system of differential equations, and a regular second-order system of differential
equations. It is also shown that under special assumptions the algebraic subsystem
can be eliminated to obtain a regular second-order system having fewer degrees of
freedom.

A
def(M + C), r2 def M rl,For convenience, define r and r3 rank M.

Note that rl + r2 -+-r3 r. It can be seen from Corollary 1 that the subspace of
consistent initial conditions has dimension 2r3 + r2. In this section we assume that
M is singular but nonzero, in which case r + r2 > 0 and r3 > 0.

Then there exists anTHEOREM 3. i) Suppose def M > def(M + C) > 0.
orthogonal matrix U E T4rr such that

UTMU 0 0 0 UTCU 0 62 C23
oo

UTKU
K1 K2 KI3 ]K K2 K23
KI K3 K3

where M3 74TM, C2 72, and K T are positive definite. Further-
more, K2 O, K2 O, and K23 0 if and only if Af(M + C) _l_ Af(M + K) and
Af(M) Af(M + C) @ Af(M + K).

ii) Suppose def M def(M + C) > 0. Then there exists an orthogonal matrix
U T such that

(8) UTMU
0 M2 0 C2

UTKU

where M2 TTMr and K1 E T2r xr are positive definite.
iii) Suppose def M > def(M + C) O. Then there exists an orthogonal matrix

U T4rr such that

(9) uTMu
0 M2 C2 C2

where M2 TTM x ra and C1 r2 x r2 are positive definite.
Proof. i) In this case, rl > 0 and r2 > 0. Let Xl, x2,..., xr be an or-

thonormal basis for 7 such that xl, x2,..., xl+, is an orthonormal basis for
Af(M) and Xl, x2,..., xrl is an orthonormal basis for Af(M + C). Let U
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Xl x2 xr ]. Then it can easily be verified that UTu I. Note that for
every matrix P, (uTpu)ij xPxj. The sizes and placement of the zero subblocks
in UTMU and uTCU now follow from the choice of the vectors xl, x2,..., xr.
Since M3, C2, and K1 are principal submatrices of the nonnegative-definite matrices
UTMU, uTCU, and UTKU, respectively, it follows that M3, C2, and K1 are non-
negative definite. Now rank M3 rank M r3, which is also the dimension of M3.
Hence M3 > 0. To show that C2 > 0, suppose that C2y2 0 for some y2 E r2. Then
T

Y2 C2Y2 zWCz 0, where z U[ 0 y2
w 0 iT. The nonnegative definiteness of C

leads to Cz O. Also UTMz O. Thus (M -+-C)z O. By construction, every vector
inAf(M/C) is of the form U[ yW 0 0 ]W, whereyl E T1. Therefore, Y2 0
and hence C2 > 0. Finally, K1 is a principal submatrix of the positive-definite matrix
Uw(M + C + K)U and hence positive definite. This proves the first part of i).

If Af(M + C) _1_ Af(M + K) and Af(M) Af(M + C) @ Af(M + K), then the
vectors x1+1, x+2,..., x+r2 form a basis for Af(M + K). By Lemma 1, these
vectors also lie in Af(K). Since every element of K12, K2, and K23 is of the form
xTKxj, where either rl -- 1 _< i _< rl + r2 or rl + 1 _< j < rl + r2, it follows that
K12 =0, K2 =0, andK23 =0. If K12 =0, K2 =0, andK23 =0, then sinceM3
and K1 are positive definite, it follows that Af(M + K) consists of vectors of the form
z U[ 0 y2

T 0 IT, wherey2 e 74. Thus the vectors x+l, x+2,..., xl+r.
form a basis for A/’(M + K) and the result follows.

The proofs of ii) and iii) are similar.
Theorem 3 gives conditions under which M, C, and K may be assumed without

loss of generality to be of the form given by (7). Note that the first rl equations
are algebraic while the remaining equations represent a regular first-order system of
dimension r2 coupled with a regular r3-degree-of-freedom second-order system. The
following corollary shows that under special assumptions the algebraic equations can
be eliminated to obtain a regular second-order system with a reduced number of
degrees of freedom.

COROLLARY 2. Suppose def M > def(M +C) > 0 and assume that Af(M +C) _l_

A/’(M + K) and Af(M) Af(M + C) @ Af(M + K). Then there exists a matrix
S 7r such that STMS > O, sTcs >_ O, and STKS >_ O.

Proof. Under the stated assumptions, there exists a matrix U 7 such that
UTMU, UTCU, and UTKU are given by (7) with K12 0, K2 0, and K23 0.
Define S e r by

S=U
_K{-1K13 1I

Then ’TMq M3 is positive definite by Theorem 3, and STCS and ’TKq are
nonnegative definite since C and K are nonnegative definite, l:]

The following corollary gives another case in which a reduction in the number of
degrees of freedom can be achieved.

COROLLARY 3. Suppose def M def(M + C) > 0. Then there exists a matrix
S T3 such that STMS > O, sTcs >_ O, and STKS >_ O.

Proof. Since def M def(M + C) > 0, there exists a matrix U 7rr such that
UTMU, uTCU and UTKU are as given by (8). Define S rx3 by

S=U
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Then STMq M2 is positive definite by ii) of Theorem 3. Finally, STcs and ’TK’
are nonnegative definite since C and K are nonnegative definite. .El

Remark. The matrix S in Corollaries 2 and 3 gives the transformationthat reduces
the r-degree-of-freedom system (2) to a regular second-order system having fewer (r3)
degrees of freedom. It is worth pointing out that if the conditions of Corollary 2
are satisfied, then the dimension of the state-space of the reduced system (2r3) is
less than the dimension of the subspace of consistent initial conditions (2r3 A- r2). In
this case, the reduced system does not give solutions to all possible consistent initial
conditions of the full system (2). However, it is often the case in applications that
only the response of the reduced system is of interest. This response is completely
determined by the initial conditions in the reduced state-space. This point will be
illustrated in the examples. Finally, it should be noted that if C 0, then Corollary
3 reduces to the well-known Guyan reduction.

5. Examples. In this section, we present two examples to illustrate Theorem 3
and Corollary 2.

Example 1. To illustrate Theorem 3, consider Figure 1, which shows a uniform
rod of length 2 units having mass m and moment of inertia J about its center of
mass. The motion of the rod takes place under the action of linear springs with
positive spring constants kl, k2, and k3 and a linear viscous damper with positive
damping coefficient c as shown. Assuming small motions, the unforced motion of this
system is governed by (2) with

0 0 0 0 c -c 0 c
0 m 0 0 -c c 0 -cM= ,C=0 0 0 0 0 0 0 0
0 0 0 J c -c 0 c
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kl 0 0 0
0 k. -k. ke
0 -k2 k2Wk3 -k2
0 k -ke k

and q ql q2 q3 q4 IT. For this system M + C + K > 0, rl r2 1, and r3 2.
Letting U be given by

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

so that uTu I, it follows that

UTMU
0 0 0
0 0 0
OOm
0 0 0

0 0 0
0 0 c
0

UTCU
0 -c

J 0 c

0
c
c

UTKU
k2+k3 0 -k2 -k2

0 kl 0 0
-k 0 k k.
-k 0 k ke

This decomposition illustrates i) in Theorem 3.

02
2

FIG. 2.

m

q3
Example 2. Consider the lumped-parameter system shown in Figure 2 consisting

of a mass m with displacement q3, linear springs with positive spring constants k
and k2, and linear viscous dampers with positive damping coefficients Cl and c2. The
massless joint between the dampers c and c2 has a displacement q, while the massless
joint between the springs k and k2 has a displacement q2. The equations of motion
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for this system can be written in the form (2) with

0 0 0 C= 0 cl+c. -c2
0 0 rn 0 -c2 c2

K= 0 0 0 q= q2

-k2 0 k2 q3

It can easily be verified that Af(M) span{[1 0 0] T, [0 1 0IT}, Af(M + C)
span{J1 0 0IT}, and Af(M + K) span{J0 1 0]T}. Thus the hypotheses of Corollary
2 are satisfied. The matrix S in Corollary 2 is given by S k2 c2 1 IT.klWk2
The transformation q S reduces (2) to

cc2 . kk2+ + o,
Cl + c2 kl + k2

whose coefficients are consistent with the well-known formulas for series combinations
of springs and dashpots. For this example, the subspace of consistent initial conditions
has dimension 3. This follows from Corollary 1 by noting that rank M 1 and
rank(M + C) 2. Thus only three independent quantities need to be specified at the
initial instant, specifically, either q2, q3, and (3 or q2, 2, and q3. However, q3(t) (t)
satisfies the reduced order equation (10) and is completely determined by the initial
values of q3 and 3. Consequently, q3(t) is independent of the initial value of q2. In
physical applications, the displacement of the mass is of primary interest. In such
cases, the reduction procedure automatically eliminates the unwanted variable q2.

This illustrates the extension of Guyan reduction to systems with damping.

Acknowledgment. We wish to thank William Anderson and an anonymous
reviewer for several helpful comments.
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MULTIFRONTAL COMPUTATION WITH THE ORTHOGONAL
FACTORS OF SPARSE MATRICES*

SZU-MIN LU AND JESSE L. BARLOWt
Abstract. This paper studies the solution of the linear least squares problem for a large and

sparse m by n matrix A with m

_
n by QR factorization of A and transformation of the right-hand

side vector b to QTb. A multifrontal-based method for computing QTb using Householder factoriza-
tion is presented. A theoretical operation count for the K by K unbordered grid model problem and
problems defined on graphs with Vf-separators shows that the proposed method requires O(NR)
storage and multiplications to compute QTb, where NR O(n log n) is the number of nonzeros of
the upper triangular factor R of A. In order to introduce BLAS-2 operations, Schreiber and Van
Loan’s storage-efficient WY representation [SIAM J. Sci. Star. Comput., 10 (1989), pp. 53-57] is
applied for the orthogonal factor Qi of each frontal matrix Fi. If this technique is used, the bound
on storage increases to O(n(log n)2). Some numerical results for the grid model problems as well as
Harwell-Boeing problems are provided.

Key words, multifrontal QR factorization, x/-separable graphs, Householder matrices
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1. Introduction. We study the linear least squares problem

(1) min ]Ax b] I,

where x is a real n-vector and b is a real m-vector. Orthogonal factorization is often
used in methods for solving the linear least squares and eigenvalue problems. Let A be
an m by n large sparse matrix of full column rank with m

_
n. The QR factorization

of A is A =Q(R0 ), where R is an n by n upper triangular matrix and Q is an m by
m orthogonal matrix. We apply QR factorization of A and transform the right-hand
side vector b to QTb, as follows.

min ,,Ax b,122 ( R
x QTb

2

x 2

The least squares solution is given by solving

Rx C1.

The problem is that if b is not known in advance or if we have more than one b, we need
to save the orthogonal matrix Q. Unfortunately, Q is often larger and much denser
than the factor R. Instead of storing the first n columns of Q, one often stores the
orthogonal factor Q implicitly, as follows. Let A HIH2... HnR. The orthogonal
matrix Q is then expressed as

Q= H1H2...Hn,
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where Hi I- hihT is a Householder reflection that zeros out column i of A below
the main diagonal. The vector hi is often referred to as a Householder vector and is
zero in positions 1 through i- 1. The orthogonal factor Q can therefore be represented
implicitly by the rn by n lower trapezoidal matrix H:

H--(h h2 h,),

which is referred to as the Householder matrix. A matrix-vector product .QTb can
be computed efficiently from H and b. The LINPACK routines SQRDC and SQRSL
employ H [6]. In [13], Gilbert, Ng, and Peyton analyzed the nonzero counts of the
factors Q, R, and H in terms of the sizes of separators in the column intersection
graph Gn(A) of A, where Gn(A) is an undirected graph in which an edge joins two
vertices whose columns share a nonzero row in A. This graph corresponds to the
matrix of the normal equations ATA. If A is such that Gn(A) has x/-separators for
all its subgraphs and if m- n is of the same order as n, then H is smaller than Q
only by a constant factor [13]. That is, both IQ[, the number of nonzeros in the first
n columns of Q, and IHI, the number of nonzeros in H, are of O(nx/-d). Moreover,
the difference between IQI and IHI is likely to be relatively small if rn is much larger
than n. Other results on the nonzero structures of the Householder matrix H and
the orthogonal factor Q for a sparse matrix are given in [11, 22]. In this paper, we
study the computation of orthogonal factors using the multifrontal QR factorization
[16, 20]. Associated with each row of the upper triangular factor R is a frontal
matrix Fi. Likewise for each Fi, there is a frontal Householder matrix Y. Note
that Y/ is the H matrix for Fi. Figure 1 is a small sample matrix A and its column
intersection graph. Figure 2 is the Householder matrix H of A and the elimination
tree of ATA. The frontal Householder matrices Y’s are given in Figure 3. The size of

nH is IHI 106, where the sum of sizes of Y’s is Ei=l IYI 65. The results of this
paper provide an explanation for this dramatic difference. We are going to present
an efficient method for computing QTb by using the frontal Householder matrices Y’s.
In addition, this method is suitable for parallel computation because of the special
structure of multifrontal matrices [21].

For the theoretical part, we study the K by K grid model problem and problems
that are defined on V/’-separable graphs under one assumption for the initial step.
We are going to describe these problems in 2. An O(n log n) bound is proven on
the number of nonzeros of all frontal Householder matrices Y’s. We also count the
number of nonzeros used in the WY representations of Bischof and Van Loan [4] and
Schreiber and Van Loan [24]. We prove that the bounds for the K by K grid model
problem and problems, that are defined on x/-separable graphs are O(n log n) and
O(n(logn)2), respectively. Note that these bounds are valid even if rn- n is of the
same order of n.

The rest of the paper is organized as follows. Section 2 briefly reviews the model
problem and the v-separator problems, the multifrontal Householder QR factor-
ization, .and the application of supernodes. Section 3 proposes a multifrontal-based
method for computing QTb. Section 4 proves an upper bound on the nonzero counts
of all Y’s. This section builds on the work of Lewis, Pierce, and Wah [16] for the K
by K grid problem. We extend their result to the /-separator problem. Section 5
introduces BLAS-2 operations in computing QTb by using the YTY representation of
Schreiber and Van Loan [24] for the orthogonal factor Qi of each frontal matrix Fi.
The upper bound on operation counts of that representation is also included. In 6,
we provide some numerical test results.
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FIG. 1. A sample matrix A and its column intersection graph.



MULTIFRONTAL COMPUTATION WITH THE ORTHOGONAL FACTORS 661

12345678910
\

x
x
x

X
X
X
X

X
X
XX

X
X

XXXX
f ffff
f ffff
f ffff
f ffff

X fffff
X fffff
X fffff
X fffff

fffff
fffff
fffff
fffff
xffff
xffff
xffff
xffff

\ /

FIG. 2. The Householder matrix H and the elimination tree for the matrix of Figure 1.
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FIG. 3. The frontal Householder matrices of A.

2. Background.

2.1. The model problem. Since the sparsity patterns of general sparse matri-.
ces are difficult to predict, our theoretical operation counts for sparse matrices are
based on the model problem which is described in this section. The model problem
is motivated by the finite element method. Consider a K by K regular grid with

(K- 1) 2 small squares. A variable is assigned to each grid point. Associated with
each square is a set of s equations involving the four variables at the corners of the
square. The assembly of these equations results in a large overdetermined system of
equations:

(2) Ax b,

where A is m by n with m s(K- 1) 2 and n K2

In our examples, we let s 4 as in [16]. Figure 4 is an example for a 3 by 3 grid
ordered by nested dissection ordering. The corresponding matrix A and the upper
triangular matrix R are given in Figure 5.
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FIG. 4. A 3 by 3 nested dissection ordered grid.

2.2. The extended problem. In addition to the model problem, we would like
to study more general problems. Consider problems that are defined by graphs. Let
S be a class-of graphs closed under the subgraph relation. That is, if G1 E S and G2
is a subgraph of G1, then G2 E S.

DEFINITION 2.1 (x/-separable graph). A v/-separable graph is an n-vertex
connected graph G S with the following properties: There exist constants <
1, > 0 such that G can be partitioned into three sets A, B, C such that no edge joins
a vertex in A with a vertex in B, neither A nor B contains more than cn vertices,
and C contains no more than vf vertices.

Throughout the paper, we refer to the v/--separator matrices as the set of matrices
whose column intersection graphs are members of the set of x/--separable graphs with
the constants c and defined above.

2.3. Multifrontal Householder QR factorization method. We describe a
multifrontal-based method, by [16] for computing the upper triangular factor R of A.
The factorization uses the frontal structure inherent in multifrontal Cholesky algo-
rithms and Householder transformations. A theoretical operation count for the model
problem which indicates that the factorization algorithm requires half the multipli-
cations as Liu’s algorithm [7, 18] is given by Lewisi Pierce, and Wah [16]. We begin
this subsection with the definition of the elimination tree.

DEFINITION 2.2 (elimination tree). Given an m by n matrix A, such that ATA is
irreducible, the elimination tree ofATA is a tree consisting ofn vertices each uniquely
labeled by an integer from 1, 2, 3,..., n. Let R denote the upper triangular factor of
the QR factorization of A. Then j is the parent of vertex i in the elimination tree if
j is the leading off-diagonal nonzero in the i th row of R.

Consider the matrix A and the factor R of A given in Figure 5. The corresponding
elimination tree is given in Figure 6. The elimination tree is a tool for ordering and
organizing the computation in the multifrontal method. In order to compute the ith
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FIG. 5. A sample matrix A and its upper triangular factor R.

row of R, all the rows corresponding to node i’s descendants in the elimination tree
must be computed. That is, row cannot be computed until its children’s rows are
computed. The multifrontal QR factorization method uses the elimination tree to
determine the required information for forming each frontal matrix. We explain this
in detail next.

We begin by defining the following notation.
1. Let denote node in the elimination tree as well as the ith column of A.
2. Let A[i] be the matrix whose rows are those rows of A that have their leading

nonzeros in column i.
Let j be a leaf in the elimination tree. During each frontal stage, only A[j]

contributes to building the frontal matrix Fj. That is, the nonzero structure of the
jth row of the upper triangular factor R is completely dependent on A[j]. One then
computes the QR factorization of Fj resulting in TQj F Rj, where Rj is an upper
triangular or usually trapezoidal factor. The first row of Rj corresponds to the jth
row of the factor R; the remaining part of R is saved as update matrix Uj, which is
used by j’s parent. Now consider an internal node i. We assemble the frontal matrix

Fi by collecting all rows of A[i] and all the update matrices from the children of i.
We then compute the QR factorization of Fi, use the first row of the upper triangular
factor Ri to fill the ith row of R, and save the update matrix Us for i’s parent. The
update matrices can be stored and retrieved in a last-in/first-out (i.e., stack) manner
if the nodes of the elimination tree are ordered by a postordering. The use of a stack
for update matrices is due to Duff and Reid [8]. Now we outline the multifrontal QR
factorization in an algorithm.

ALGORITHM 2.3. (Multifrontal QR Factorization):
For j 1 To number of tree nodes Do
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FIG. 6. The elimination tree of R in Figure 5.

1. Assemble the frontal matrix for vertex j, which consists of all rows of A with

first nonzero in column j and the update matrices from the children of vertex
j.

where the children of vertex j are vertices cl,..., c8.
2. Compute the QR factorization of the frontal matrix such that

T
rJ rjjl rjj

0

3. Save the first row of Rj, (rjj, rijl,..., rij) for the j th row of R; save the
remaining part as update matrix Uj for j’s parent.

End For

The data flow of multifrontal QR factorization is given in Figure 7.
Matstoms [20] implemented the multifrontal method and solved (1) by the cor-

rected seminormal equation (CSNE).
2.4. Supernodes. In order to use dense operations and reduce data movement,

we can apply the supernode concept to the frontal method in 2.3. We begin by
defining the fundamental supernodes as follows.
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A

Front

\1

Ri

FIG. 7. Data flow of multifrontal QR factorization.

Stack

DEFINITION 2.4 (fundamental supernode). A fundamental supernode, with re-
spect to a postordering elimination tree, is a set of maximal number of contiguous
vertices, Sj {ijl,ij.,...,ijlsjl} such that ijk is the only son of ijk+ and the struc-
ture of row ij+ in the factor R is identical to the structure of the off-diagonal part
of row ij, k 1, 2,..., ISyl 1. Furthermore, IS] is called the size of the supernode.

Duff and Reid [8] explored the use of supernodes in the multifrontal method.
They amalgamate vertices if one of the following conditions is satisfied:

1. if they form a fundamental supernode,
2. if the number of fully summed vertices in the parent and the child is less than

a user-defined parameter NEMIN.
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Details of the implementation and a complete study on the efficiency of the value
of NEMIN on the performance of the multifrontal QR factorization are given by
Matstoms [20] and Puglisi [23].

We build a supernodal elimination tree by substituting a single node for all the
nodes belonging to the same supernode in the original elimination tree. We formally
define this elimination tree below.

DEFINITION 2.5 (supernodal elimination tree). Let A be as in Definition 2.2. Let
the set {1,2,... ,n} be partitioned into {1,2,... ,n} $1U...USns, where St,... ,Sns
are the supernodes ofA by Definition 2.4. Then Sj is the parent of Si in the supernodal
elimination tree if for some vertex v E Sj and w Si, v is the parent of w in the
elimination tree of A.

Associated with each supernode is an rnj x nj frontal matrix Fj where nj is the
number of nonzero elements in the rows of {Sj } U Tree(Sj) and Tree(Sj) is the tree
rooted at Sj. We can use the supernodal elimination tree as the representation of
the order of the multifrontal factorization process as follows. The merge operation
corresponds to computing the QR factorization of a frontal matrix composed of all
the update matrices Ujl Uy.,..., Uy, and rows of A with leading nonzeros from the
set {jl,j2,...,jt}, the indices of the supernode. With the QR factorization of a
frontal matrix, we compute multiple rows of the factor R (i.e., those rows belonging
to the set of indices of the supernode). Moreover, we spend less time manipulating
the update matrices by reducing the data movement. The use of supernodes avoids
the redundancy of separate merges by increasing the size of the frontal matrix and
combining these merges into the application of one block Householder transformation.
The amount of fill in the factor R remains unchanged.

3. The proposed method. In this section, we present an efficient method for
storing frontal Householder vectors and, thus, computing QTb by applying the mul-
tifrontal Householder QR factorization method. Instead of storing the Householder
matrix H itself, we store the frontal Householder matrix Y of each multifrontal ma-
trix F of A. Recall that Y is a lower trapezoidal matrix in which each column k is a

Householder vector w() of F such that

(3) QT (I w(i)w(i)T (I w(i) (i)T
n n Wl

and

TQ F R.

Here, QT is the orthogonal factor that is used to factor the m x n frontal matrix F.
The first SI rows of R are used to fill the corresponding rows of R, where SI is the
size of the supernode S. From the multifrontal process, we have

(4) QTA =_ Q,T (R) QTns_l (R)’’" (R)QT (R)A,

where ns is the number of supernodes in the supernodal elimination tree and QT is
the orthogonal factor that is used to factor the rn by n frontal matrix F. (R) is
called "extended multiplication." The extended product in QT (R) A factors the part
of A that contributes to forming frontal matrix F. It follows that

(5) QTb =_ Q,T (R) QT QTus-1 (R)’’’(R) (R)b.
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FIG. 8. A frontal matrix of a supernode and the corresponding Y matrix.

From (3) we have

(6)

Since Ri in the QR factorization of a frontal matrix Fi,

TQi Fi Ri,

is invariant under row orderings of Fi, we can therefore sort the rows of the frontal
matrices by the column indices of their leading entries. Therefore, we achieve a block
triangular structure for each frontal matrix. Block triangular matrices are efficiently
factored by respecting the block structure. It follows that the corresponding frontal
Householder matrix Y/is also a block matrix. Figure 8 is a small example of a block
triangular frontal matrix Fi and the corresponding frontal Householder matrix Y/.
The data structure for storing all Y’s is not complicated; we need only a real data
buffer to store the nonzeros of Y/’s and an integer data buffer to record the row indices
of each frontal matrix. The required storage for computing QTb using (6) is the same
as the number of nonzeros of all the Y/’s. Since each Householder vector, wi, in (6) is
applied twice, the required number of multiplications is twice the number of nonzeros
of all the Y’s.

4. Theoretical results. In this section, we develop an upper bound on the
number of nonzeros in all Y/’s for the model problem and extend the result .to the
v/-separator problem. For notational convenience, we denote IYI as the number of
nonzeros in Y and IYI -in=s IY[, where us is the number of supernodes. Thus
is the quantity we wish to bound.

Lipton, Rose, and Tarjan’s "generalized nested dissection" ordering [17], which
includes the separators in the recursive call, guarantees bounds of O(n log n) on fill-in
and generates balanced elimination trees for the v/-separator problem. We assume
all the matrices are ordered by that column ordering in our analysis for the
separator problem in 4.2. On the other hand, George’s original, simpler form of
nested dissection [9], which does not include the separators in the recursive call, is
actually sufficient for some special classes of the v/-separable graphs: planar graphs,
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graphs of bounded genus or bounded excluded minor, and two-dimensional finite
element meshes of bounded aspect ratio [12]. As a result, our analysis in 4.1 for the
model problem uses George’s nested dissection ordering.

4.1. The model problem. If George’s nested dissection ordering [9] is applied
to the model problem, then each internal node has at most two children. To count
the number of nonzeros in Y’s, we begin with the initial frontal matrices. Let Fj be
the frontal matrix associated with a leaf node of the elimination tree. Since Fj has at
most 4s rows and nine columns, the number of nonzeros in Yj is actually a constant.
As a result, the sum of the number of nonzeros in all these Yj’s is O(n) in total.

Now, we consider the internal nodes. The special structure of the model problem
implies that the merge process for forming a frontal matrix involves only two trape-
zoidal matrices. To simplify the proof of the theorems and obtain an upper bound of
the nonzero count, we use the two assumptions as in [16]:

1. the two update trapezoidal matrices are full triangular matrices,
2. the two update matrices are u by u and v by v, respectively. Also, they have

t columns in common.
Let C(u,v,t) denote the total number of nonzeros in all Householder vectors

.w(i)’s such that QT (I _-.wi(ni)-.wi(ni)T)... (I w1)w1)T) and QFi Ri, where
the first row of Ri is used to fill the ith row of the upper triangular factor R of A.
The unreduced frontal matrix has the form given in Figure 9.

t

XXX
XX
X

XXXXXX
XXXXX
XXXX
XXX
XX
X

v-t

XXX
XXX
XXX
XXX
XX
X

FIG. 9. Unreduced frontal matrix.

We then have
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We can use the concept of "bordered K by K grids" [10] to perform the merge
operation. Let O(k, i) be the number of nonzeros in the matrix Q, which is used to
factor a K by K grid that is bordered on sides. According to [16, 10], the following
recurrence relations are valid.

o(g, 4) 40 -, 4 + 2C 2K, 2K, + C(3K, 3K, K),

O(K,3)=20 -,3 +20 --,4 +2C 2K,
2 2

+C
2

O(K,2)=O ,2 +20 ,3 +O ,4 +C ,K, +C 2K,
2 2

+c(5K 3K K)2’2’

0(K, 0)=40 , 2 +2C K, K, + C(K, K, K).

Because we are interested in the K by K unbordered grid, 0(K, 0) is desired.
Using the pproaches in [10] and our definition of C(u, v, t), we have

(7) IYI O(K, 0)= 1.K2 log2 K + 2K2 + 32K log2 K- 35K.

According to [10], the number of nonzeros of the R factor of a K by K unbordered
grid matrix is N K: log K- K + O(K log: K). It follows that IYI N
as n . The following theorem summarizes the result in this section.

THEOREM 4.1, For the model problem, the required storage and number of mul-
tiplications to compute QTb as in (6) is O(N), where N is the number of nonzeros
of the upper triangular matrix R. We note that since IY Nn + 30K for most
practical values of n, IYI cNn for a constant c > 1.

4.2. The extended model problem. We prove the bound of O(n log n) on
IY] for -separator matrices. Let A be a -separator matrix whose columns are
ordered by "generalized nested dissection" ordering [17]. If A has no more than n0
(/(1 -a)): columns, this recursive numbering algorithm numbers the unnumbered
columns arbitrarily.

In order to limit the initial I, we assume that each si, the number of rows of
A[i], is much smaller than n and could be treated as a constant. That is, there exists a
constant s such that si E s for all i. Note that this is a reasonable assumption long
as m O(n) because of the fact that i=1 si m and we are studying the matrices
after column ordering, which generally permutes relatively fuller columns toward the
end of the matrices to reduce fill-in.

LEMMA 4.2. Let J denote the set of leaf nodes of the elimination tree of A. Then
EjeJ ] O(n log n).

Pro@ Let j be a leaf node and F is the corresponding frontal matrix with m
rows and nj columns. om the definition of frontal matrices, Fj is identical to A[j];
thus mj s. Since ]] mjx n sy x nj we have

8xnj
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<sxNR.
According to [17], NR is O(nlogn). We then have -]jEJ IYJl- O(nlogn). F1

We now consider the internal nodes using the supernodal elimination tree. Since
we apply the generalized nested dissection ordering and the special property of the
V-separable graphs, an internal supernode Sj of the supernodal elimination tree is
actually a collection of the tree nodes corresponding to those vertices of C that are
not previously numbered, where C is the separator of the subgraph corresponding to
Sj and the subtree rooted at Sj.

From the process of multifrontal QR factorization, we have that nj is the number
of nonzeros in the ith row of the upper triangular factor R, where i is the vertex
in Sy with lowest number. That is, nj is the number of fill-in edges whose lower
numbered vertex is i. Suppose the recursive numbering algorithm is applied to an
n-vertex graph G with vertices previously numbered. If G has n vertices, then by
the definition of separator Sj we thus have

n

LEMMA 4.3. Let I denote the set of internal supernodes of the supeodal elimi-
nation t,. Tn E, 151 o(o).

Proof. The proof is similar to the one for the fill-in bound of Lipton, Rose, and
Tarjan’s work in [17]. The construction of Fj involves only those A[i]’s, where is a
vertex in Sj, and the two upper triangular or trapezoidal update matrices from the
two children of Sj in the supernodal elimination tree. Let the two update matrices be
u by u and v by v, respectively. Then u + v [ + 2. Note that the two update
matrices have columns in common. That is the size of the separator. In order
to get the maximum of ], we assume the first Z columns are those common
columns. A frontal matrix Fj with row reordering according to their leading nonzeros

IYjl (i + 1 + s/v) + ((s + 1)/v + 1)
i=1 i=,V’’-+-
1

+ (( + i)#+ I)

((+)+)+(+2)
1

(g) 1)e +_(++) +(+ + +
cln +c2+

where Cl (s2 + 4s + 2)Z2, c2 (s + 2)Z, and c3 (s + 3). Assume the subgraph
corresponding to Tree(Sj) {Sj} has n vertices, of which g are previously numbered.
Let f(l, n) be the maximum of CeY ]], where SNj is a set whose members are

the supernodes in Tree(Sj)U {Sj}. Then

(s) i(, n) 5. + {i(,k)+ i(, k)}

has the form given in Figure 10.
We then have



672 SZU-MIN LU AND JESSE L. BARLOW

v-  -u-v+2 p,5

AN
X X X

X X X X X X,X

X X

X X X X X X

X

X X X X X

X X X X

X X X

X X

X

X X X X X

X X X X X

X X X X X

X X X X X

X X X X

X X X

X X

X
\ /

10. A sample frontal matrix with row reordering.

U+V

(9)

where the maximum is taken over values satisfying

(11) nkl+k2n+, and

(12) (1 a)n E ki E an + for i 1, 2.

An analysis similar to [17, pp. 349-350, Thm. 2] shows that

+ e)lo +
where c4 and c5 are some suitably large constants.

Since ].] f(0,n), the desired bound of O(nlogn)on oe then
follows. eI
om Lemmas 4.2 and 4.3 we have ]YI O(n log n).
The following theorem summarizes the results of this section.
THEOREM 4.4. Let A be an m by n matrix that is defined on a generalized nested

dissection ordered -separable graph. If the number of rows of each A[i] is bounded
by a constant, then the proposed method for computing QTb requires O(n log n) storage
and multiplications.
om Theorem 4.4, the proposed method for computing QTb is more efficient

than using the Householder matrix H or the orthogonal factor Q itself when m- n
is of the order of n.
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5. Introducing BLAS-2 operations. In order to introduce BLAS-2 operations
in (6), we use the YTY representation [24], also called the "storage-efficient WY
representation." Here each QiT can be written as

(13) QT I YTyT,

where Y/is the frontal Householder matrix of Fi as defined before and Ti is an ni by
ni lower triangular matrix which is computed by the following algorithm:

0)1
k 2,...,Hi,

where Z}) --’wi"(k)Tv(k-1)T/(k-1)1 and Y/= y/(n,) Ti T/(n’)
From (6) and (13)we have

(14) QTb (I YnsTnsYnTs) (R) (I Yns_lTns_lYnTs_l) ( ( (I Y1T1Y1T) @ b.

The structure in (14) is suitable for parallel computing; each Y and Yj are independent
blocks if node i and node j are not ancestor and descendant in the elimination tree.
That is also true for the T matrices. As a result, the matrix-vector computations
(I YiTiYiT) (R) b and (I- YjTjYjT) (R) b can be done simultaneously and each matrix-
vector computation can be performed in parallel. It follows that the computing time of
(14) is based on the height of the supernodal elimination tree and the communication
time among the processors. Note that the required number of multiplications to
compute QTb by (14) is 2IV + ITI.

LEMMA 5.1. The required storage and number of multiplications to compute QTb
for the K by K grid model problem using BLAS-2 operations is O(NR).

Proof. By the same argument as in 4.1 and by redefining C(u, v, t) 1/2(u+p-t) 2,
we can prove that IT K2 log2 K + O(K2) 3NR. It follows that the storage
requirement is 4NR and the required number of multiplications is 5NR. D

THEOREM 5.2. Let A be an m by n matrix that is defined on a generalized
nested dissection ordered v/--separable graph. If the number of rows of each A[i] is a
constant, then the required storage and number of multiplications for computing QTb
using BLAS-2 operations is O(n(log n)2) O(NR log n).

Proof. Use the same argument as in 4.2 and redefine f(, n) as the maximum of

iesg ITJl, where

1
(nj)2IT I

1
+ e)

Here again is the number of vertices that have already been labeled. Similar to
(8)-(9) we define

1 2 1
f(,) < - < {(-0), < 0,
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(15) f(g,n) <_ ITjl + max(f(ll, kl) + f(12, k2)}

(16) _< /2r _+_/Vf_+_ 2 _+_ max(f(gl, kl) + f(2, k2)}, n > no,

where the maximum is again taken over the set (10)-(12). Here no < n which is
independent of n. We claim that the solution for all n >_ 1 is

f(g, n) _< c4n(log2 n)2 + c512 log2 n + c6/x/log n,

where ca, c5, and c6 are constants. The value f(O, n) -ITI- ieNS ITiI This claim
can be shown by induction on n and by using the approach given by Lipton, Rose,
and Tarjan in [17, pp. 349-350, Thm. 2]. The proof is as follows. Let n be large and
suppose the claim is true for values smaller than n. Then the recurrences (15) and
(16) give us

f(, n)

_
can(log2 n) 2 5- c52 log2 n

+ (2c4 log2(1 -e)+ 4e5/32 + 2c6/3)n log2 n + (4c5fl + c6)glogn

+ clog(1--e)+

+ (og(1 )) + (4 +)og( ) + +

where h() is of order O((log n)) and e + /1 + n0. Clearly, n0 must be
large enough so that e < 1. Suppose we choose c such that c log(1 -e) + N 0,
choose c large enough such that 4c +c N c, and choose c large enough such
that c log(1- e)+ 4c +2c+ 0. Then f(e,) N cn(log) +
ce log + caelog + (-c)(log(1 -e)) + h(). Since is large, we.have
I(e, 1 c(og)+ce og n+ceogn, as desired. As a result, the bound on

Irl is O(0og)). It follows that the required storage and number of multiplications
i o((ogl.

Note that referring to Lemma g.1, there is an extra log term in the result of
Theorem g.2. This is because in the grid model problem case, the term in the
boundary of TI is replaced by a lower order term based on the information from the
separators.

Remark .. The previous complexity results apply o Bischof and Van Loan’s
[4] WY representation. his would generate

0 -wr,
where Y/is the same as above, but Wi is computed according to

W/(1)-- (WI)),

Wi(k) ( Wi(k-l) z(k) ); z(k) (I W.(ik-1)yi(k-1)T)wk’);

thus Wi Wn). To the best of our knowledge, this was never stated formally,
but from an easy induction argument it is evident that Wi YTi. Since Ti is
full, it is reasonable to assume that Wi will be as well. Moreover, our bounds will
apply to the Bischof-Van Loan representation, but with slightly different constants.
The YTY representation always requires less storage. In our experiments, the WY
representation tended to compute QTb somewhat faster, but that result varies among
architectures [24].
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TABLE
Numerical operation count for the model problem.

K ITI/NR
20 3.21
40 3’.’38
60 3.42
’80 3.45
100 3.45

IY!/NR
3.12
2.55
2.35’
2.25
2.17

(2lyJ + ITI)/N
9.45
8.48
8.12
7.95
7.79

TABLE 2
Numerical operation count for the general problems.

Prob. m

ILLC1033 1033’
WELL1033 1033’
ILLC1850 1850

WELL1850 1850

CONVEC8 3362
DUNES8 5514
MIMBUS’ 23871
STRAT8 16640

n NZ
320 4732
320 4732
712 8758
712 "8758
484 13997
771 24796
1325 181972
2205 66192

2.12 3.40 3.23
2.14 3.43 3.23
2.73 ’3.27 2.60
2.73 3.27 2.60

3.30 7.24 6.95
3.49 6.72 7.15
4.93 15.78 i8.02
3.43 6.32 7.55

6. Numerical results. In this section, we examine the performance of our
method for computing QTb and solve the linear least squares problem given in (1) by
QR method using our method to compute QTb.

We check the ratio of the required number of multiplications for computing QTb
versus NR for the model problem in Table 1. In Table 2 we do the same test for the
general problems from the Harwell-Boeing test collection and Bramley’s test matrices.
The results show our method also performs well for those problems (i.e., the required

3mnumber of multiplications is less than -d-NR O(NR), where m and n are the
mnumber of rows and columns of the problem, respectively). Here, we use W as an

approximation of the average value of s in 4.2, since - si m, and s maxi si
and is presumed to be constant.

We also solve the linear least squares problems given in (1) by the QR method
by [14] using our method for computing QTb. We compare the QR method with the
method of CSNE by [5]. The CSNE method is in fact the method of seminormal
equations with one or more correction steps,

r =b- Ax,
RTRx ATr,
x-x+x.

The tests of CSNE were on QR27 routines by [20]. Two correction steps are used as
suggested in QR27. In Tables 3 and 4, we list the residuals Ilrl12 --lib-Axll2 and the
timing for solving (1) by both CSNE and the QR method on the model problem. Here,
we assume the upper triangular factor R has been precomputed; the timing results
do not include the factorization time. All the tests in this part were run on a Sun
4. We see from Table 3 that the residuals from both methods are about the same.
However, the QR method is more time consuming than the CSNE method. This
should be expected because the QR method requires more operations and, therefore,
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TABLE 3
Residuals for the model problem.

K QR CSNE
10 4.08 4.0s
20 9.21 9.21
30 13.99, i3.99
40 .4 .
50 24.27 24.27
60 24.98 28.98
70 31.32 33.94

TABLE 4
Timing for the model problem (in seconds).

K
10
2O
30
40
’50
6O
70
8O

QR(yTY BLAS-2)
0.04
0.45
1.36
2.99
5.07’
io.0o
i3.39
18.87’

Qn(WY BLAS-2) QR(BLAS-i CSNE,
0.04 0.03 0.05
0.44 0.37 0.32
1.35 .34 0.87
2.98 2.81 1.65
4.’72 4’.80’ 2.34
7.31 7:93 4.58
9.03 10.13 4.89
5.02 6.95 7.8

is slower. Also, we compare the performance of the BLAS-2 method (14) and the
BLAS-1 method (6). Both WY and storage-efficient WY (YTY) representations are
applied in the BLAS-2 method. The results are listed in Table 4. The WY BLAS-2
method is faster than the BLAS-1 method for larger problems. The BLAS-1 method
seems faster than the YTY BLAS-2 method, but the gap between them narrows
with larger problems. This suggests that the BLAS-1 method requires fewer floating
point operations, but the BLAS-2 method takes more advantage of features of the
architecture.

In [5], BjSrck stated that the CSNE method does not obtain good accuracy on
"stiff’ problems:

( bl)A2 x
b2

where the rows are of widely differing norms.
It has been shown that the QR method performs well for "stiff’ problems [1].

There is some comment on this problem in [2, 3]. In order to confirm that the QR
method using the proposed method maintains this property, we apply the QR and
CSNE methods on a sample "stiff’ problem given in Figure 11. We take the exact
Solution x as

x (10.0, 1.0, 10-1, 10-2, 10-3)T

and set the right-hand side vector b to be Ax. We define error by

The results for the QR and CSNE methods using single precision with w 104, 105,
106, and 107 are given in Table 5. The QR method performs consistently well and
indeed gives better accuracy for increasing w. These results are consistent with the
work by SjSrck [5] and Matstoms [20].
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o 2co 4

1. 3. 9. 27.

4. 64. 256.

5. 125. 625.

6. 216. 1296.

7. 343. 2401.

1. 8. 4096.

1. 9. 6561.

FIG. 11. A sample "stiff" problem.

TABLE 5
Errors for a sample "stiff" problem.

104

105

106

107

No. of Errors Errors
refinements QR CSNE

9.83E-5

3.32E-4

1.84E-4

3.45E-4

1.78E+1
1.11E-5
1.07E-6

1.56E+3
8.78E-3
2.32E-2
9.74E-5

1.81E+5
1.64E+3
1.06E+2
2.45E+0
9.62E-2
9.68E-7

5.60E+7
1.02E+7
3.38E+7
2.84E+7
2.33E+7
1.96E+7

7. Conclusion. In this paper, we have provided a multifrontal-based method
for storing Q and, thus, computing QTb by using the frontal Householder matrices
for an m by n large and sparse matrix with m _> n. We have shown that the use
of a multifrontal paradigm requires O(NR) storage and multiplications for the K
by K grid model problem and problems defined on the v-separable graphs, where
NR n log n represents the number of nonzeros in the upper triangular factor R.
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This method is more efficient than using the Householder matrix H or Q directly if
the matrix is m by n with m-n O(n) and defined on a v/--separable graph. In that
case both H and Q have O(nx/) nonzeros. Thus one can solve sparse linear least
squares problems by the orthogonal method using the proposed method for computing
QTb efficiently. In order to introduce BLAS-2 operations, we also use the "storage-
efficient WY representation" for the orthogonal factor of each frontal matrix. This
representation brings the bound on storage and operation counts up to O(n(log n)2)
for matrices defined on V/--separable graphs. This is still more efficient than using
Q itself or the "storage-efficient WY representation" of Q directly if the matrix is
m by n with m- n O(n) and defined on a v/--separable graph, under which
Q and its "storage-efficient WY representation" have O(nv/-) and O(n2) nonzeros,
respectively. The proposed method has possibilities for parallel computing as seen
on the iPSC/2 [19]. In a future report, we will test different representations of the
orthogonal factors on v-separator matrices and various practical problems such as
the geodesy problems [15] and the equilibrium systems problem [25] on advanced
architectures which support BLAS-2 and BLAS-3 operations.

Acknowledgments. We would like to thank/ke Bjbrck and Pontus Matstoms
for making the QR27 software available to us and John Gilbert and Esmond Ng for
introducing us to this problem. The second author thanks Don Beaver for some
helpful discussion.
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Abstract. It is well known that for any distinct real numbers A1,..., An there exists a dou-
bly symmetric (i.e., symmetric and persymmetric or, equivalently, symmetric and centrosymmetric)
tridiagonal real n n matrix T with the A’s as its eigenvalues. Such a matrix can be constructed
finitely using only arithmetic operations and square roots. We prove in this paper that the analo-
gous assertions hold for any distinct complex numbers A1,..., An with T being a complex matrix.
It follows that any complex n n matrix with distinct eigenvalues is similar to a doubly symmetric
tridiagonal matrix. The condition that the eigenvalues be distinct is essential: we show that the
tridiagonal form above does not exist or is trivial (depending on the Jordan structure imposed) if
A1 A2 A3 0.

Key words, inverse eigenvalue problem (IEP), tridiagonalization, persymmetry, centrosymme-
try

AMS subject classification. 65F10

1. Introduction. An n n matrix A is called persymmetric if

and centrosymmetric if

aij an+l-j,n+l-i i, j

aij an+l-i,n+l-j i, j

Of the three matrix properties--symmetry, persymmetry, and centrosyminetry--
any two imply the third one. We call A a doubly symmetric matrix if it is symmetric
and persymmetric (or centrosymmetric) at the same time.

The following inverse eigenvalue problem (IEP) is well known (and can be found,
for example, in [8, pp. 136-138])" given distinct real numbers 1,..., An, find a doubly
symmetric real tridiagonal matrix T with the A’s as its eigenvalues. It is proved in
[8] that this IEP is always solvable, and its (essentially unique) solution T could be
constructed by a finite procedure involving only arithmetic operations and square
roots. In fact, the use of the Lanczos algorithm is suggested in [8] (see also [2, 3]),
although Householder transformations or rotations could be applied as well.

From the matrix theory point of view, the solvability of the IEP above implies
that the following statement is valid.

THEOREM 1.1. Any real symmetric n n matrix A with distinct eigenvalues can
be transformed via orthogonal similarity to a doubly symmetric tridiagonal form.
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If we do not insist on the transformations being orthogonal then we can state
another matrix result.

THEOREM 1.2. Any n n matrix A, real or complex, with distinct real eigenvalues
can be transformed via similarity to a doubly symmetric tridiagonal form.

Now, the natural question is as follows: Are the statements analogous to Theorems
1.1 and 1.2 valid for matrices with complex spectra? We prove in this paper that they
are, i.e., that the following assertions hold.

THEOREM 1.3. Any complex n n matrix A with distinct eigenvalues is similar
to a (generally complex) doubly symmetric tridiagonal matrix.

THEOREM 1.4. Any complex symmetric n n matrix A. with distinct eigenvalues
can be transformed via orthogonal similarity to a (generally complex) doubly symmetric
tridiagonal form.

Both assertions are almost immediate consequences of the main result we prove
here.

THEOREM 1.5. For any distinct complex numbers 1,...,/n there exists a (gen-
erally complex) doubly symmetric tridiagonal matrix T with the ’s as its eigenvalues.
This IEP has generically 2k-l() solutions where k [n/2J. For almost any n-
tuple (/1,...,)n), all the solutions can be found by a finite procedure involving only
arithmetic operations and square roots.

Recall that a complex n n matrix A is called symmetric if A AT, and orthog-
onal if AAT I. These matrices lack many of the desirable properties of their real
counterparts, or Hermitian and unitary matrices. For example, there are no special
properties of the spectrum or Jordan structure of such matrices. Complex orthogonal
matrices, unlike real ones, may have entries exceeding one in modulus, and so on. For
a somewhat more comprehensive discussion of these points and some related work the
reader is referred to Scott [9, 10]. He also considers the problem of reducing com-
plex symmetric matrices to a simpler form, although the approach and the resulting
form are different from what is presented in this work. In particular, the question of
the finiteness of the process is not considered, and the target form is pentadiagonal
rather than tridiagonal, and not generally persymmetric. On the other hand, his is
a canonical formmall complex symmetric matrices can be reduced to that form. In
this paper we restrict our attention to matrices with distinct eigenvalues.

Theorem 1.5 and its proof are interesting in at least two respects. First, we
do not use the special properties of eigenvectors of tridiagonal matrices; these are
usually employed in the real case (see again [8]). Instead, we exploit the similarity
that decomposes any centrosymmetric matrix into the direct sum of two blocks of
(roughly) half the order. This similarity is well known but, to the best of the present
authors’ knowledge, has not been used in relation with the previous IEP. We review
this transformation in 2. Second, our proof clearly demonstrates the origin of multiple
solutions to this IEP. In particular, for real A’s, in addition to the classical real solution
there exist many complex solutions as well. We give a small illustration of this point
in 5. We also mention there that the condition that the prescribed eigenvalues be
distinct is essential: we may not be able to find the tridiagonal form above for an
n n Jordan block. The proof of Theorem 1.5 is contained in 3. In 4 we show how
Theorems 1.3 and 1.4 follow from Theorem 1.5.
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2. Decomposing centrosymmetric tridiagonals. A doubly symmetric tridi-
agonal n x n matrix T can be depicted as follows’

Xl Yl

Yl x2

"" "" Yk-1
Yk-1 X, y

(2.1) T yk x Yk-1

Yk-1

if n- 2k, and

x2 yl

yl Xl

xl Yl

yl x2 "

Xk-1
(2.2) T Yk-1

Yk-1
Xk

Yk-1
Yk-1
Xk-1

if n- 2k- 1.
Centrosymmetry as a matrix property can be described by the commutativity

relation

where

TP PT,

0 1

The matrix of the same form as P is used in decomposing the centrosymmetric
matrix T. Namely, define Q as the block matrix of the form

1 [I I ]
if n- 2k, and

Q--
k--I 0 --’Ok-
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if n 2k 1. Then the orthogonal similarity

(2.3) T U QTTQ

converts matrix (2.1) into the block diagonal matrix

(2.4) U U1 @ U2,

where

(2.5) U1

x y

Yl x2

xk- Yk-1
Yk-1 xk + Yk

and

(2.6) U2

xt yl

yl x2 ".

Xk- Yk-1
Yk-1 Xk Yk

For n odd, the same transformation (2.3) applied to matrix (2.2) gives the block
diagonal matrix (2.4) with.the blocks

(2.7) U

Xl y

Yl X2

Xk- VYk-1
X/yk-1 Xk

and

(2.8) U2

Xl yl

Yl X2

Yk-2
Yk-2 Xk-1

Remark. Being orthogonal, similarity (2.3) retains the symmetry of the matrix
being transformed. We can see that blocks (2.5) and (2.6) differ only in position (k, k).
For n odd, block (2.8) is a principal submatrix of block (2.7).

Of course, transformation (2.3) decomposes any centrosymmetric matrix, not only
the tridiagonal one. But here we need it only for tridiagonals.
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3. Proof of Theorem 1.5. Instead of dealing with T directly, we will look for
the blocks U1 and U2 in its representation (2.4). After these blocks are constructed
the inverse transformation to (2.3) gives us the tridiagonal matrix desired.

Below we thoroughly examine the case when n is even. Then, with fewer particu-
lars, we consider the case when n is odd, which differs only in minor details. We show
that the values of the unknowns (Yk,)xk, Yk-l,Xk-l,... ,X2, yl,Xl can be determined
one by one for any n-tuple (A1,..., An) where the A’s are distinct, with the possible
exception of points of some algebraic manifold in Cn. Finally, using some considera-
tions relating to commutative algebra, we conclude that our IEP is solvable even for
these exceptional n-tuples (A1,. An).

We begin by introducing some notation. Let a be the ith symmetric function of
the numbers A1,... ,An [6, p. 41]. Let S be the sum of all the principal minors of
order i of the matrix T (i 1, 2,..., n). Taking into account that both a and S
are equal, up to the same sign, to the coefficients of the characteristic polynomial of
T, we conclude that our tridiagonal IEP is equivalent to the system of.polynomial
equations

(3.1) S a, 1, 2,...,n,

with x’s and y’s as unknowns. We need therefore to show that system (3.1) is solvable
over C.

As was pointed out above, instead of dealing with (3.1) directly we prefer to use
decomposition (2.4). We argue in the following way. Every solution of (3.1) (if any)
defines the partition of the T’s spectrum A1,..., An into the spectra A,..., A and
A,...,A (remember that n is even at the moment!) of the submatrices U1 and

and " in numbers A’s and A"’sU2 in (2.4). Introducing symmetric functions a a
respectively, and also the sums S and S of all the principal minors of order for U1
and U2, we can replace (3.1) by the equivalent system

i= 1,. .,k,
(3.3) S’ ai, 1,..., k.

Note that there exist altogether () ways of partitioning A1,..., An into the sub-
sets A’s and A"s. We show next how, for any particular partition, the unknowns
in system (3.2)-(3.3) can be determined. To describe this procedure some additional
notation is useful; namely, we denote by S (m 1, 2,..., k- 1) the sum of all the
principal minors of order i in the matrix formed by deleting the last k m rows and
columns in U1 (or, equivalently, in U2). We also let

(3.4) S?={ 1, i=0,

O,
(rn 1,2,...,k- 1).

It will be convenient to divide the procedure for computing the x’s and the y’s into
k- 1 stages. The first stage and the last one are somewhat different from the rest
and will be described separately. The main process is uniform, and it will be enough
to describe Stage 2 as the typical one. Generally, at stage of the main process, we
compute X+l- and y_.

The main consideration much exploited in our procedure is the well-known rela-
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tion between the tridiagonal determinant

O/m--1 m--1
rn--1

and its principal minors /m--1 and /m--2 of order m- 1 and m- 2, respectively:

(3.5) A, .A._ ._A._.

We begin Stage 1 by computing Yk. Taking traces of the submatrices U, and U2 in
(2.4), we can write (this corresponds to letting i= 1 in (3.2) and (3.3))

(3.6) s s- + ( +)
and

(3.7) ’ s7 s- + ( v,).

Subtracting (3.7) from (3.6) gives us the value of Yk:

(.s) ( 7)/2.

It is vital for the rest of the procedure that Yk be nonzero. This can be violated
only in points of the nontrivial algebraic manifold (even linear subspace, in this case)
described by the equation

I!(3.9) a , 0.

We assume that the condition

(3.10) y # 0

is satisfied and return to (3.9) at the end of this section.
Now, using (3.2) and (3.5) we can write

S/k-I k-1(3.11) a S + (Xk + yk)Si_ y_iski._-22, i 2,3,... ,k

and

tt tt k-(3.12) a S S- + (xa 2, k.yk)Si_ y_lSki.: i= 3

Again subtracting (3.12) from (3.1), we obtain the relations

(3 13) k-I ,,
2, 3, k2ykSi_l ai oi, ...,

Since yk # 0, we can compute from (3.13) all the sums S-I(j 1,... ,k- 1) for the

principal submatrix U(k-) of order k- 1 in U(or U2).
Returning to (3.6), we find that

S1k-1(3.14) x (71 Yk.
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Now, (3.11), with i 2, gives us

+ + 4.
It is again important for the rest of the computation to have

(3.16) Yk-1 : O,

which could be violated only in points of the nontrivial algebraic (in fact, quadratic
in this case) manifold

Assuming that (3.16) is satisfied, take either of the two values of yk-1 defined by
equation (3.15). Now, equation (3.11) with i 3,... ,k lets us determine the values
for the sums S]-2. This completes Stage 1.

Now, at the entry of Stage 2 we know all the sums S-(g 1,2,... ,k- 1) and

S-2(j 1, 2,..., k 2). Since

we immediately find xk_. Further, the relation

(3.18)

defines yk-2. Again we assume

(3.19) yk-2 O,

which holds for any n-tuple (A,..., An), with the possible exception of points of the
algebraic manifold (which is now a cubic one)

(3.20) $2- S2k-2 Xk-1 O.

We can choose either of the two values of Yk-2 in equation (3.18). Then the relations

Yk_2Di_2 i 3,4,...,k- 1

determine the sums km-3 m 1, 2,..., k- 3. It follows that on exit from Stage 2
(and at the entry of Stage 3) we know all the sums S]-2 and Skm-3.

At the entry of the final stage (Stage k 1) we know the quantities

and

S xlx2 y.
These relations determine x, x2, and y in an obvious way. Again we have a

choice of the two values for y (if S xx2 0).
Now consider the case of n odd: n 2k- 1. As has already been mentioned, in

this case U2 is a principal submatrix of U1. This means that in the previous notation

S S/k-1 1, 2, k 1
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Stage 1 now proceeds as follows. First, we find xk as

s s- i i’.
Then, using the relations

(3.21)

we obtain the value of yk-1. Once again, we should assume

y_, 0

and the choice of either of the two values for Yk-1 in (3.21) is possible. Finally, the
equations

s s- + sz: _s-_, ,...,
give us the values for the sums Sy-2 (j 1,..., k- 2). Now Stage 1 is complete. The
rest of the procedure is the same as in the case of n even.

Summarizing, it has been shown that system (3.1) is consistent for any n-tuple
(,..., An), with the possible exception of points of the algebraic manifold comprised
of manifolds (3.9), (3.17), (3.20), and so on. Moreover, this system has generically
2k- solutions for any () partitionings of the set ,..., An into the two subsets with
cardinalities In] and nJ, respectively (here k In]). Generically again, each of
these solutions can be found by a finite sequence of arithmetic operations and square
root extractions.

We can now prove that system (3.1) remains consistent for exceptional values of
A’s as well. For this goal we will need some notions and results from commutative
algebra. We refer the reader to [4, Chap. 3].

Interpreting the a’s (or more precisely, the A’s) in equations (3.1) as parameters
and rewriting (3.1) in the form

(3.) f(,...,,,...,_, ()) 0, i ,,...,,
we can relate with system (3.22) the ideal I in the commutative ring of polynomials
in the variables x,,...,xk, y,,...,yk_,,(yk) generated by the polynomials f,
1, 2,... ,n. Assume that some order over the monomials in the variables above is
established, and a standard (or so-called Grhbner) basis of I with respect to this
order is found.

THEOREM 3.1 (see [4, Thm. 3 on p. 114]). For the particular values of ,..., An
system (3.22) is inconsistent iff the corresponding standard basis contains a nonzero
constant.

For our purposes, we must modify Theorem 3.1 somewhat. The polynomials
(3.22) depend on eigenvalues A,,... ,An prescribed (in fact, only the constant terms
a of these polynomials depend on A’s). Let us consider f as functions i not only
in the former variables x’s and y’s but the variables A,,... ,An as well. Suppose any
order over the monomials in the new variables is established such that any of the
former variables pecedes any of the A’s. Again, we assume that some standard basis
(Gj) of the ideal I generated by the polynomials is computed. Now we can restate
Theorem 3.1 follows.

THEOREM 3.2. System (3.22) is consistent for any values of ’s iff the standard
basis (Gj } does not contain a polynomial depending only on the ’s. If the standard
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basis does contain such polynomials Gs (ikl,.. A),. G(1, ,n) then system
(3.22) is consistent only for n-tuples (/kl,..., ikn) belonging to the algebraic manifold
described by the equations

Gs()l, )n) --0,

Gu(l, )n) 0.

Returning to Theorem 1.5, we see that the existence of the nontrivial polynomials
Gs,...,G in the corresponding standard basis would imply that system (3.1) is
solvable only for A’s belonging to algebraic manifold (3.23). Meanwhile, we have
already shown that this system is consistent for almost any n-tuple (,...,
Therefore, system (3.1) is solvable for any A’s, which completes the proof of Theorem
1.5.

Remark. It has been vital for our reasoning here that system (3.1) be comprised
of polynomial equations. Otherwise, our conclusion (i.e., the solvability almost ev-
erywhere implies the solvability everywhere) may not be correct. For example, the
equation

ez )

is consistent for any A # 0 but not for A 0.

4. Proof of Theorems 1.3 and 1.4. Theorem 1.3 is an immediate consequence
of Theorem 1.5 and the simple fact that any two complex matrices with identical and
distinct eigenvalues are similar.

For the proof of Theorem 1.4, we refer to the following matrix theory result (see
[5, Thm. 4 on p. 8, Vol. II]).

THEOREM 4.1. If two complex symmetric matrices are similar then they are
orthogonally similar.

We mention that Theorem 4.1 has been generalized considerably in [7] by the sec-
ond author of the present paper. A complex matrix A of order n is called persymmetric
if AT PAP and perorthogonal if AT A-I. If in the relation B Q-1AQ
the matrix Q is perorthogonal then we say the A and B are perorthogonally similar.
It follows from [7] that if two complex persymmetric matrices are similar then they
are perorthogonally similar. Hence, along with Theorem 1.4 the following assertion
holds.

THEOREM 4.2. Any complex persymmetric matrix with distinct eigenvalues can
be transformed via perorthogonal similarity to a doubly symmetric tridiagonal matrix.

5. Concluding remarks. Let the prescribed eigenvalues /1,...,/n be all real.
Then our IEP admits the classical real solution T+ with all the y’s positive (and also
2k-1 1 other real solutions obtained from T+ by changing the signs of any of the
elements y,..., Yk-). The solution T+ corresponds to the well-defined partition of
the set A1,... ,A into the subsets A’s and A"s (this fact has also been mentioned
in [1]). It is most easily seen for n odd: according to (2.7)-(2.8), U2 is a principal
submatrix of U1. Therefore, the numbers A,..., A-I must interlace with A,..., A,
i.e.,
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We give a small illustration of this point. Assume that {A} { 1, 2, 3}. For n 3, the
block U2 in formula (2.8) is just the number Xl. Hence, the element Xl in the matrix

(5.2) T
x1 y 0 ]y x2 y
0 y Xl

must coincide with an eigenvalue of T. If we let Xl 2 then 3, 1, and
relations (5.1) are satisfied:

3> ’ 2 > I.

We further obtain

x2 al 2Xl 6- 4 2

and

2y2 x21 + 2XlX2 a2 1,

which gives y2 1/2. Therefore, we have

2 2-1/2 0
-1/2 2 2-1/2

0 2-1/2 2

Alternatively, if we take Xl 3 then x2 0, and y2 -1. Hence, one of the two
solutions corresponding to this choice for X is

3 0]T1- iOi
0 3

Finally, with Xl 1 we have x2 4, and again y2 -1. Consequently, one of
the two solutions for A’ 1 is

1 0]4 i
0 1

Our second remark concerns the situation when, in the algorithm of 3, some yi

is zero. Theorem 3.2 tells us that we can still find a doubly symmetric tridiagonal
matrix T with the prescribed spectrum. On the other hand, with a zero y, T is bound
to have some double eigenvalues. This is apparent when, for example, Yk is zero in the
matrix (2.1), which implies that T is the direct sum of two permutationally similar
tridiagonal matrices of half the order. It follows that an appearance .of a zero y is
possible only if some prescribed eigenvalues are repeated.

Our last remark relates to the condition in Theorem 1.5 that the A’s be distinct.
As our next example shows, this condition is essential. Assume that n 3, and
{A} {0, 0, 0}. Then for matrix (5.2) we should have Xl 0, X2 al 2Xl 0, and
y2 (x21 + 2XlX2 -a2)/2 0. It follows that T- 0, which means that we may not
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obtain a nontrivial Jordan structure for our tridiagonal matrix. On the other hand,
if we drop the requirement for T to be centrosymmetric then the matrix

0 1 0]1 0
0 0

is similar to the Jordan block

0 10]J3(0)- 0 0 1
0 0 0
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UNIQUENESS OF SUM DECOMPOSITIONS
OF SYMMETRIC MATRICES *

DANIEL HERSHKOWITZ

Abstract. Let F be an arbitrary field with characteristic different from 2. A matrix B over F,
whose digraph is a subdigraph of a digraph D and whose sequence of row sums is equal to a sequence
r of elements of F, is said to be a (D, r)-decomposition of a symmetric matrix A if A B + BT.
Necessary and sufficient conditions for the uniqueness of a (D, r)-decomposition of a given symmetric
matrix A are proven. In our results we stress the case of nonnegative matrices.

Key words, symmetric matrices, sum decompositions, cycles
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1. Introduction. The question of the existence of an entrywise nonnegative
m n matrix B with given row sums and column sums is of long standing. In [1]
the authors study the case where B is not necessarily nonnegative but is over an
arbitrary field F with characteristic different from 2 and where B + BT is given.
Also, restrictions on the location of the nonzero entries are allowed. Generalizations
of this problem to the case where only partial information is given are proved in [3] for
real matrices. In this paper we investigate uniqueness of the solutions to the problems
discussed in [1] and [3]. Our investigation is carried out for matrices over arbitrary
fields with characteristic different from 2 and for nonnegative matrices.

Let E(D) denote the arc set of a digraph D, whose vertex set we denote by
V(D). i digraph D’ is said to be a subdigraph of a digraph D if V(D’) C_ V(D) and
E(D) c_ E(D). We write D’ C_ D to indicate that D is a subdigraph of D. Let A
be an n n matrix. The digraph D(A) of A is the digraph with vertex set {1,..., n}
and where (i, j) is an arc in D(A) if and only if aij O. Let A be a symmetric n n
matrix over F, let D be a digraph with vertex set {1,... ,n}, and let r (rl,..., rn)
be a sequence of elements of F. A matrix B with D(B) c_ D, with row sums rl,...,
and such that B + BT A is said to be a (D, r)-decomposition of A. If F and B
is nonnegative, then it is said to be a nonnegative (D, r)-decomposition of A.

In 2 we characterize the digraphs D for which there exists a unique (D,r)-
decomposition of A for some sequence r in F. We show that a (D, r)-decomposition
of A is unique if and only if the graph D has a certain acyclicity property. Since
the uniqueness depends entirely on D, it follows that either for every sequence r in F
every (D, r)-decomposition of A is unique or for every sequence r in F every (D, r)-
decomposition of A is nonunique. It also follows from our results that there always
exist a digraph D and a sequence r in F such that A has a unique (D, r)-decomposition.
We conclude 2 by showing that for every sequence r in F satisfying a certain necessary
condition, there, exists a digraph D such that A has a unique (D, r)-decomposition.

In 3 we prove that a matrix B may serve as a unique nonnegative (D,r)-
decomposition for A even if D does not have the acyclicity property as long as the
digraph of B has that property, and we characterize the cases in which nonnegative
(D, r)-decompositions of A are unique.

*Received by the editors November 18, 1994; accepted for publication (in revised form) by
R. Horn October 6, 1995.

Mathematics Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.
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The discussion in 3 raises a few natural questions. Given a symmetric non-
negative matrix A, what are the digraphs D for which there exists some sequence
r such that A has a unique nonnegative (D,r)-decomposition? What are the di-
graphs D for which for every sequence r of nonnegative numbers, a nonnegative (D, r)-
decomposition of A is unique? What are the sequences r for which there exists some
digraph D such that A has a unique nonnegative (D, r)-decomposition? What are the
sequences r for which for every digraph D, a nonnegative (D, r)-decomposition of A
is a unique nonnegative (D, r)-decomposition of A? All these questions are answered
in 4. Our results are given in terms of acyclicity properties of certain graphs.

2. Uniqueness of decompositions of general symmetric matrices. LetA
be a symmetric n n matrix over an arbitrary field F with characteristic different from
2. A necessary and sufficient condition for the existence of a (D, r)-decomposition for
A, for a given sequence r of n elements of F and a given digraph D with n vertices, is
given in Theorem 2.5 of [1]. By Theorem 2.14 in [1] there exists a (D, r)-decomposition
of A for some digraph D if and only if

(2.1) E r E aj.
i--1 i,j=l

For a given digraph D it is easy to verify that a (D, r)-decomposition of A exists for
some sequence r in F if and only if D(A) is a subdigraph of the symmetric closure
D, that is, the digraph with V(D) V(D), and where (i, j) is an arc in D whenever
(i, j) and/or (j, i) is an arc in D. To see this note that if B is a (D, r)-decomposition
of A, then D(B) c_ D and, since A B + BT, we have that D(A) c_ D(B) C_ D.
Conversely, if D(A) C_ D, then the matrix B, defined by

aij

bij

O,

(i, j) e E(D), (j, i) E(D);

(i, j), (j, i) e E(D);

(i,j) E(D),

satisfies A B + BT as well as D(B) c_ D. Furthermore, since the matrix B is
nonnegative entrywise whenever A is such, it follows that if A is nonnegative, then
there exists a nonnegative (D, r)-decomposition of A for some sequence r in F if and
only if D(n) C_ D.

The following result characterizes the digraphs D for which a unique (D,r)-
decomposition of A exists for some sequence r in F. For this purpose, we denote
by row(B) the sequence of row sums of a matrix B and by R(B) the ith row sum of
B. Also, for a digraph D we define the symmetric part sym(D) of D as the subdigraph
of D whose vertex set is V(D) and whose arc set consists of all arcs (i, j) of D such
that (j, i) also is an arc of D. Note that if (i, i) is an arc of D, then it is also an arc
in sym(D).

THEOREM 2.1. Let A and B be n n matrices over an arbitrary field F, with
characteristic different from 2, such that A B + BT; and let D be a digraph with
vertex set {1,..., n} such that D(B) C_ D. The following are equivalent.

(i) B is a unique (D, row(B))-decomposition of A.
(ii) The symmetric part of the digraph D has no cycle of length greater than 2.

(iii) For every sequence r in F, a (D, r)-decomposition of A is a unique (D, r)-
decomposition of A.
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Proof. (i) = (iN). Assume that sym(D) has a cycle /of length greater than 2.
Define the n n matrix E by

neither (i, j) nor (j, i) is an arc in ,
(i, j) is an arc in /,

(j, i) is an arc in ,
i, je{1,...,n},

where s 0. Note that since is a cycle of length greater than 2, if (i, j) is an arc in, then (j, i) is not an arc in (although it is an arc in sym(D)), and so the matrix E
is well defined. Since is a cycle in sym(D), it follows that if (i, j) is an arc in , then
both (i, j) and (j, i) are arcs in D. Thus, we have n(E) C_ D. Note that E + ST O.
Also, since is a cycle of length greater than 2 in D, it follows that each nonzero
row of the matrix E has two nonzero elements, where one is and the other one is
-s. Therefore, E has zero row sums. It now follows that the matrix B + E is also a

(D, row(B))-decomposition of A, in contradiction to (i).
(iN) = (iii). Let B and C be (D, r)-decompositions of A for some sequence r in

F. It follows that E B- C is a skew-symmetric matrix with zero row sums. Hence,
for every subset S of {1,..., n} we have

n

(i,j)eSSc i,jeS (i,j)eSSC ieS,je{1 ,n} i--1

The matrix E thus satisfies

I D(E) D,

eij 07
(i,j)eSxSC

SC_ {1,...,n}.

Given that sym(D) has no cycle of length greater than 2, it follows from Theorem
3.21 in [2] that there exists a unique n n matrix E satisfying (2.2). Since the zero
matrix satisfies (2.2), it now follows that E 0. Therefore, we have B C.

(iii) = (i)is trivial. D
Note that it follows from Theorem 2.1 that one can always find a digraph D and a

sequence r in F such that a unique (D, r)-decomposition of A exists. To see this, choose
D to be the digraph with vertex set {1,..., n} and arc set {(i,j): aij 0, _< j}.
Since D(A) D, it follows that a (D, r)-decomposition of A exists for some sequence
r in F. Since D contains no cycles other than loops, it follows from Theorem 2.1 that
the (D, r)-decomposition of A is unique.

Let D be a digraph. It follows from Theorem 2.1 that either for every sequence r
in F a (D, r)-decomposition of A is a unique (D, r)-decomposition of A, or for every
sequence r in F a (D, r)-decomposition of A is not a unique (D, r)-decomposition of
A. It also follows from Theorem 2.1 that for n > 2 there exist digraphs D for which
(D, r)-compositions of A are not unique. For example, let D be the complete digraph
D with n vertices and let r row( A). The matrix 1/2A is a (D,r)-decomposition
of A and, since sym(D) has cycles of length greater than 2, 1/2A is not a unique
(D, r)-decomposition of A. We now show that for every sequence r (rl,..., rn) in
F satisfying (2.1) there exists a digraph D such that a unique (D, r)-decomposition
of A exists.
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THEOREM 2.2. Let A be a symmetric n n matrix over an arbitrary field F with
characteristic different from 2, and let r (rl,..., rn) be a sequence in F satisfying
(2.1). Then there exists a digraph D with a unique (D, r)-decomposition of A.

Proof. Let D be the complete digraph with n vertices. By Theorem 2.14 in [1]
there exists a (D’, r)-decomposition B of A. Note that B is a (D(B), r)-decomposition
of A. If sym(D(B)) has no cycle of length greater than 2, then by Theorem 2.1 B is a
unique (D(B), r)-decomposition of A. Else, there exists a cycle 7 (il, i2,..., it), t >_
3, in sym(D(B)). Let c- bl and let E be the n n matrix defined by

C

eij --C

0,

(i,j) (ik,ik+l),k 1,...,t;

(i,j) (ik+,ik),k 1,...,t;

otherwise.

Since t _> 3, it follows that each nonzero row of E contains exactly two nonzero
elements, one of which is equal to c and the other to -c. Therefore, the row sums
ore are all zero. Since also E+ET 0, the matrix B-E is a (D(B-E),r)-
decomposition. Observe that the arc set of D(B- E) is properly contained in the
arc set of D(B), as (B E)ili: 0 while bii: O. We repeat this process of arc
elimination from the decomposition of A until we reach a matrix C that is a (D(C), r)-
decomposition of A and such that sym(D(C)) has no cycle of length greater than 2.
By Theorem 2.1, the digraph D(C) has the required properties.

Finally, we remark that for n > 2 there exists no sequence r in F satisfying (2.1)
for which every (D, r)-decomposition of A for any digraph D is unique. To see this
let D be the complete digraph with n vertices. By Theorem 2.14 in [1] there exists a
(D, r)-decomposition of A that, by Theorem 2.1, is not unique.

3. Characterization of unique nonnegative decompositions. Let A be a
symmetric n n matrix. In the previous section we proved that the uniqueness of a

(D, r)-decomposition of A depends entirely on the nature of the digraph D. This is
not the case when nonnegative decompositions of nonnegative symmetric matrices are
considered. Clearly, by Theorem 2.1, if B is a nonnegative (D, r)-decomposition of A
and if D has no cycle of length greater than 2, then B is a unique nonnegative (D, r)-
decomposition of A. The converse is, however, in general false, as is demonstrated by
the following example.

Example 3.1. Let D be the digraph

let

(ooo)A= 0 0 1
0 1 0

and let r (r, r2, r3) be a sequence of nonnegative numbers. It is easy to verify that
a nonnegative (D, r)-decomposition of A exists if and only if rl 0 and r2 + r3 1
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and that the only such decomposition is the matrix

B= 0 0 r2
0 r3 0

Nevertheless, the digraph D contains cycles of length 3.
The analog of Theorem 2.1 in the nonnegative case is as follows.
THEOREM 3.1. Let A and B be nonnegative n x n matrices such that A B +

BT. The following are equivalent.
(i) B is a unique (D(B), row(B))-decomposition of A.
(ii) B is a unique nonnegative (D(B), row(B))-decomposition of A.
(iii) The symmetric part of the digraph D(B) has no cycle of length greater

than 2..
(iv) For every sequence r of real numbers, a (D(B), r)-decomposition of A is a

unique (D(B), r)-decomposition of A.
(v) For every sequence r of nonnegative numbers, a nonnegative (D(B),r)-

decomposition of A is a unique nonnegative (D(B), r)-decomposition of A.
Proof. (i) => (ii). The proof of this implication is trivial.
(ii) (iii). The proof of this implication is essentially the same as the proof

of the implication (i) ==> (ii) in Theorem 2.1, replacing the digraph D by D(B) and
observing that, since D(E) C_ D(B), the matrix B + E has the same sign pattern as
B for e sufficiently small in absolute value.

(iii) => (iv). This implication is proven by Theorem 2.1.
(iv) (i). The proof of this implication is trivial.
(iv) => (v) => (ii). The proof of this implication also is trivial. [:1

Observe that Theorem 3.1 does not characterize digraphs D for which there exists
a unique nonnegative (D, r)-decomposition of A for some sequence r, but it character-
izes the digraphs of unique nonnegative decompositions. Clearly, a nonnegative matrix
B satisfying A B + BT is a (D, row(B))-decomposition of A for every digraph D
such that D(B) C_ D. However, a unique nonnegative (D(B), row(B))-decomposition
of A is not necessarily a unique nonnegative (D, row(B))-decomposition of A for
D(B) C_ D, as is demonstrated by the following example.

Example 3.2. Let

B= 2 0 2
0 2 0

Since sym(D(B)) has no cycle of length greater than 2, it follows from Theorem a.1
that B is a unique (D(B), (4, 4, 2))-decomposition of the matrix

A= 4 0 4
2 4 0

Now, let D be the digraph
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Clearly, D(B) c_ D. Now, while B is a nonnegative (D, (4, 4,2))-decomposition
of A, it is not a unique nonnegative (D, (4, 4, 2))-decomposition of A, as the matrix

0 3 1 /1 0 3
1 1 0

also forms such a decomposition.
In the rest of this section we consider the case of a given nonnegative symmetric

matrix A, a given digraph D, and a given sequence r of nonnegative numbers. A nec-
essary and sufficient condition for the existence of nonnegative (D, r)-decomposition
of A is given in Theorem 3.3 of [1]. Here we characterize the cases in which such a
decomposition is a unique one.

DEFINITION 3.1. Let D1 and D2 be two digraphs with the same vertex set. We
defined DI f D2 to be the digraph with the same vertex set, and whose arc set is

E(D) N E(D2).
DEFINITION 3.2. Let D be a digraph with V(D) {1,... ,n}, let A be an n n

matrix, and let r (rl,...,rn) be a sequence of numbers. The digraph D(D, A, r) is

defined as the digraph obtained from sym(D)N D(A) by removing all arcs (u, v) for
which there exists S c_ {1,..., n} such that (u, v) E S SC or (v, u) S SC and

1

iES je{1 n} i,jES
(i,j)eE(D),(j,i)E(D) (i,j)esym(D)

Example 3.3. Let D be the digraph

let

(C) ;6)

0 2 2 /A= 2 0 2
2 2 0

and let r (0, 2, 4). The digraph sym (D) gl D(A) is

It is immediate to verify that both sides of (a.1) are equal to 0 whenever S {1}.
Thus, (1, 2) and (2, 1) are no arcs in/)(D,A,r). Also, both sides of (3.1) are equal
to 2 whenever S = {1, 2}. Therefore, (2, 3) and (a, 2) are no arcs in D(D, A, r), and
it follows that/)(D, A, r) has no arcs.
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DEFINITION 3.3. A set S of vertices in a digraph D is said to be D-loose if for
every i E S and every j V(D)\ S at least one of the arcs (i, j) and (j,i) is not
present in D. By convention, 2 and V(D) are D-loose sets. Observe that a set S of
vertices in a digraph D is D-loose if and only if S is a union of strong components
of sym(D).

THEOREM 3.2. Let A be a nonnegative symmetric n n matrix, let D be a di-
graph with vertex set {1,..., n}, let r (rl,..., r) be a sequence of nonnegative num-
bers, and assume that A has a nonnegative (D, r)-decomposition. The following are
equivalent.

(i) A has a unique nonnegative (D, r)-decornposition.
(ii) The digraph D(D, A, r) has no cycle of length greater than 2.

Proof. (i) = (ii). Assume that/)(D,A, r) has a cycle /= (il, i2,..., it), t >_ 3.
We let i0 it and it+l il. Since A has a nonnegative (D,r)-decomposition, it
follows from Theorem 3.3 in [1] that

1
(3.2) E r E aij + E aj

ieS i,jeS (i,j)ESSCgE(D)

for every D-loose set S

and

1
(3.3) E ri _> E aij + E a.

iES i,j6S (i,j)eSxSC

(j,i)E(D)

for every S c_ {1,..., n}.

Note that /is a cycle also in D(A). Since A is a symmetric matrix, it follows that

(3.4) aij > O, (i, j) or (j, i) is an arc in .
We define an n x n matrix A by

aij, neither (i, j) nor (j, i) is an arc in ,,
gij i,j e {1,...,n},

aij 2e, (i, j) or (j, i) is an arc in

and a sequence f (fl,... fn) of numbers by

ri 2e, {il,...,it},
n}(3.5) fi e {1,....,

ri, {il,...,it},

where e > 0. By (3.4), A is a nonnegative matrix for e sufficiently small. Let k G

{1,...,t}. Since (ik,i+l) is an arc in )(D,A,r), it follows by Definition 3.2 and
by (3.3) that rik > 0 Thus, by (3.5), the numbers fl,..., fn are nonnegative for s
sufficiently small. Now, let S be a subset of {1,... ,n}, let rn be the cardinality of
{il,..., it} N S, and let m’ be the cardinality of the set {ik E S: ik+ S}. Observe
that

(3.6) E fi E ri 2rne.
iS iS

Let ik S. Since t _> 3, the ikth row of fi contains exactly two elements giy for
which ij --’-aij- 2e, that is, giki+l and gii_. Therefore, we have

(3.7) E tij E aij 4me
i,jEs i,js
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and

(i,j)6SxSCf3E(D) (i,j)6SxSCE(D)
aij 2(m m’)e.

It now follows from (3.2), (3.6), (3.7), and (3.8) that

1

i6S i,j6S (i,j)6SSCfE(D)

for every D-loose set S.

Also, if m m’, then it follows from (3.3), (3.6), (3.7), and (3.8) that

1
+ }2

ieS i,js (i,j)essc

(j,i)E(D)

If m > m’, then there must exist k e {1,...,t) such that (ik, ik+l) e S SC. Since
(ik, ik+l) is an arc in/)(D, A, r), it follows from Definition 3.2 that

1

i6S i,j fiS (i,j)6S x Sc

(j,i)E(D)

aij

and again we have (3.10) for sufficiently small. Thus, we obtain

1

i6S i,j6S (i;j)eSSc

(j,i)E(D)

for every S C_ {1,..., n}.

By Theorem 3.3 in [1], it follows from (3.9) and (3.11) that there exists a non-
negative (D, )-decomposition/ for/1. Let C be the n n matrix defined by

ciy=
iJ+e,

neither (i, j) nor (j, i) is an arc in

(i, j) or (j, i) is an arc in
i, je{1,...,n}.

It is easy to verify that the C is a nonnegative (D, r)-decomposition of A. Also, cij >
whenever (i,j) or (j, i) is an arc in 7. So, sym(D(C)) contains the cycle ,, which is of
length greater than 2, and by Theorem 3.1, C is not a unique (D, r)-decomposition of
A, in contradiction to the uniqueness assertion in (i).

(ii) = (i). Let B and C be nonnegative (D, r)-decompositions of A. We have

(3.12) C -- CT B + BT A.

Let D1 D f3 D(A) and let T E(D)\E(sym(D1)). Observe that if for some
i and j we have bij : 0 or aij 0, then necessarily (i, j) 6 E(D) as well as aij O,
and so (i, j) e 01. Therefore, if (i,j) T1, then, since (j,i) (_ E(D1), we have
bji cji O. It now follows from (3.12) that

(3.13) bij cij aij, (i, j) T1.



UNIQUENESS OF SUM DECOMPOSITIONS OF SYMMETRIC MATRICES 699

We define the n n matrices B and C by

{ c, (i, y) Tbij, (i,j) T1,
1(3.14) b1/2

0, (i, j)

In view of (3.13) we have

R(B1) R(C1) r E
jE{1 n}
(i,j)ET1

aij, e {1,...,n}.

Also, it follows that

(3.15) B C if and only if B C1.

Let A B + (B1)T. It follows from (3.12), (3.13), and (3.14) that B
(B1)T C .+. (C1)T A and that D(B1), D(C1) C_ sym(D1). Let T2 be the set of all
arcs (i,j)in E(sym(D1)) for which there exists S c_ {1,... ,n} such that (i,j) E SxSC
and

1
auv(3.16) yr(B1)= y

uS u,vS

Let (i, j) E T2 and let S be a subset of {1,..., n} such that (i, j) S SC and (3.16)
holds. Since B + (B1)T A1, we have

1
auv + b(3.17) ru(Ul) E 51uv

2 E
uS ueS, re{1 n} u,veS (u,v)eSxSc

Since A is a nonnegative matrix, it follows from (3.16) and (3.17) that blur 0
whenever (u, v) S x SC. Thus, we obtain

(3.18) bij 0, (i,j) e T2.

Similarly, we prove that

(3.19) cily 0, (i,j)

Since B + (B1)T C + (Cl)T A1, it follows from (3.18) and (3.19) that

We remove all the arcs (i, j) such that (i, j) T2 or (j, i)~ T2 from sym(D1) and
denote the resulting digraph by D3. Observe that D3 D(D,A, r). We define the
n x n matrices B2 and C2 by

b1/2, (i, j), (j, i) T2,
C { clj’ (i, j), (j, i) T2,

B O, otherwise; O, otherwise.



700 DANIEL HERSHKOWITZ

In view of (3.18), (3.19), and (3.20)we have

R(B2) R(C2) R(B1)
je{1 n}
(j,i)eT.

Also, it follows that we have B2 C2 if and only if B C1, and in view of (3.15)
we obtain that

(3.21) B=C if and only if B2=C2.

Since Ri(B2) R(C2), i e { 1,..., n}, and since B2 + (B2)T C2 + (C2)T, it follows
that E B2 C2 is a skew-symmetric matrix with zero row sums. Hence, for every
subset S of {1,..., n} we have

n

(i,j)eSxSC i,jeS (i,j)@SSC ieS, je{1 n} i-1

It now follows that the matrix E satisfies

(3.22)
D(E) c_ D(D, A, r),

E eij 0
(i,j)eSxsC

SC_ {1,...,n}.

Given that D(D, A, r) has no cycle of length greater than 2, it follows from Theorem
3.21 in [2] that there exists a unique n x n matrix E satisfying (3.22). Since the
zero matrix satisfies (3.22), it now follows that E 0. Therefore, we have B2 C2,
implying by (3.21) that B C. El

The following couple of examples demonstrate the claim of Theorem 3.2.
Example 3.4. Let D be the complete digraph with vertex set {1, 2, 3}, let

0 2 2)A= 2 0 0
2 0 0

and let r (2, 1, 1). Observe that the nonnegative matrix

B
0 1 1 /1 0 0
1 0 0

is a nonnegative (D, r)-decomposition of A. The digraph sym(D) g D(A), which is

has no cycle of length greater than 2. Therefore, (D,A, r) has no cycle of length
greater than 2, and by Theorem 3.2, B is the unique nonnegative (D, r)-decomposition
of A.
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Example 3.5. Let D be the digraph

() ()

let
0 2 2 /2 0 2
2 2 0

and let r (0, 2, 4). Observe that the nonnegative matrix

0 0
2 0 0
2 2 0

is a nonnegative (D,r)-decomposition of A. Since both sides of (3.1) are equal to 0
whenever S {1}, it follows that (1, 2), (2, 1), (1, 3), and (3, 1) are not arcs in

)(D,A,r). Also, both sides of (3.1) are equal to 2 whenever S {1,2}. Therefore,
(2, 3) and (3, 2) are not arcs in D(D, A, r), and it follows that/(D, A, r) has no arcs.
By Theorem 3.2, the matrix B is the unique nonnegative (D, r)-decomposition of A.

4. More on unique nonnegative decompositions. Let A be a symmetric
nonnegative matrix. In view of the discussion of the previous section, it is plausible
to ask the following questions.

Question 4.1. (i) What are the digraphs D for which there exists a sequence r
of nonnegative numbers such that a unique nonnegative (D, r)-decomposition of A
exists?

(ii) What are the digraphs D for which for every sequence r of nonnegative
numbers, a nonnegative (D,r)-decomposition of A is a unique nonnegative (D,r)-
decomposition of A?

(iii) What are the nonnegative sequences r for which there exists a digraph D
such that a unique nonnegative (D, r)-decomposition of A exists?

(iv) What are the nonnegative sequences r for which for every digraph D, a
nonnegative (D, r)-decomposition of A is a unique nonnegative (D, r)-decomposition
of A?

In this section we use our previous results to answer all these questions.
To answer our first question we prove the following lemma.
LEMMA 4.1. Let A be a nonnegative symmetric n n matrix, let D be a digraph

with vertex set {1,..., n}, let r (rl,..., r) be a sequence of nonnegative numbers,
and assume that a nonnegative (D, r)-decomposition of A exists. If for a subset S of
{1,...,n} we have

1
r,

iES i,jES

then S x Sc E(D(D,A, r)) .
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Proof. Let B be a nonnegative (D, r)-decomposition of A. We define the n x n
matrices and/ by

{0,aij
aij

bij,

(i, j) e E(D), (j, i) f[ E(D),

otherwise;

(i, j) e E(D), (j, i) t[ E(D),

otherwise.

In addition we let

(4.3) ?i ri E aij, {1, n}.
j{1 n}

(i,j)eE(D), (j,i)E(V)

Observe that/ +/T . and that Ri(/) i, e { 1,..., n}. Hence,

1

iES iES, j{1 n} i,jS i,jS

On the other hand, it follows from (4.1), (4.2), and (4.3) and ’ies i < 7
-]i,jesij, and in view of (4.4) we obtain ’ies?i 1/2 -]i,jesbij. Recall that
since a (D, r)-decomposition of A exists, we have D(A) C_ D. Therefore, by (4.2)
and (4.3) we now have (3.1) and by Definition 3.2 we obtain that S SC f3

E([9(D, A, r)) 0.
DEFINITION 4.1. Let D be a digraph. A path in D is a sequence of distinct

vertices (il,... ,it) such that (ik,.ik+l) is an arc in D, k 1,... t- 1. Every sequence
that consists of one vertex is a path.

LEMMA 4.2. Let A be a nonnegative symmetric n x n matrix, let D be a digraph
with vertex set (1,..., n), let r (rl,..., rn) be a sequence of nonnegative numbers,
and let B be a nonnegative (D, r)-decomposition of A. If there is no path_ from some
vertex p to some vertex q in D(B), then there is no path from p to q in D(D, A, r).

Proof. Let S be the set of all k E {1,..., n} such that there exists a path from p
to k in D(B). It follows that S SC f E(D(B)) o. We now have

1 1Eri= E bij + E bij - E aij + E bij - E aij,
ieS i,jeS (i,j)eSSC i,jeS (i,j)eSSCfqE(D(B)) i,jeS

and it follows by Lemma 4.1 that S x SC fq E(fg(D, A, r)) O. Since p E S and
q SC, it now follows that there is no path from a p to q in (D, A, r).

The answer to Question 4.1.i now follows.
THEOREM 4.3. Let A be a nonnegative symmetric n n matrix, and let D be a

digraph with vertex set {1,..., n}. The following are equivalent.
(i) For some sequence r of nonnegative numbers there exists a unique nonnegative

(D, r)-decomposition of A.
(ii) D has a subgraph D’, with no cycle other than loops, such that D’ D(A).
Proof. (i) = (ii). Assume that for some sequence r of nonnegative numbers there

exists a unique nonnegative (D, r)-decomposition B of A. We have D(B) C D and
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D(B) D(A). Also, by Theorem 3.1, sym(D(B)) has no cycle of length greater than
2. We now remove from D(B) all arcs (i, j) such that < j and (j, i) e E(D(B)) and
we denote the resulting graph by D. Observe that D has no cycle other than loops
and that D’= D(B) D(A).

(ii) = (i). Let D’ be a subgraph of D, with no cycle other than loops, such
that D D(A). We define a nonnegative n n matrix B, with a digraph D, by
b a/2, i E {1,..., n}, and

aj, (i,j) e E(D’),
bj i,j e {1,...,n},i 7 j.

O, (i,j) f E(D’),
Since D(A) D, it follows that whenever aij 7 O, j, we have either
or bji aij but not both. Also, if aij 0, then (i, j), (j, i) f E(D(A)), and since
D(A) D’, we have (i, j), (j, i) f E(D’). Thus, we have B / ST A. It now follows
that B is a nonnegative (D, r)-decomposition of A, where r (RI(B)_,... ,Rn(B)).
Since D has no cycle other than loops, it follows by Lemma 4.2 that D(D, A, r) has
no cycle other than loops, and by Theorem 3.2 A has a unique nonnegative (D, r)-
decomposition.

The answer to Question 4.1.ii is as follows.
THEOREM 4.4. Let A be a nonnegative symmetric n x n matrix satisfying D(A) c_

D, and let D be a digraph with vertex set {1,..., n}. The following are equivalent.
(i) For every sequence r of nonnegative numbers, a nonnegative (D,r)-

decomposition of A is a unique nonnegative (D, r)-decomposition of A.
(ii) The digraph sym(D)fl D(A) has no cycle of length greater than 2.

Proof. (i) (ii). We define the nonnegative n x n matrix B with D(B)
D D(A) by

aij, (i,j) E(DCD(A)),(j,i) f E(D),

bij 1/2aj, (i,j),(j,i) e E(DCD(A)), i,j e {1,...,n}.

0, otherwise,

Observe that since D(A) c_ D, we have A B / BT, and so B is a nonnegative
(D, r)-decomposition of A, where r (RI(B),..., Rn(B)). If sym(D(B)) sym(D)
D(A) has a cycle of length greater than 2, then by Theorem 3.1 B is not a unique
nonnegative (D, r)-decomposition of A.

(ii) = (i). Since sym(D) fl D(A) has no cycle of length greater than 2, it follows
by Definition 3.2 that for every sequence r of nonnegative numbers the digraph
D(D,A,r) has no cycle of length greater than 2. Our claim follows from Theo-
rem 3.2.

The following theorem is a related result.
THEOREM 4.5. Let D be a digraph with vertex set {1,..., n}. The following are

equivalent.
(i) For every nonnegative symmetric n x n matrix A satisfying D(A) C_ D and

every sequence r of nonnegative numbers, a nonnegative (D, r)-decomposition of A is
a unique nonnegative (D, r)-decomposition of A.

(ii) The symmetric part of the digraph D has no cycle of length greater than 2.

Proof. (i) = (ii). Assume that sym(D) has a cycle /of length greater than 2.
We define the nonnegative n x n matrix B with D(B) D by

1, (i,j) e E(D),
bij i,j {1,...,n},

O, (i,j)

_
E(D),
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and let r (RI(B),..., Rn(B)). B is a (D, r)-decomposition of A B + BT. Since
is a cycle in sym(D), by Theorem 3.1 B is not a unique such decomposition.

(ii) = (i). This implication follows from Theorem 2.1. [:]

Let A be a nonnegative symmetric n n matrix, and let r (rl,..., rn) be a
sequence of nonnegative numbers. To answer to Question 4.1.iii we recall that, by
Theorem 3.19 in [1], there exists a nonnegative (D, r)-decomposition of A for some
digraph D if and only if the sequence r satisfies (2.1) as well as

1
(4.5) Er _> E ay

iES i,jES

for every S C_ {1,...,n}.

THEOREM 4.6. Let A be a nonnegative symmetric n n matrix, and let r
(rl,...,rn) be a sequence of nonnegative numbers satisfying (2.1) and (4.5). Then
there exists a digraph D with a unique nonnegative (D, r)-decomposition of A.

Proof. Let D be the complete digraph with n vertices. By Theorem 3.19 in [1]
there exists a nonnegative (D’, r)-decomposition B of A. Note that B is a (D(B), r)-
decomposition of A. If sym(D(B)) has no cycle of length greater than 2, then by
Theorem 3.1 B is a unique nonnegative (D(B),r)-decomposition of A. Else, there
exists a cycle 7 (i,i2,...,it),t >_ 3, in sym(D(B)). Let it+ i, and let c

minke{1 t}{bikik+l, bik+lik }. Without loss of generality we may assume that c bii..
Let E be the n n matrix defined by

C,

eij --c,

0,

(i,j) (ik, ik+),k 1,...,t;

(i,j)- (ik+l,i),k- 1,...,t;

otherwise.

Since t _> 3, it follows that each nonzero row of E contains exactly two nonzero
elements, one of which is equal to c and the other to -c. Therefore, the row sums of
E are all zero. Also B- E is a nonnegative matrix. Since E + ET O, the matrix
B E is a nonnegative (D(B E), r)-decomposition. Observe that the arc set of
D(B E) is properly contained in the arc set of D(B), as (B E)ii. 0 while
bii: 0. We repeat this process of arc elimination from the decomposition of A until
we reach a matrix C that is a nonnegative (D(C), r)-decomposition of A and such
that sym(D(C)) has no cycle of length greater than 2. By Theorem 3.1, the digraph
D(C) has the required properties. [:]

Finally, we answer Question 4.1.iv.
DEFINITION 4.2. Let A be an n n matrix, and let r (rl,..., rn) be a sequence

of n numbers. The digraph (A, r) is defined as the digraph/(D’, A, r), where D’ is
the complete digraph with vertices {1,..., n}. That is, D(A, r) is obtained from D’ by
removing all arcs (u, v) for which there exists S c_ {1,..., n} such that (u, v) e S SC
or (v,u) E S SC and

1

ES ,jES

THEOREM 4.7. Let A be a nonnegative symmetric n n matrix, and let r
(r,...,r) be a sequence of nonnegative numbers satisfying (2.1) and (4.5). The
following are equivalent.

(i) For every digraph D, a nonnegative (D,r)-decomposition of A is a unique
nonnegative (D, r)-decomposition of A.
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(ii) A has a unique nonnegative (D, r)-decomposition, where D is the complete
digraph with vertices {1,..., n}.

(iii) The digraph D(A, r) has no cycle of length greater than 2.

Proof. (i) = (ii). By Theorem 3.19 in [1] there exists a nonnegative (D’,r)-
decomposition B of A. Obviously, (ii) now follows from (i).

(ii) (iii). This implication is proven by Theorem 3.2.
(iii) (i). This implication is proven by Theorem 3.2 since for every digraph

Da nonnegative (D,r)-decomposition of A is a nonnegative (D’,r)-decomposition
of A. [:]
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MINIMAL RESIDUAL METHOD STRONGER THAN POLYNOMIAL
PRECONDITIONING*
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Abstract. This paper compares the convergence behavior of two popular iterative methods

for solving systems of linear equations: the s-step restarted minimal residual method (commoniy
implemented by algorithms such as GMRES(s)) and (s- 1)-degree polynomial preconditioning. It
is known that for normal matrices, and in particular for symmetric positive definite, matrices, the
convergence bounds for the two methods are the same. In this paper we demonstrate that for matrices
unitarily equivalent to an upper triangular Toeplitz matrix, a similar result holds; namely, either both
methods converge or both fail to converge. However, we show this result cannot be generalized to all
matrices. Specifically, we develop a method, based on convexity properties of the generalized field of
values of powers of the iteration matrix, to obtain examples of real matrices for which GMRES(s)
converges for every initial vector, but every (s- 1)-degree polynomial preconditioning stagnates or
diverges for some initial vector.

Key words, linear systems, iterative methods, nonsymmetric, nonnormal matrix, GMRES,
polynomial preconditioning, convergence, field of values
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1. Introduction. A chief goal of numerical linear algebra is to solve linear sys-
tems of the form

(1) Au=b

in a reliable and fast way. Here A E CNxN is nonsingular and is possibly the result
of a preconditioning operation such as Q/in Qb.

The set of polynomial methods (sometimes loosely referred to as Krylov subspace
methods) has proven to be extremely powerful for solving many types of linear systems.
These are defined by

(2) U(n) U(0) + qn-l(A)r()

or

(3) r(n) [I Aqn-1 (A)]r(),

where u() is the initial guess, {u()}>0 denote iterates, r() b- Au() are the as-
sociated residuals, and each q_l is a polynomial of degree no greater than n- 1.
Examples of such methods are the conjugate gradient method, the biconjugate gradi-
eat method, the minimal residual method, and polynomial preconditioned conjugate
gradient methods (see [1], [12] for overviews of such methods).

Polynomial methods owe their strength to the fact that the properties of polyno-
mials lend themselves to rapid convergence rates for many cases, in particular when A
is Hermitian and positive definite (HPD). However, a comprehensive theory of conver-
gence of polynomial methods for general matrices has remained elusive. The purpose
of this paper is to address the issue of convergence rates of some of these methods.
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A natural choice for a polynomial method is to require that qn-i be "optimal" in
some sense. For example, given A, b, and u(), let

(4) qn-1 be a polynomial (cf. (3)) of degree at most n- 1 which minimizes [[r(n)][,

where I1" II is used here and throughout to refer to the standard 2-norm. This de-
fines the minimal residual method, of which the GMRES algorithm is the best-known
implementation [14]. To limit the average work per iteration, this method is typi-
cally restarted every s steps, leading to algorithms such as GMRES(s). The resulting
method is

(5) r(ms+8) [I-Aqs_;m(A)]r(ms), q-;m selected by (4) based on r(ms).

The average work per iteration for such algorithms applied to general matrices is
proportional to sN; larger values of s generally improve convergence but also increase
the work per iteration.

A considerably cheaper algorithm is polynomial preconditioning coupled with the
basic one-step iterative method; namely,

(6) r(ms) [I Aqs-l (A)]mr(),

where the polynomial q_ is chosen in some appropriate fashion. (Of course, poly-
nomial preconditioning can also be accelerated, for example, by applying GMRES to
the preconditioned system qs- (A)Au qs- (A)b.) Provided that a good polynomial
q,_l can be found, this algorithm requires only order N work per iteration, indepen-
dent of s. Furthermore, the algorithm can be very successful on certain computer
architectures for which inner product computations are particularly expensive, since
GMRES requires inner product computations but polynomial preconditioning does
not.

Good polynomials q_ are not always easy to find, so we consider here the optimal
polynomial preconditioning of degree s- 1 for a matrix A, defined as a polynomial
qs-1 of degree no greater than s- 1 which solves the minimization problem

minimize []I Aq_ (A) I.
It can be shown that such a minimizer exists and under reasonable assumptions in
fact is unique [5].

The performance of this preconditioner is in some sense the best possible for
a polynomial preconditioner. However, it should be noted that more sophisticated
optimization procedures might be considered, such as

(8) minimize fi[I Aq_;i(A)]r()
i--1

(9) minimize II[X Aq_ (A)]mll,

which may in some cases yield faster convergence. In particular, (8) selects a set of
polynomials to give optimality globally over all s-step cycles rather than locally for
each cycle (as GMRES(s) does), and (9) selects a single polynomial preconditioner
that performs well over an aggregated set of cycles without regard to its single-cycle
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performance. The study of the convergence behavior of these methods is beyond the
scope of this paper.

Methods (5) and (6), (7) are similar, but they differ in the following important
respect: (6), (7) uses the same polynomial repeatedly, whereas (5) selects the best
polynomial for each cycle. If an adequate polynomial can be found, then (6), (7)
is much more economical than (5). This is true especially when s is large, which is
usually desirable in order to increase the convergence rate [11]. However, it is not clear
whether (6), (7) converges as fast as (5). The purpose of this study is to investigate
the relative rates of convergence of (6), (7) compared to (5).

It can be shown that the convergence behavior of the restarted minimal residual
method is bounded by

[ 1(0) IIr(m )l[ < max min I[[I Aqs-l(A)]ll[Ir(0)ll ,,,,:

whereas the convergence behavior of the basic iterative method applied to optimal
polynomial preconditioning is bounded by

This motivates the question of the relative behavior of

(2)
bs(A) max min II[I Aqs_(A)]rll and 99s(A) min max II[I Aq-l(A)]rll.

The two functions Cn(A) and n(A) will be used as measures of the convergence
behavior of these two popular iterative methods.

We should say a few words about the tightness of bounds (10), (11). It is not
clear that inequality (10) is sharp, in the sense that for every A, rn, and s there is
an r() for which (10) is an equality. This difficulty is due to the nonlinear nature
of the minimization process (5). However, it does hold that s(A) 1 if and only if
there is an r() such that r() r(s) r(2S)...; i.e., the iterative method stagnates.
Similarly, bound (11) may not be sharp, and in view of (9), polynomial precondition-
ers may exist which have better multicycle convergence than the (locally) optimal
polynomial preconditioner described here. However, the (locally) optimal polynomial
preconditioner is in some sense based on the best information known for a single cycle,
and 99s(A) 1 if and only if this polynomial preconditioner coupled with the basic
iterative method stagnates for some r(). Furthermore, this assumes the optimal pre-
conditioner can be economically found; more standard preconditioners may give an
even worse performance.

The comparison of n(A) and 99n(A) can tell us whether replacing the more
strongly convergent GMRES with the faster polynomial preconditioning can be done
without destroying convergence. For some classes of matrices, e.g., HPD matrices and
nornal matrices (i.e., matrices A for which AA* A’A, where denotes conjugate
transpose--this includes Hermitian, skew-Hermitian, unitary, and circulant matrices,
for example), it is known that (A) n(A), so both methods have the same
convergence rate for such matrices [2], [10], [3]. In this paper we show further that
the class of upper triangular Toeplitz matrices A satisfy (A) 1 iff n(A) 1;
that is, replacing GMRES(s) with the optimal polynomial preconditioning of degree
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s- 1 cannot cause stagnation. On the other hand, we do give an example over the
real numbers of a matrix for which restarted GMRES(s) converges but the optimal
polynomial preconditioning of degree s- 1 can stagnate. That is, GMRES is overall
a more robust iterative method than the corresponding polynomial preconditioning.

Here is an outline of the remainder of the paper. In 2 a general theoretical
framework for n and 99n is established, various elementary results are obtained, and
known results are summarized. In 3 the results for Toeplitz matrices are presented,
and in 4 an example for which n 7 99n is given. Implications of this result are
discussed in 5.

2. General results on convergence. The following sections give the basic
framework of tools used to analyze the convergence behavior of these iterative meth-
ods. Furthermore, a combination of existing and new results is given on the conver-
gence behavior of the minimal residual method and optimal polynomial precondition-
ing.

2.1. Convergence bounds: Definitions and elementary results. The con-
vergence bounds for the minimal residual method and for optimal polynomial pre-
conditioning are given below. These definitions are slightly more general than the
definitions given in 1 in that they differentiate between the solution of real and
complex linear systems.

Let ]K denote either the field of real numbers R or the complex numbers C. Let
Ki[z] denote polynomials over K of degree no greater than i. Then for A E ]NxN,
let

,K(A)

,K(A)

inf sup II(I- Aq(A))vll
qn-[z]

inf
qeiKn_l [z]

sup inf
.N:llvll=l qKn-. [z]

For both and , when IN- ]R, the infimum can be taken over either real or
complex polynomials without affecting the values of and [11].

Let us now confirm that in fact the convergence bound for the minimal residual
method is at least as strong as that for optimal polynomial preconditioning. The
proposition also sheds some light on what happens to the bounds when A is singular.
Define the degree of a matrix d(A) as min{deg(P) P(A) O, P monic}. Then we
have the following proposition.

PROPOSITION 2.1. Let A ]NxN. Then 0 <_ P,K(A) <_ ,(A) <_ 1. If d
d(A) <_ N is the degree of the minimal polynomial of A, then 0 < ,(d) <_ n,K(d)
for any n < d. For n >_ d and for A also nonsingular, ,(A) ,(A) O. If A
is singular, then Cn,K(A)= :,,(A)- 1 for any n.

Proof. The first inequality is easily shown; see [11]. The result for n < d is shown
as follows. If ,(A) 0, then for all v KN, IIv]l- 1, infq [1(I- Aq(A))vll- O.
It is easily seen that if v is chosen to contain nonzero components of all generalized
eigenvectors of A, this leads to a contradiction. For n > d, if A is invertible, the monic
minimal polynomial for A can be renormalized so that the constant term is 1. If A is
not invertible, then v can be chosen from the null space of A, and (I- Aq(A))v v
for any q. D
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Define fn IKN x NxN by

f,(v, A) inf ]l(I Aq(A))v]]2

qeEn-l[x]

This function defines the convergence of the minimal residual method applied to a
specific vector: for A e IKNN, Cn,K(A)2 supveKN fn(v,A)/llvll 2.

Let K___,(v,A) e CN’ be defined by K,(v,A)ei Ai-lv, where e is the standard
unit basis vector. Also define the degree of a vector d(v, A) as min{deg(P) P(A)v
0, P monic}. Note that AKn (v, A) Kn(Av, A) is full rank if and only if d(Av, A) >_
n, and when A is nonsingular d(Av, A) d(v, A). Then for AK__(v, A) full rank,

(13)
f(v,A) ](v,A) v*v v*AK__(v,A)[K(v,A)*A*AK__(v,A)]-K(v,A)*A*v.

PROPOSITION 2.2. For fixed A, fn(’, A), considered as a function of 2N real vari-
ables under the identification 2N cg, i8 C) on the complement of the closed set
S {v" d(Av, A) < n}. If A is nonsingular then fn(’, A) is continuous everywhere,
and if furthermore n <_ d(A) then S has measure zero.

Proof. The first statement follows from the above remarks and the fact that
in(V, A) is a rational function of the real and imaginary parts of the elements of v
and A. When A is nonsingular and n >_ d(A), fn(’, A) is uniformly zero. Otherwise,
it suffices to show that for v S and v --. v e S, fn(v,A) fn(v,A). Let
p(A) be the minimal polynomial for v with respect to A; note that deg p < n. Let
(z) p(z)/p(O). Then 0

2.2. Continuity of the bound functions. To understand the convergence of
polynomial iterative methods, it is desirable to get a better understanding of how the
bound functions n, and , behave. See [11] and [10] for elementary results on
these functions. In what follows we demonstrate in particular that bn, and ,
are continuous functions on the open set of nonsingular matrices. It will be noted,
however, that they are not generally continuous everywhere; for example, CY,
N, 1 for A singular but CN, N,K 0 for A nonsingular.

We begin with the following lemma.
LEMMA 2.3. For A, Ai CNN with Ai A and for r, ri __g with ri r,

lim inf__. d(r, Ai) >_ d(r, A).
Proof. Let Pi be the minimal polynomial for ri with respect to Ai, and let P be the

minimal polynomial for r with respect to A. Note first that the eigenvalues of all {Ai }
form a bounded set: if {,v} is an eigenpair of Ai, then I1 IIAivll/llvll <_ IIAll,
but since IIAill is bounded near IIAII, IAI must be bounded. Thus the polynomials
Pi must reside within a bounded set because the coefficients of Pi are products and
sums of the eigenvalues of A.

Suppose there exists a subsequence i such that deg(Pi) d(ri, Ai) < d(r, A)
for all j. By boundedness, this subsequence has a convergent subsequence Pi with

pi __+/5 for some polynomial/5. We note that necessarily deg(/5) < d(r, A) by the
choice of Pi. Furthermore,

since Pi(A)r 0. Since P --. /5, IIP(A)r- P(A)rll- o. Furthermore,
since the {P} are bounded, A - A and ri --. r, we have for P (z) cjzY,
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JIIPk (A)r Pk (A)rll <_ I%,l IlAYr A,kr[ O. Thus P(A)r 0, which is
a contradiction.

Note that in fact we may have d(r, A)
2/i], r{ [1, 1]T.

LEMMA 2.4. Let f $1 x $2 --+ R be continuous, and let SI c_ CTM compact
and $2 c_ C’2 open. Then F(u) SUpves f(v, u) and G(u) infvs f(v, u) are
continuous.

Proof. We prove the result for F. Note that F(u) < oc for any u. Let u{ --. u,
with u{, u E $2. We first show that SUpves If(v, u{) f(v, u)l O. Otherwise, there
exists e > 0, a subsequence ij, and vectors
for all j. By the compactness of S, there exists ik, a subsequence of ij, such that
v{ - S. Then

If(v, u) f(vk, u)l

_
If(v, u) f(, u)l + If(, u) f(v, u)l - o

by the continuity of f, which is a contradiction.
Thus for any > 0 there is some m such that for all > m,

f (v, u) e_. < f (v, u) < f(v, u) + e

for any v S1. Taking suprema over S1 yields

F(u)- < F(u{) < F(u)+ ,
implying IF(u)- F(’u)l <_ e, giving the result. Cl

THEOrtEM 2.5. The function ,,K(’) is continuous on the open set of nonsingular
matrices in KNxN

Proof. Note Cn,(A)2
supve,llvll= fn(V, A), where fn is as defined earlier. If

n > d(A), then Cn,(A) 0 and the result follows by letting Pn be a scaling of the
minimal polynomial for A: 0 < Cn,(A) < n,(A) < IIP(A)II--, 0 for A --, A.
Otherwise we proceed as follows.

Since the set of nonsingular matrices constitutes an open set in NN, the previ-
ous lemma will give the result if it can be shown that the map f (., .) is continuous on

{r" Ilrl] 1} x {A" A nonsingular}. Select A, A nonsingular and Ilrll IIrll 1,
and let Ai A and ri r. If d(r, A) < n, then for P, a scaling of the minimal
polynomial of r with respect to A, 0 < fn(ri,A) < IIP(A)[I 0. Otherwise,
by the previous lemma, for some m, d(r,A) >_ d(r,A) > n for all > rn. Then

A(r,A) L(r,A) for all > m, and A(r,A) L(r,A). Since the rational
function fn(’, ") is continuous on the open set of elements for which it is defined, the
result follows. F1

THEOREM 2.6. The function n,(’) is continuous on the open set of nonsingular
matrices in IN N.

Proof. Since ,(A) n,c(A) for A NNxN, the result need only be shown
for ]K C. We have

:,(A)= inf IIP(A)II.
Pn (0)--1

As in the previous theorem, assume that n < d(A). Note that ,c(A)
infpes IIP(A)II, where S {P e Cn[z] P(0)= 1, IIP(A)II < 2}, and as usual
degP < n. Note that S is nonempty: P(z) 1 defines a polynomial found in S.
Importantly, by the linear independence of { nA }i=0, the set S is bounded. Also note
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that S is closed. Thus, using the notation of Lemma 2.4, we let f(Pn, A)
to obtain the result via that lemma. []

The previous two theorems confirm the continuity of the bound functions. This
is an expected result--a small perturbation of the matrix A should cause only a small
perturbation in the behavior of the iterative method.

2.3. The generalized field of values. In the study of conjugate gradient meth-
ods, the field of values F(A) {x*Ax:x E (N, ilxl 1} [7] plays a prominent
role in determining convergence behavior of the methods. In this study we will make
use of the concept of the generalized field of values (see, e.g., [6]) to develop a more
powerful set of results.

Let us first establish some notation. For any matrices A {ai,j}
and B {bi,j} IKrbxcb, define the standard tensor product of matrices A@B
Nbxb by e+r(i_)(A@B)et+(k_ a,kbj,t [13] Note that when A, B,
C, and D are matrices of dimension such that AC and D are well defined, then
(AB)(CD) ACBD.

For a set of matrices {A}p= c CNxN the matrix R =1 e@A can be
considered as a vector of quadratic forms v (I @v* )R(l @v) C. Thus R may
be thought of as representing a map from CN to C.

Let the generalized field of values over a field K for a set of matrices {Ai}i
cNxN be defined by

F({A}) (I@v*) e@A (l@v)’ v g, lv 1

1 Cn.
i=1

Note that the quantity Fc({A}) coincides with the standard field of values of a ma-
trix [7].

Also define the conical generalized field of values,

c
i=1

It is clear that this object is a cone; i.e., for real > 0, I ({Ai}L)
({Ai}i). Note that I@F({Ai}L)- H(e)({I}U{Ai}L), where H(v)
denotes the hyperplane { NXlv* 1} for a vector v N, and more generally
H(v, ro) { N v* r0}. Note also that the conical field of values is
preserved by simultaneous congruence transformation: for P Nx nonsingular,

We may now use the concept of generalized field of values to find characterizations
of when ,(A) or ,(A) is equal to 1, i.e., when the corresponding iterative
methods can stagnate. This allows the performance of these methods to be studied
in terms of the geometric properties of these objects, in particular, their convexity
properties, as in the case of the standard field of values.

The following two theorems characterize stagnation of the methods in germs of
roperties of the generalized field of values.
TOaM 2.7. For onsi9lar matrices A Kx, ,(A) 1 if and onl if
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Proof. Suppose that Cn,(A) 1. By continuity of fn(’, A) and by compactness,
there exists a vector v e KN, Ilvll 1, such that fn(v,A) infqeE,_l[z [1(I-
Aq(A))vll 1. Note that for such v, d(v, A) > n. In view of the definition of fn (13),
this can hold only if v is perpendicular to the space generated by Av, A2v,..., An’v,
which implies that v’Air 0 for 1 <_ i _< n. Thus 0 E F({Ai}i=I).n

Conversely, if 0 e FK({Ai}=I), then for some nonzero v e KN with Ilvll 1,
v*Aiv 0 for 1 _< _< n. This implies that v is perpendicular to each Aiv for
1 _< _< n and for any q,

II(I Aq(A))vll 2 IIv qoAv qlA2v qn_lA2vll2 Ilvll + IIAq(A)vll 2 >_ 1.

The result follows.
THEOREM 2.8. For nonsingular matrices A KNxg, fln,K(A) 1 if and only if

0 cvx(F({Ai}in__l)), the convex hull of the generalized field of values.

Proof. By the Hahn-Banach theorem, 0 cvx(FK({A}il) iff there exists

hyperplane separating 0 from F({Ai}=1); i.e., for some c e Kn, Re c*w > 0 for
all w E F({Ai}in__l). (In the complex case, let c Cr + ici and w wr + iwi
FK({A }=1), so that Re c*w c;wr + cw. Let c (R) ci and @ w (R) w. Then
Re c*w *@, and the result follows from the Hahn-Banach theorem in .)

Let C(c,z) n__(c*e)z-. Then Re(c*F({A}=)) Re(F(AC(c,A))).
Suppose n,(A) < 1. Then there exist P(z) 1- zq(z) and p such that

IIP(A)vll 2 1- 2Rev*Aq(A)v + IIAq(A)vll _< p < 1 for every v e KN with

Ilvll 1. Thus 1- 2Rev*Aq(A)v <_ p for such v, or Rev*Aq(A)v >_ (1- p)/2.
Defining c by q(z) C(c,z), we obtain Rec*F({Ai}in__) >_ (1 p)/2 > 0, giving
0 cvx(F({A’Z}%)).

Suppose there exists C(c, z) ’(c*e)z- with Re(F(AC(c, A))) > 0. We
I1 11 +   IIAC( ,A) II > 0.

By compactness, there exists 5 > 0 such that Re(F(AC(c,A))) > 5. Hence, for
a sufficiently small e, [[[I- eAC(c,A)]vl]2 1 -5 for all v with IIv]l 1. Thus
fln,(A) < 1. [-1

The principles behind these two theorems will be used heavily in 4 to construct
the counterexample. In particular, note that if the generMized field of values asso-

ciated with the powers of A is convex, then either both methods converge or both
diverge. On the other hand, if the generalized field of values is nonconvex at the
origin, in the sense of Theorem 2.8, then restarted GMRES will necessarily converge
but the ssociated polynomial preconditioning may diverge.

2.4. Bounds based on the generalized field of values. Theorems 2.7 and 2.8
can be quantified in terms of the distances between 0 and either of the sets F({A}:)
and cvx[F( n{A }i=1)]. In particular, the convergence rates of the two methods can
be bounded in terms of these distances.

First consider the map FA Kn NN defined by FA(C) AQ(A), where
Q.(z) in__ (ec)z_l. Then FA is a bounded map under the induced norm

]IFA][ sup []AQ(A)][ sup sup

Observe that IIFAII <_ Eil IlAiI[
The following two theorems give bounds on Cn,(A) and 9,(A). Here, let

A ]Yx N, and let S,, denote the sphere in Kn.
THEOPEM 2.9. Let sup{p >_ 0" (p. S,,) gl FK({Ai}%1) {}}, the distance

from F({A}I) to the origin. Then ,,E(A) <_ (1- (I/][[’A][)2) 1/2.
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Proof. Given v e ]KN, lvll 1, let w v*AK (v, A) and let c satisfy Re c*w >
1, for example, by c- w/llwll. Let Q(z) l(ec)zi-1. Then let 0- eQ

for e > 0.

II(Z A((A))v[] v*v 2eRev*AQ(A)v + 211AO(A)vll *v + llrAII.
Setting e- v/llrall gives the result.

{A }=)] {}}, theTHOaM 2.10. Let r] sup{p >_ O’p. Sn,K N cvx[FK( n

distance from cvx[F({A}=)] to the origin. Then ,(A) <_ (1 -(/llrAII)2)l/.
Proof. The result is trivial for - 0. Otherwise, note that

r. Sn,, N cvx[F({Ai}il)]

must contain exactly one point. It has at least one point since f(v) --IIv*AK(v,A)II
must attain its infimum on {v I111 1}. On the other hand, if the intersection
contains two distinct points yl and /2, then (71 +/2)/2 is in the interior of r. Sn, and
also in cvx[F({Ai}=)] due to convexity, which is a contradiction due to closedness.
Now, let /be the point in this intersection.

We claim that for c /llll, c*w _> for every v E KN, Ilvll- 1, with w
v*AK__n(v,A). This follows if we can show the result for all w E cvx[FK({A}_I)].
Otherwise there exists w cvx[FK({Ai}i__)] with Rey*w < 117[I 2, where 117[[ r.
Let w ew + (1 e)7, 0 _< e < 1. Note that w cvx[FK({A}=)] for any such e.

Furthermore,

for sufficiently small e. For this e, w is in the interior of r]. Sn, and also in

cvx[F({Ai}_l)], which is a contradiction.

Defining Q and as in the proof of the previous theorem we see that

II(Z AC2(A))vll v*v 2eRev*AQ(A)v + eIIAQ(A)vll <_ v*v 2e / eellrAII e

for every v ]KN. Setting e v/llrll gives the result.
These bounds will become useful in the numerical example given later.

2.5. Deriving results for other matrices. This subsection gives a collection
of results that add further insight into the behavior of the bound functions and will
be useful later for extending results to wider classes of matrices.

The first result shows that the generalized field of values is convex and the bound
functions are equal for normal matrices.

THEOREM 2.11. For A KNxN nonsingular and normal (e.g., Hermitian, real
symmetric, skew Hermitian, real skew symmetric, unitary, or circulant), /({Ai}=0)
is convex, and, in fact, ,(A) ,(A).

poof. Se [0], [a], Is].
The following result shows that for a block diagonal matrix, the convergence rate

of either of the methods is no better than the convergence rate of that method for
any of the diagonal submatrices of the block diagonal matrix.

THEOREM 2.12. For" A IKNxN, i= 1, 2, ,K(A) <_ ,(diag[A, A2]) and
99n,N(A <_ 99n,N(diag[A1, A2]). Furthermore,/({A}__0) _c/({diag[A1, A.]i}__0).
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Proof. The first result follows easily from

_< sup
V]NI+N.:IIvlI= PECn[x]:P(O)=I

99n,4(A) inf sup
PCn [x]:P(O)=l vEKN :llvll=l

inf sup p([APeCn[x]:P(O)=l VelN1 :llvll---1 A2 0

inf sup [lP(diag[A, A])v[[ ,(diag[d, A2]).
PCn[x]:P(O)=I vNNI +N2 :llVI=

The subset inclusion result follows from a similar line of argument. [1

The next result shows that for the special case of a submatrix replicated down
the main diagonal of a block diagonal matrix, the convergence rate for polynomial
preconditioning is unchanged by the replication.

THEOREM 2.13. For A E KNxN and I an identity matrix of any size,
n,;(A@I) 7)n,N(A). Furthermore, for {Ai}?=I c_ KNxN, cvx[N({Ai@I}?=l)]
cvx[/K({Ai}=l)]

Proof. Using the results on tensor products from [13],

pn,c(A@I) if llP(A@I)ll if 3,max[[P(A)*P(A)]@I] 1/2

inf Amax[P(A)*P(A)] /2 pn,(A).
P

To show the set equality, it is sufficient to note that

j j

EE eiv;Aivj E(1/n)E ei(x/vj)*Ai(x/vj) cvx[/({Ai}al)].
j j

The following weaker result holds for the minimal residual method.
THEOREM 2.14. For Ai Ksxs and Is an identity rnatriz of size N, the set

({A @IN}= is convex.

Proof. We view ({A @IN}=) as the image of the composition of two maps,
where the first one has a convex range and the second one is linear.

{vi}=l C The first map p takes v toFirst let v i vi @ei for vectors X KN
R(V) EN ]IN xN= ViV Note that the range of p i8 exactly the convex cone of
Hermitian nonnegative definite matrices in KNxN.

nThe second map cr takes a matrix P Ksxs to r(P) -i=l eitrace(PA) Kn.
This map is linear.

Let R be the map associated with K({Ai@IN}in=I). To complete the proof, we
show that cr(p(v)) R(v)"

n N

i=1 i=1 j=l
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=Eeitrace v; A cr(p(v)). El
i--1 j---1

We may also characterize situations in which en,K(A ()Ik) On,K(A ()Ik). For
nthis result, let us state the following definitions. Consider A i=l ei (Ai, Ai E

KNN. For our purposes, di Ai. For v e En, define v.A IvT I]A i[ev]Ai.
Define (A) inf SUpx (I + v. A)x, (A) sup inf (I + v. A)x, where x
and v are vectors over and the suprema are over lxll- 1.

Let us define the restricted generalized field of values: for such A and for M a
subspace of CN, FM(A) {i ei[x*Aix]’llx[l- 1, x e M}. Also, let E(B) NN
be the subspace over spanned by the (right) singular vectors associated with the
maximal singular value of B NNx N.

The following result generalizes Theorem 2.8.
LEMMA 2.15. Given A e@A, A gxN, v is a minimizer of N(A) if

and only if for B v. A, 0 e cvxF(Z+B)([I@[I + B]]*A).
Proof. Following the proof of Theorem 2.8, let us suppose first that 0

cvxF(Z+B)([I@[I+B]]*A). Then for any w there exists xw e E(I+B), l]xwl 1,
such that Re x(I + B)*[w. A]x 0. Thus for any w and fore > 0,

l(z + ( + ). A)I: ll(z + ( + ). A)xll:
I(Z + . A)xll + :(. A)xI: I(Z + . A)xI: llZ + . All,

since the cross term is zero. Thus v is a local minimizer. By a convexity argument it
can be shown that’v is thus a global minimizer.

If 0 cvxFEK(I+B)([I@[I + B]]*A), then as before there is w such that for all
x e Xg(I + B) such that Ilxll 1, Rex*(/+ B)*[w. A]x < 0. Then

II(z + ( + ). A)xll II(z + S)xll
+ 2eRex*(I + B)*[w. A]x + e2ll(w A)xll2 < II(I + B)xll

uniformly for e sufficiently small. For more general x such that [Ixll 1, since x
has components of right singular vectors associated with smaller singular values of
I / B, i cn so be shown UhU I1(1 / (v / ). A)xll2 < II I / BII 2 uniformly for
sufficiently snall e. By this line of argument we arrive at a contradiction to v being a
minimizer. El

LEMMA 2.16. Given A iei@Ai, Ai KNxN, K(A) K(A) ff and
only if for some (equivalently, every) minimizer v of K(A) and for B v. A,
0 e Fr=(Z+B)([I@[I + B]]*A).

Proof. If 0 e F=(+B)([I@[I+B]]*A), then there exists x e E(I+B), l]xl] 1,
such that (I + B)x Aix for all i. Then such B solves the least squares problem for
x; i.e., ](I + B)xII inG II(z + w. A)xlI, so in fact 9(A) IlI+ BII
(A) 5 (A).

Now suppose that (A) =(A). Let v be a minimizer for , and let B v.A.
Let x be a maximizer for , ]x] 1. Then by the definition of , letting B’ solve
the least squares problem for x, (A) =(A) ](I + B’)x]] ]](I + v. A)xl[
[](I + B)x[] (A). But then x must be a maximal right singular vector of I + B,
and in fact this inequality is an equality. Furthermore, v solves the minimization
problem inf [{(I + w. A)x[[, so (I + B)x Ax, giving the result.

COROLLARY 2.17. Given A e @A, Ai NxN, if for some minimizer
v of (A) and for B v. A, F=(,+)([I@[I + B]]*A) is convex, then (A)
(A).
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These results lead to the following theorem, which shows that for k sufficiently
large, and are equal for A@Ik.

THEOREM 2.18. Given A /%1 e/@A/, A E KNxN, if k <_ N is the smallest
dimension for the maximal singular vector space of I + B I + v A for v any
minimizer for (A), then for Ik the identity matrix of dimension k x k, K(A@Ik)

Proof. Let B’ be a minimizer for K(A@Ik). Then B’ v.A@I (v.A) @Ik
B@Ik, where B v.A. It is clear from Theorem 2.13 that B is a minimizer for
(n@Ik) if and only if B is a minimizer for (n). Note also that for I + B UEV*
a singular value decomposition, [I + B]@Ik (U@Ik)(E@Ik)(V@Ik)* is also a

singular value decomposition. Thus E(I + B
B’]]*[A@I] ([I@[I + B]]*A)@I C(R)/ for C y/e/@C/, C [I + B]*A/.
We conclude that FzK(I+B,)([I@[I + B’]]*A’) {E/Ey e/vC/vj y.j Ilvj]l 2
1, vj E(I + B)}. It is enough to show this is convex.

For v/ EE(I + B) let v Ev/@e/ and p(v) E/v/v. Furthermore, let
nor(P) E/=0 e/trace(PC/), letting Co I. Note that this sum begins at 0.

Since, without loss of generality, k _> dimE(I + B), it is easily seen that the range of
p is convex. Since a is linear, the range/ of a o p is convex. But then H(el) 1 [
FEK(X+B,) ([I @[I + B’]]* A’) is convex. I-1

It should be added that when A/ A/, under appropriate conditions the min-
imizer for is unique (see [5]). We finally conclude that, given A and n, for some
k no greater than N, ,E(A@I) ,(A@Ik). Note also that n,K(A@Ik) is
nondecreasing in k (Theorem 2.12), whereas ,,E(A@Ik) is constant as a function of
k (Theorem 2.13).

The result that follows allows us to characterize convergence of the two methods
solely in terms of the conical generalized field of values rather than the standard
generalized field of values. These results will be useful later in the paper.

PROPOSITION 2.19. For A KNN, 0 F({A/}/I) holds if and only if
el ({Ai}/n=0). Also, 0 cvx[F({A/}/I)] if and only if el CVX[K({Ai}-0)].

Proof. Recalling that H(el) {u KN elu 1}, note that

Note also that if 1 E /({A/}=0). then since 1 HK(el), 1 e HE(e)/K({A}=o).
Now suppose e e cvx(({A}=o)); i.e., there exist t k 0, t 1, el

t[y=oeyv;Ajv] for some v e KN. That is, 1 tiv;vi, and for j k
1, 0 tvAYv. Now, let t tv;v, and let v v/[v[] when v # 0

be any vector of norm 1 Then, for S {i v # 0},and otherwise let v
’*AJv] since tvv 0 for S,AJv] E, t[Ej ejv

’= {A
The simple result below states that if the conical field of vlues of set of matrices

is convex, then it is also convex for subset of the matrices. This can be useful for
transferring result on equivalence of convergence of iterative methods to lower
iteration number.

PROPOSiTiON 2.20. For A CNzN if fi({A}=) is convex, then for m n,
e C co wx,

and V C, then V({A}=) ({Ev,Aj}=) is convex.
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Proof. A linear operator applied to a convex set preserves convexity. [:]

The following are two further results on combining multiple matrices into a block
diagonal matrix.

PROPOSITION 2.21. Let Ai E C.N1 NI and Bi CN2N., and also suppose that
./K({A}=I) and/K({B}.__I) are convex. Then/({diag[A,B]}=l) is convex.

Proof. It is enough to show that for t 0, t 1, V,l N, v,s N,
there exist Vl N, v N such that for 1 k n, t[e[vAv, +
vsBv,s]] [evAkvx + vBvs] This may be done simply by letting

k k

k k

A nCOROLLARY 2.22. Let A CNxN and suppose that ({ }=1) is convex.
Then ({ADm}) is convex for D C any diagonal matrix.

The next two results further extend the above convexity results to the tensor
product of a matrix with an appropriate normal mtrix.

PROPOSITION 2.23. Let A CNxN, and suppose that ({A}) is convex.
Also let B MxM be any normal matrix with eigenvalues in , and let p C[x].
Th $({A(B)}I) ox.

Proof. Let B UAU*, U NN unitary, A- {A} NN diagonM. Note
that

j

j

The result follows from noting that a direct sum of convex sets is convex nd the
linear transformation of convex set is convex.

COROLLARY 2.24. For A, B NNx, for B normal with eigenvalues in N, if
({A’}=0) is convex, then so is ({(AB)}0).

The next proposition shows thgt it is possible to replace matrices with their
transpose or conjuggte transpose.

PROPOSITION 2.25. For A CNxN, 8ppose that K({A}) is convex, and
each let be either A, A, or A. Then ({}) is convex.

Pro@ The result bllows from x*Ax x*Ax and x*Ax x*Ax *A.

Similarly, each mtrix can be replaced with its Hermitian and skew-Hermitign

parts. Here, (M)H denotes the Hermitian prt of g matrix, (M)H (M + M*)/2.
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PROPOSITION 2.26. For Aj E RNxN, &({Aj}j=I) &({(Aj)H}j=I), and

for Aj e CyxN, /c({A.}j=1.) is isomorphic to/c({(dy)H, (idj)H/i}j=l) under the

identification of Cn with N2n.
Proof. For the real case, note that v*Av v*(A)Hv; for the complex case, the

real and imaginary parts of v*Av are given by v* (A)Hv and -v* (iA)Hv, respec-
tively.

The following result indicates that shifting mtrix by constant multiple of the
identity does not change convexity of the conical field of values.

PROPOSITION 2.27. For A CNxN and c C, if K({A}=0) is convex then
({(A + cI)i}=o) is convex.

Proof. The result follows from the fact that a linear transformation T over C
exists such that ({(A + cI)i}=o) T({Ai}i0).

3. Results for Toeplitz matrices. In this section we demonstrate that for the
special class of upper triangular Toeplitz matrices, the generalized field of values of
the powers of any such matrix is convex. The implication of this result, based on the
results of the previous section, is that for such matrices, if GMRES(s) converges for
given s, then the optimal polynomial preconditioning of corresponding degree must
also converge.

Let us begin with notation. Let Dk NN be defined by eDkej 5,j_.
These mtrices form bsis for the Toeplitz matrices. Note that D0 I, D_ D,
nd for kl O, DDt Dkt. A Toeplitz matrix over is defined to be _1NtD
for t .

We begin by proving the convexity of ({D}l-g)" Note that ech r

[rl-g,..., rN-1] e ({D}) can be mapped by linear injective map to the spce
of rtional functions of the form p(z) N-1=l-Nrz*, the z-transform. Letting

r x*Dx, with x e g, r O for 6 [1- N,N-1], nd x O for 6 [1, N], we

can write

Xi+ i-t-l Z
i--1-N j=l i=0 i=0

Thus p(z) q(z)(l(1/z) where q(z) N-1=0 xi+zi Here the convention O(z)
N--1 zii=0 ci is assumed, and similarly for rational functions. Note then that r

F({Di}) if and only if the corresponding p may be factored as q(z)Et(1/z) for q
K_i[z].

Let 7) be the set of symmetric rational functions over N; i.e., p(z) /5(1/z),
such that zN-ip(z) iS(z) N[z]. Note that/) is a linear space over the reals, in
the sense that pi E 7)(, ai E R imply that aipi E/):. Furthermore, let 7) denote
the set of rational functions over K factorable as q(z)C(1/z), q E IKN_i[x]. Clearly
/)t( E_ 7)(. The convexity of/(({D }) will follow if 7)( can be shown to be a convex
subset of the linear space 7).

Let us consider the properties of polynomials in zN-17)(. Note that if
root of s(z) 7), then so is 1/, and furthermore both of these are roots of the
polynomial zN-is(z) E zN-i7)(. Also, for nonzero a, 1 if and only if a and
1/& are distinct, so for a E K, I1 1 implies that s(z)/[(z- a)(1/z-
Similarly for N JR, a E C \ IR, and I1 # 1, the roots a, (i, 1/(, and 1/a are all
distinct, so s(z)/[(z a)(1/z ()(z )(1/z a)] E 7). This demonstrates that for

Icl - 1, the roots a and 1// must have the same multiplicity in zN-ls(z) z-17).
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Note also the following lemma.
LEMMA 3.1. For z on the unit circle, s(z) E 7) takes on real values.

Proof.

s() (1/)= () ().

The following result characterizes polynomials in zN-lpg.
LEMMA 3.2. For nonzero rational functions s(z), the polynomial zN-ls(z)

zN-17)g if and only if the roots of zN-ls(z) K[z], counted with multiplicity, consist

of k zero roots and (N k 1) pairs of roots of the form {ci, 1/i} and furthermore
s(z) > 0 for all z on the unit circle.

Proof. For zN-ls(z) zN-17)K we have

N-k-1 N-k-1

zN-ls(z) zN-lq(z)CI(1/Z) (OzO)ZN-1 H (Z Cti) H (l/Z-- 6zi)
i=1 i=1

()z (-) l-[ (z-) II (z- /)
k i=1 i=1 i=1

for some k _> 0 and for q(z) c l-I(z-ci). Note that q(z) has strict degree (N- k- 1)
and zN-ls(z) has strict degree 2(N- 1) k. Also note that if s(z) 7), then for

Izl 1, s(z) q(z)(t(1/z) q(z)(t(2) Iq(z)l 2 _> 0. To show the converse, let

-() (-) l-I (-
i=1 i=1 i=1

N-k-1 N-k-1

II II
i=1 i=1

(z 1/()

By substituting values of z for which 1/z 2, we obtain necessarily that c >_ 0, so c

may be written c c(, giving the result. F1

The previous result shows that roots c of the polynomial zN-ls(z) zN-17)K
with Icl 1 must necessarily have even multiplicity. Thus, we have the following
corollary.

COROLLARY 3.3. For nonzero s(z) 79, s(z) 7) if and only if s(z) is negative

for some z on the unit circle or s(z) has a root on the unit circle of odd multiplicity.
We then conclude the following.
LEMMA 3.4. For s(z) 7), s(z) 7) if and only if s(z) is nonnegative on the

unit circle.

Proof. The case when s(z) is zero is readily dispensed with. If s(z) 7), then,
as shown earlier, s(z) is nonnegative on the unit circle. For the converse, it suffices
to show that if s(z) T) has a root ei of odd multiplicity on the unit circle, then
s(z) is negative somewhere on the unit circle. In this case s(z) (z- ei)2"+lt(z),
where t is nonzero at ei. Let z ei(+5).

rn 2rn+ls(ei(+e)) (ei(eie 1))2"+lt(z) ei(’+l)[(--1) ie ]t(ei) + O(5"+).

Thus for sufficiently small 5, s(e(+5)) and s(e(-5)) must have different signs.
Thus, we have the following.
THEOREM 3.5. /K({Di}/N___-N) is convex.
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Proof. Both 7)K and the set of rational functions which are real and nonnegative
on the unit circle are convex sets, so their intersection is convex, giving the result. I

COROLLARY 3.6. For Ti E ]NN Toeplitz, /:({Ti}) is convex.

COROLLARY 3.7. For T ]NN upper triangular and Toeplitz, nF({T }i=o) is

COVeX.

The results of 2 can be used to extend these results further.
COROLLARY 3.8. Fop T ]NN ’upper triangular and Toeplitz and B (NxN

normal with eigenvalues in N, :({(T@B)}=o) is convex.
COROLLARY 3.9. For Ti NNN upper triangular Toeplitz,/:({(diag{T})j}jn__0)

is convex.
COROLLARY 3.10. For Ti ]N N upper triangular Toeplitz, and B and B

normal matrices over I with eigenvalues in N, :({((diag{T@B})@B)J}j=o) is
convex.

Thus, for a fairly large number of matrices, including normal matrices and direct
sums of upper triangular Toeplitz matrices, if GMRES(s) converges, then the optimal
polynomial preconditioner of corresponding degree must also converge, although in
the latter case it is not clear that the convergence rate is necessarily the same.

One might be led to believe that the same result holds for all matrices. However,
the next section shows that this is not the case.

4. Counterexamples for general matrices. In this section a method is given
for generating matrices A (NN for which Cn,:(A) < 1 but n,:(A) 1 for certain
values of n and N.

In particular, we will construct a real nonsingular matrix A of dimension N 4
such that CN-,::(A) < N-,(A)= 1.

The following step-by-step process is used to construct the counterexample. It
should be noted that the method given here may be used to generate other counterex-
amples A NN, possibly for larger N, for which N-,(A) < gN-,I(A) 1;
however, the construction is not necessarily always guaranteed to work, and each
potential counterexample must be checked to confirm its validity.

Step 1: Construct HPD M ]lNN and w ]g such that H =_ (D(w)M)H is

nonnegative definite with kernel of dimension 2. Here we define D(w) (ew)eie.
Let us note that for nermitian M, H (D(w)M)H AoM, where A lw* +

wl*, where 1 denotes the vector of all l’s, and BoC denotes the Hadamard product
of matrices, {bijcij}. We thus seek H AoM with kernel of dimension 2. If w has
no zero entries, then this may be written M A-oH, where B- denotes the
Hadamard inverse, { 1/bij }.

N-2N ]NNWe define the map/," IN X Hi=I --+ by

N-2

t(W, {Xi N-2 1" -1}i--1 W + W 1) oE
i--1

Since A-i is nonnegative definite when wi > 0 for all [6, p. 348] and nonnegative
definiteness is preserved by Hadamard products [6, p. 309], matrices in the image of

# for such w are nonnegative definite.
To obtain a matrix M in the image of # that is not only nonnegative definite but

also positive definite, we seek w and {xi} such that all symmetric matrices in a neigh-
borhood of it(w, {xi}) are in the image of tt. That is, we seek a point (w, {xi}) where
the Jacobian J(#) is of rank N(N + 1)/2, the dimension of the space of symmetric
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matrices. This condition also assures a set of matrices M of positive measure which
satisfy the desired condition.

It can be shown directly that for N 3, J(#), a matrix-valued function of size
N(N- 1) 6, never has rank N(N / 1)/2 6. However, when N 4, the vectors
w, xl, x2 yield J(#) of size N(N- 1) 12 and of rank N(N / 1)/2 10 and
corresponding M p(w, zl, z2) of rank (N 2) 2:

w-(1 2 2 3)T Z1--(8 8 3 9)7, x2--(5 8 2 8)T

This yields

89/2 104/3 34/3 28
104/3 32 10 136/5M-
34/3 10 13/4 43/5
28 136/5 43/5 145/6

The nullspace V of H AoM j-N-2 xix consists of vectors perpendicular to bothi=1
X and x2. A basis of V for our example is given by

Yl (0 --3 --4 4)T Y2 (--8 --1 24 0)T
Step 2: Examine the image of {v KN: v’My 1} n KerE[(D(w)M)H] by the

vector of quadratic maps 3d- 2i=1 ei@(eieM). For K IR and n N- 1 3,
this is an ellipsoidal curve, being the image of an ellipse, which under appropriate
conditions is nondegenerate.

We now demonstrate that for K IR this image is the intersection of the support-
ing hyperplane HE(w, 0) with/E({ei Ne M}i=l)CH(1) the object/K ({ei *ei vla/rN]i=l f’l

HE(I) is chosen here in anticipation of being transformed into FE({Ai}_-1) in a later
stage of this construction. This result follows easily from noting that KerE(D(w)M)H
{v K: Re[v*D(w)Mv] 0} {v K: v*D(w)Mv 0} and

HE(w, 0) &({eieM}) HE(l)

{Eeiv*(eie:M)v’v*D(w)Mv-O,. v’My-l, vKN}.
N HE(l) 0, since (D(w)M)H is nonnegativeNote also that Re[w* [/E({eici M}i=l) ]] _>

definite. Furthermore, this verifies that the image of the ellipse through the quadratic
maps is contained in the two-dimensional plane H(w, 0) n H(1).

For our example, let y ay + by represent an arbitrary element of
KerE[(D(w)M)H]. Then

y*Ady- [a b] 448/3 2848/3 588/5 208/3 -868/15 -544

-448/5 0 b -[a b]Q b

We wish to verify that the curve generated by (a, b) Q(a, b) T, under the condition
that (a,b) satisfies (a,b)([y y2]*M[y y])(a,b) 1, is nondegenerate, i.e., is not
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contained in a single line. This is true if three values of (a, b) can be given for which
the three points (a, b)Q(a, b)T are not collinear. In particular,

(1, 0) Q(1, 0)T (0 408/5 172/5 --232/3)T,

(0,1) Q(0,1)T (2848/3 208/3 --544 0)T,

(1,1)Q(1,1)T (1248 5792/15 --1876/3 --3848/15)T,

which can be shown not to be collinear.
What we have found then is a generalized field of values of matrices that has a

supporting hyperplane whose intersection with the body is an ellipsoidal curve and
thus is not convex.

Step 3: Select x E cvx[K((eieM})nHK(1)f?HK(w, O)]\[K({eieM})AHK(1)N
H(w, 0)]; that is, x is in the convex hull of the set just determined, but not in
the set itself. Let us now confirm that such x also satisfies x cvx[({eeM})] \
[({eeM})]. Note that such x satisfies x cvx[({eeM}) H(1)]
[({eeM}) H(1)]; specifically, x cvx[E({eeM}) H(1) H(w, 0)]
cvx[({eeM})HE(1)], and x ({eeM})H(1)since x cvx[({eeM})
H(1)HE(w, 0)] E cvx[H(w, 0}] H(w, 0). Note also that x cvx[Y({eeM})
H(1)] cvx[H(1)] H(1). Thus x K({eeM}).

For our example, let us select f, f as values of (a, b)Q(a, b)T and let x af+3f
for appropriate positive values of a, 3. In particular, let f (1,0)Q(1,0)T

(0,408/5,172/5,-232/3), f (3,-1)Q(3,-1)T (160/3, 1472/15,564/5,-792/5),
a 15/8, and 3 1/8, yielding x (100,337,276,-442) cvx[({eeM})]

to ensure that x cvx[({eeM}) H(1) H(w, 0)]. However, this scaling is
not important to the argument which follows.

Step 4: For such x N select d KN with distinct positive entries such that
d 2 x for 1 N- 1, where d denote the Hadamard powers d, dod, dodod,

Let V be the Vandermonde matrix determined by d, (V), (d)-. Note that
for such d, eVx 0 for > 1, and furthermore since x H(1), Vx e.

For our example, the existence of a real solution for the entries of d can be proven
formally by reducing the constraints through elimination of variables to a one-variable
equation. The resulting one-variable equation can be seen to have a solution by the
intermediate value theorem.

Writing d Ida, d2, d, 1], we have three equations:

(14)

(16)

lOOdl + 337d: + 276d3 442 O,
l + + aae o,
100d + 337d3 + 276d33 442 0.

We proceed by first solving equation (14) for d3 and substituting in equations (15)
and (16) to eliminate d3. Next we formally solve equation (15) for d2 (using a computer
algebra system) and substitute one of the two results in equation (16) to eliminate d2
(we found that which result was used did not affect the roots of the new equation (16)).
We then proceed to solve equation (16). Although both computer algebra systems
we tried returned several incorrect solutions, the one corresponding to dl -0.26769
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could be verified formally, simply by checking that the left-hand side L(dl) of equation
(16) satisfies

63362781 183V/45193
L(-1/2)

751538 751538v/51
20482722 61v/35981055003114

n(0)--
375769 v/7751 375769

It can be checked that the signs of these two expressions are negative and positive,
respectively.

DC’e finally obtain

d=(-0.267698... 1.084117... 0.374718... 1).

Step 5" For such M E ]NN let M p-1p-,, p KNN by, for example,
singular value decomposition.

For our example, M UDU*, where D diag[(98.1079, 5.44092, 0.339205,
0.0286123)] and

0.732478 -0.152607 0.12824
-0.564055 -0.330403 0.752453 -0.0805637
-0.180298 -0.047945 -0.257713 -0.948039
-0.474966 -0.593306 -0.586608 0.279797

Then let P- U
Step 6: We now verify that for A PD(d)P

1. This will be done by using previous results to transform the general field of values
of {eeM} to that of {A}. This transformation will map the point x, located in the
"hole" in the body, to the origin.

First note that for A NxN, ]K IR or C, we may transfer from the standard
to the conical generalized field of values:

0 e FK({Ai}i) e e 1 @FK({A}p=I) HK(e) A/({Ai}=0),

0 e cvxF({Ai}=) el e l@cvx[FN({ nA. }i=1)]

cvx[1 @F({Ai}=)] cvx[H(e)A ({Ai}=0)].

Note that for n N- 1 and V the Vandermonde matrix defined above, since

V(I@v*) (V@l)(i@v*)= V@v* -(I@v*)(V@I), we have
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and so for V, P ]NxN,

using the invariance of the conical field of values over the simultaneous congruence
transformation. Note also that VH(1) /-/(V-*I) H(c.). We conclude that- .},,=)- V[H(1)r- [,k({ce M}{=.)I. As a result, since

we have

establishing the desired result.
The final result of this construction is the matrix

.469258949671
2.610326570493
-3.242997268120
.162118329163

.144764925686

.327595085371

.452834814744
-2.003125765058

--.011212551044
.028231187826
.976573801662
458143025300

.()00047280410

.01(i)533891160
--.038644914105
.417709385890

FI(]. 1. Generalized field of values. FIC. 2. Slice of generalized field of values.

In Figure 1 the generalized field of values _k({Ai}iL_) is rendered graphically.
The generalized field of values is plotted in a box of extents [--4, 4] along each axis,
with the rightward z-axis corresponding to A, the upward y-axis to A, and the
frontward z-axis to Aa.

The calculated distance of the generalized field of values to the origin is .001274.
The calculated value of a,(A) is approximately 0.99988.

The nonconvexity of this generalized field of values is supported by th_e illustration
in Figure 2. This plot shows points in the generalized field of values that are on. one

side of the plane defined to be normal to the vector (-.0691426,-.741006, .667929)
and .00025 from the origin. The boundary of the convex hull of the body passes
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exactly through the origin. Although the field of values in Figure 1 appears to be fiat
near the origin, in fact a small concavity exists near the origin, indicated by the "hole"
in the graph of Figure 2 and furthermore 0 E cvx[F({A 3}i:1)] \ [F({Ai 3

3,(A) < 3,(A)= 1.

5. Observations and open questions. Polynomial preconditioning is a pop-
ular and useful technique, insofar as it increases solution speed by reducing the re-
quirements for inner product calculations, which is useful in its own right but has yet
more advantage on certain advanced computer architectures for which inner products
are particularly expensive (for a study of this issue, see, for example, [9]).

For HPD problems, polynomial preconditioning is robust. As shown in [2], not
only do convergent preconditioners exist, but preconditioners with the same conver-

Hence rate as the conjugate gradient method exist. Thus, the main goal is to calculate
preconditioners that give these good convergence rates.

On the other hand, the results of this paper indicate that for nonsymmetric
problems, using polynomial preconditioning for the sake of increased speed may mean
sacrificing robustness, the ability of the method to converge reliably to the solution
of a given problem. Furthermore, this is a limitation, in principle, of the applicability
of polynomial preconditioning as a technique. This problem is particularly critical
for highly indefinite matrices, which commonly arise in practice and may require very
many GMRES iterations before restarting in order to converge.

Let us summarize some particular facts we know regarding this issue.
1. Due to the counterexample given above, it is at least known that for N 4

and n 3, there exists A NN such that Cn,(A) < n,K 1.
2. Since the counterexample matrix is nonsingular, it is known by the continu-

ity theorems of 2.2-2.5 that there is in fact a set of matrices of positive measure
for which Cn,(A) < n,K (N 4, n 3). In other words, there is a nonzero prob-
ability of an arbit’rary matrix being such that restarted GMRES converges but the
associated polynomial preconditioning does not. Exactly how large the set is or how
to characterize the matrices is not known.

3. As shown in the theorem below, a set of natrices of positive measure exists
for which both methods stagnate. Thus, r,(A) ,(A) on a set of matrices of
positive measure. This affirms the experience that a significant number of matrices
result in slow convergence or stagnation for restarted GMRES (and thus slow conver-

Hence for other iterative methods such as biconjugate gradient or QMR as well/. How
to ascertain easily whether this will happen for a given matrix is not known.

THEOREM 5.1. For every N >_ 1 and for every n < N, there exists a set of
matrices A lNN ofpositive measure in INN satisfying i ,,(A) 9,(A).

Proof. Without loss of generality, let n N- 1. Let elegy/2 + EN__2 ee_1.

Note that for el and HA(r) r*K__N(r A), gA() el. It is enough to show that
for every sufficiently small real perturbation A of , the corresponding function gA
has a real solution r to the equation HA(r) el.

The Jacobian function J(gA)(r) for gA with respect to r is the matrix-valued
function2[r (l)Hr (.N-I)Hr]. Then

J(9A)() [2el (2 -q’- e-,N/2 e,3 + e,N-1/2 eN + 2/2]

This matrix is of full rank by Gershgorin’s theorem. Thus by the inverse function
theorem there exist open sets V and W gA() such that gA V --+ W is
bijective.
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There exists an open disk 17 C_ W of radius e centered at gA(). By continuity,
there exists > 0 such that for every A +SE, IEII 1, the image gA (V) contains

1/2, the disk centered at 9A() of radius e/2. Thus, for each such A, gA() is in the
image of 9A, and thus gA (r) 9A() el has a solution r. [:]

4. It is known that Cn,e(A) n,(A) on some important measure-zero sets
of matrices such as Hermitian matrices. Furthermore, for the measure-zero set of
upper triangular Toeplitz matrices, at least n,(A) < ,(A) 1 cannot occur. It
is not clear whether a positive measure set exists for which ,(A) n,(A) < 1.
However, it is known that positive measure sets exist for which ,(A) <_ ,(A) <
1, due to continuity of the bound functions (small perturbations of an HPD matrix,
for example).

5. One might ask how large the gap pn,(A)- n,(A) can be. In the example
given above, the gap is calculated to be approximately .00012. However, in a recent
paper [15], a class of matrices is given for which ,(A) ,(A) can be arbitrarily
close to 1. Note that the gap cannot equal 1, since 0 /r,(A) < ,(A) cannot
occur. It is not known how to calculate this gap for a matrix in a simple and reliable
way.

6. Conclusions. This paper has demonstrated several new results on the con-
vergence rate of GMRES and polynomial preconditionings, including the fact that
matrices exist for which restarted GMRES converges but every polynomial precon-
ditioning of corresponding degree does not. Further research is required in order to
devise practical tests for determining the convergence rates for these methods for
matrices encountered in practice.
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STABILITY THEORY FOR LINEAR INEQUALITY SYSTEMS*

M. A. GOBERNA, M. A. LOPEZ, AND M. TODOROV$

Abstract. This paper develops a stability theory for (possibly infinite) linear inequality
systems defined on a finite-dimensional space, analyzing certain continuity properties of the solution
set mapping. It also provides conditions under which sufficiently small perturbations of the data in
a consistent (inconsistent) system produce systems belonging to the same class.

Key words, linear inequality systems, stability, semicontinuity
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1. Introduction. This paper deals with the stability of systems, in n (n fixed),
of the form or0 {ax >_ bt,t E T}, where T represents a fixed arbitrary index set,
at a(t) E n, and bt b(t) I for all t T. Systems of this kind arise in fields
such as functional approximation and linear semi-infinite programming. Observe that
T is required to be neither a finite set (as in [5, 6]) nor endowed with a topology (as
in [2, 3, 4, 8, 13, 17]). Since the right-hand side (RHS) functions do not necessarily
range on a Banach space, our theory is not a special case of Robinson’s [14, 15],
whereas Tuy’s stability theory [18] can be applied. In the present paper we prove
the equivalence, for such a general class of systems, of different continuity properties
of the solution set map for consistent systems, including the main stability concepts
involved in the aforementioned papers. The attainment of conditions for the upper
semicontinuity of this solution set map will be addressed in a forthcoming paper.
In this paper we also study the stability properties of inconsistent systems, which
are frequently neglected even though they arise in practical situations, not only due
to the inaccuracy of the information involved in the models, but also because of
the existence of antagonisms inherent to the modeled situations. In fact, authors
such as Eremin (see [7] and the references therein) have considered the problem of
perturbing a given inconsistent system in order to obtain a suitable (in some sense)
consistent approximation. Therefore, in addition to the classical questions (i.e., which
are the consistent systems such that sufficiently small perturbations provide consistent
systems? and, if so, when the solution set changes gradually?) we consider others
like the following one: When can an inconsistent system provide consistent systems
through arbitrarily small perturbations? It will be useful to distinguish those systems
that contain at least a finite-inconsistent subsystem (which will be called strongly
inconsistent) from the remaining inconsistent system, the so-called weakly inconsistent.

Finally, we study the stability properties of a particular class of systems, not only
for the aim of comparison with previous works, but also because of their wide range
of applications. In fact, the so-called continuous linear semi-infinite programming
(LSIP) (see [1] and the references therein) deals with the optimization of a linear
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function over the solution set of a system a0 such that T is a compact Hausdorff
space, a(.) E C(T)n, and b(.) E C(T). For this kind of system, which will be called
continuous in what follows, we prove that any weakly inconsistent system can always
be suffciently approached through either consistent or strongly inconsistent systems,
and we show some discontinuity properties of the solution set map. Therefore, the class
of weakly inconsistent systems is intrinsically unstable in the context of continuous
systems subject to continuous perturbations. It constitutes the expected behavior for
a transition class.

2. Preliminaries. Given a nonempty set X, X C ]P, p N, we denote by cony

X, cone X, and dimX the convex hull of X, the convex cone spanned by X, and the
dimension of X, respectively. The Euclidean norm and distance in ]p will be denoted
by I1" 112 and p, respectively, whereas I1" represents the Chebyshev norm in p as
well as in C(T). From the topological side, for X = contained in some topological
space, int X, cl X, and bd X denote the interior, the closure, and the boundary of X,
respectively.

The first part of the paper is devoted to (possibly noncontinuous) systems, where
arbitrary perturbations of all the coefficients in all the constraints will be allowed. In
order to define the size of a perturbation, recall that, given a metric space (X, 5), if
XT is the space of functions defined on T with values in X, the function d: XT

XT -- [0, +x], such that for f and g in XT, d(f, g) suptT 5(f(t), g(t)), provides
a pseudometric space (XT, d). The corresponding topology is Hausdorff, satisfies the
first axiom of countability, and describes the uniform convergence on XT. We shall
consider, in particular, X n+l endowed with the metric associated with I1" II, which
yields the pseudometric space of parameters (O, d).

If al {cx >_ dr, t T}, the pseudodistance between al and or0 is given (as in

d((l, 0) sup max{Icl(t) a (t)],..., Icn(t) an(t)l Id(t) b(t)]}.
tT

Since we are not assuming, except in the last section, any particular property
for the functional dependence between the coefficients and the associated indices, we
prefer the notation at, bt instead of a(t), b(t).

We associate with a given system a0 {ax _> bt, t T} 0 its solution set F,
two moment cones M cone{at, t E T} and M cone{(:), t T}, as well as its
characteristic cone

When at least two systems are simultaneously considered, they will be distin-
guished by subindices, as their corresponding solution sets, and their moment and
characteristic cones (e.g., Fk will denote the solution set of ak O).

Let us denote by LC, LW, and LS the subsets of O corresponding to the linear
consistent systems, the linear weakly inconsistent systems, nd the linear strongly
inconsistent systems, respectively. According to [19, Thm. 4.1], a LC(LW, LS) if
and only if () cl (() (cl ),() M, respectively). The set of linear
inconsistent systems will be represented by LI, and LI LW LS.

One of the purposes of the paper is the characterization of the interior parameters
in the sets bove. The approach given in this paper is closely related to the main
aimthe study of the continuity properties of the solution set mapping F O 2
Observe that given two sequences {x }= c and {a}= c O, such that x F,
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for r 1, 2,... limr- x x, and limr_, err do, since the functions describing
the coefficients in {cr}=l are pointwise convergent to the coefficients of do, one has
x E Fo. Hence F is a closed mapping.

Our attention will be focused on a number of continuity properties locally estab-
lished at a parameter ao {ax >_ bt, t T}. First, let us recall the concept of lower
semicontinuity" F is said to be lower sernicontinuous (1.s.c.) at ao if for each open set
W in IRn such that W N F0 : 2 there exists an open set 12, ao 12 c O, such that
W N F =/- for all r 12.

The next two conditions are, respectively, the classical Slater constraint qualifi-
cation and a more restrictive version due to Helbig [13].

cro satisfies the Slater condition if there exists a point 2 ]Rn such that a2 > bt
for all t T.

cro satisfies the stron9 Slater condition if there exist a positive scalar e and a point
2 E IRn (called a strong Slater (SS) element) such that a2 >_ bt + e for all t T.

a0 is noncritical (in the sense of Tuy [18]) if the zero function satisfies 0
bd{G0(R) -R}, where Go R R is Go(x) := ax- bt and IR denotes
the positive cone in RT.

ao is regular (in the sense of Robinson [15])if b(.) int{Ao(N) -IR}, where
A0 IR --* RT is Ao(x) ax, i.e., if sufficiently small perturbations of the RHS
function do not affect the consistency.

F is R-stable (in Robinson’s sense [15]) at a0 if it is consistent and for each
x F0 two positive numbers exist, /3 and , such that the Hoffman-type inequality
p(x,F) <_ 3v(x,cr) holds for any cr {cz >_ dt,t T}, verifying d(cr, cro) < ,
where p(z, F)(- +oe if F ) represents the Euclidean distance from x to F (the
solution set of or), whereas

v(x, or) max{0, sup(dr cx) }
tET

is a measure of the infeasibility, for or, of the point x.
3. Consistent systems. Let cro {ax >_ bt, t T} LC be given.
Next, we state the main result in this section.
THEOREM 3.1. The following statements are equivalent.
(i) F is 1.s.c. at do.

(ii) ao int LC.
(iii) cro is noncritical.

(iv) cro is regular.
(v) 0n+l cl conv{(:),t T}.
(vi) ao satisfies the strong Slater condition.

(vii) F is R-stable at cro.
Proof. After proving the chain of implications (i) -+ (ii) - (iii) (iv) --, (v) -(vi) --+ (i), we will show the equivalence between (vii) and the previous statements.
(i) (ii) It is trivial.

(ii) (iii) Let > 0 such that a LC provided that d(cr, cro) < . Let f
T -- IR such that If(t)l < for all t e T. Since al := {ax > bt + f(t),t e T} LC,
we can take some x F1. Then p(t) := ax -b(t) f(t) > 0 for all t E T; i.e.,
f(.) e Go (IR) ]R, so that 0 e int{Go (JR) IR }.

(iii) -- (iv) Since cro is a consistent noncritical system, it holds that 0
int{Go (JRn) IR}. Then there will exist e > 0 such that f(.) e Go (JRn) IR if
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If(t)l <_ for all t e T. For such a function f, b(t) + f(t) e Ao(Nn) N_, so that b(.) e
int{A0 (Nn) ]R }.

(iv) --, (v) Let us assume the contrary: 0n+l e el conv{(b),t e T}. Then

sequence {A}= exists in the convex cone T) of the generalized positive finite
sequences (nonnegative real functions on T that vanish everywhere except on a finite
subset of T), such that teT [ 1, r 1, 2,..., nd 0+ limtT (:)"

Now, let > 0 suchtht b(.)+f(.) A0()- for any f T such
that supteT ]f(t) . In particular, if f(t) for ll t e T,a := {ax bt + ,
tT}LC.

But lim teT atb+) (), so that () cl, which is a contradiction.

(v) (vi) The consistency of a0 Mlows us to separate () from cl0,
nd because of (v) we cn strongly separate 0n+ from conv{(:), t T} (cf. [16,
Thm. 11.4]).

Let (),w ,w+ , such that ,(n) < 0 nd ’() 0 for all
t T. Analogously, there exist n+ and 5 > 0 such thnt ’() 5 for all
tT.

Now consider a point 2 () { + aa 0} such that Zn+ < O.
Then for 2 - z one has

Zn+l

a2 bt
Zn+ bt Zn+

so that 2 is an SS element for a0.

(vi) --, (i) Let 2 E Nn such that ax >_ bt + for all t E T and for a certain > 0.
Let W C In be an open set such that W V/F0 .

We shall show that W N F0 contains an SS element for o0. Take an arbitrary
y W N F0 and consider z := (1 A)y + A2 for some A e ]0, 1] such that z W C F0.
One has

a’tz (1 -/k)ay + ,kahc >_ bt + ,
so that z is an SS element for 00. Now consider an arbitrary system o {c’tx >_ dr, t
T} such that d(o, o0) < - min{1,n-I/211zll 1} (with Ilzll +oo if z On). The
Cauchy- Schwartz inequality leads us to

i.e., z E W C] F.
(vii) -+ (iv) Assune that F is R-stable at 00, and suppose that b(.)

bd{A0(N) -N}. Take x0 F0 and consider the positive numbers and e for
which p(x, F) <_ v(xo, o), provided that d(o, 0) < e. We can find f: T --, R such
that If(t)l <_ e/2, for all t T, for which b(.) + f(.)

If o := {ax >_ bt + ft, t T}, we have d(o, 00) <_ e/2 < e and o is inconsistent.
Thus,

v(x, 0) sup(ft + bt ax)
t6T t6T t6T

while p(x, F) +oc and we get the contradiction
Now assume that o0 satisfies the (equivalent) statements from (i) to (vi).
Let x E F0 be given. Since (ii) holds, F- for o {cx >_ dt,t T} close

enough to 00, and there exists a point xF F such that p(x,F) IIxF- xl12.
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We can confine ourselves to those systems a such that xF x and v(x, a) < +oc.
(Otherwise, the aimed inequality holds trivially.)

It can easily be realized that (xF x)’x >_ (xF x)’xF is a consequent
inequality of a. Then, according to the Farkas lemma (see, e.g., [11, Thm. 2.1]), there
exist sequences {At}=1 C N(+T) and {ttr }-_ C N+ for which

(1) X _x:O
i.e., the vector of coefficients lies in the closure of the characteristic cone. Multiplying
both members of (1) by (_])’, we obtain

d,) + O,

which itself implies limr-, # 0 and

(3) lirnE A’(cxF dr) 0
tET

because of the nonnegativity of the general terms in both sequences.
Analogously, the scalar product by (x) yields

[IXF X0112 rlimooE M[(cxF dr) + (dr cx)].
tET

Then, recalling (3), one has

(4) I]xF xl12 rlimooE A(dt cx) <_ v(x, or)lira supE
T cx

ET

Since (vi) also holds, consider an SS element for a0,2, and e > 0 such that
-bt >_ e for all t E T. Appealing once again to (1), we get

(xg x)’(2 xF) lirnE M(c2 dr).
tT

(6)

Let el :-- e(2 -- 2nl[;l[) -1.
If d(a, ao) < el, writing ct at + ft and dt bt + gt, one has, for all t E T,

dt2 -dt (at2 bt) + (f, gt) >_ e el (nllll / 1) .
Therefore, from (5), (xF x)’(2 xF) >_ lim sup_ teT, so that

sup _< x01I ll 
r--oo

ET

Now, consider the open set W {x e nlllx- xl12 < e}, which obviously
satisfies W gl Fo - . Since (i) also applies, there will exist e2 > 0, e2 <_ el, such that
W Cl F for any a such that d(a, co) < e2. In this case p(xo, F) < e and we have
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Replacing in (6) and taking :-- 2(1 + -1112 x0112), we get

(7) lim supEr---,cx
ET

Multiplying both members of (7) by v(x, a), recalling (4), and simplifying, we
obtain the aimed conclusion:

p(x, F) IIxF xl12 <_ v(x, a).

For consistent systems, the full dimensionality of F0 is independent of the 1.s.c.
of F at a0. The following example illustrates such an assertion.

Example 1. Let ai {rixl + x2 >_ 0, r E Z}, 1, 2.
Obviously, F {0} x l+ and F2 ]R_, so that dimF < dim F2. However, both.

systems are stable.
Let us make some additional remarks concerning Theorem 3.1 which shows,

roughly speaking, that stability of linear inequality systems has the same meaning
for most of the authors. Tuy proved, in a more general setting, the equivalence be-
tween (iii) and other stability concepts [18, Def. 1], pointing out that "results very
near (...) have been obtained earlier by S. M. Robinson" [18, p. 33], without giving a
precise statement. In fact, Robinson proved (iv) (vii) for a class of linear systems
which does not include O, giving an explicit bound for p(xo, F) [15, Thm. 1]. Our
Theorem 3.1 also gives an error bound, Dv(x, a), which depends on the SS element
that we take, 2, and its associated positive scalar :

Let us observe that stability, in the sense of lower semicontinuity, reduces itself to
stability with respect to the RHS, so that Theorem 3.1 can be directly applied even to
models where only the perturbation of b(.) makes sense. This is the case, e.g., for the
following approximation problem: given a function f [,/] --. 1t, find a polynomial
P of degree lower than a given n E 11, such that If(t) P(t)l _< a ( > 0) for all
t e

4. Inconsistent systems. Throughout this section a0 {ax >_ bt, t T} will
be a given inconsistent system. First of all, observe that F(-) is trivially 1.s.c. at a0,
but it is neither R-stable nor regular, and it does not satisfy the Slater condition.
Hence, our attention will be focused on the other remaining properties. Concerning
a0 int LI, we are also interested in the sufficient conditions ao
int LW.

THEOREM 4.1. If ao int LI, then ao is noncritical.
Proof. Assume the contrary: 0

Go(Rn) exists such that limr--. fr(t) 0 uniformly on T. Consider the sequence
ar := {ax >_ bt + fr(t),t e T},r 1,2, Obviously, a e LC, r 1,2,... and
lim_ a a0, so that a0

Observe that the condition in Theorem 4.1 is not sufficient for ao E int LI (con-
sider {0x >_ 1 }).

In order to characterize int LS we need the following lemma, whose proof is left
to the reader.

LEMMA 4.2. Let {as, s S} C ]Rn and a int cone{as, s S}. Then there exist
some > 0 such that a int cone{cs, s S} for any function c S -- l such that
Ilas -csll < for all s e S.
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Let us introduce the family of systems LB := {a E OIM n}. It has been
proven [9, Thm. 2.1] that LC N LB is the class of consistent systems whose solution
set is bounded. As a consequence of Lemma 4.2, LB is an open set. In fact, applying
Lemma 4.2 to a On, since 0n E int cone{at, t T} int M, if we consider a :=
{cx >_ bt, t T} with Ilat-ctll < , for all t T, it holds that On int cone{ct, t E T}.

THEOREM 4.3. The following statements are equivalent.
(i) cro int LS.
(ii) (0n) int
(iii) ao LB.
Proof. The implication (i) -+ (ii)will be proven by assuming the contrary: (on)

int h?/0. Since ao LS, (o) E //0 and, therefore, (on) bd h?/o. The last assertion
implies the existence of atD n+l, tb : 0n+l, such that tD’() 0 and ’) >_ 0 for
all $ -h/o. Then we have tD () for a certain w : On and w’at >_ 0 for every t T.

Let a := {(at + w)’x >_ bt,t T} for > 0. If we had ae LS, there would
exist a A I(+T) such that

(01 =Eikt( at+sw
tET

bt )
Premultiplying both sides by tb, we obtain

+ >
tET tT

Since wTw > 0, it should be At 0 for all t T, which yields a contradiction.
Therefore, for all s > 0, r LS; meanwhile, d(a,ao) llwll and we get the

contradictory conclusion ao int LS.
(ii) -+ (i) Assume (0n) int l/o. Applying Lemma 4.2 to () and {(bt), t E T},

we know that there exists an > 0 such that (0) int cone{(tt) t T} for any
at atmapping (t,) T -+ n+ such that II(bt (d,)l] < for all t T. Therefore, if a O

satisfies d(cr, co) < , then (o) E int/r c//; i.e., a LS.
(ii) --. (iii) The projection map r: 2 (x+l) - x transforms open sets in

into open sets in In. Hence, On r(int -/o) C int Mo and this implies Mo
(iii) (ii) Assuming the contrary, () bd//o and (as in the proof of (i) --+ (ii))

there exists w In, w : On, such that wat

_
0 for all t E T, but this is impossible

because cone{at, t T} M0 In.
Next, we shall provide a sufficient condition (Theorem 4.4) and a necessary con-

dition (Theorem 4.7) for ao int LW.
THEOREM 4.4. a0 int LW provided that the following two conditions hold:
(i) On cl conv{at, t T} and
(ii) {bt/llatll, t T} is unbounded from above.
Proof. (i) guarantees the existence of an > 0 such that Ilxll >_ for every x

conv{at,t T}. Then On cl conv{at,t T} + cl B. Let a "= {cx >_ dt,t T}
clBforalltET,Since ct {at} d- -such that d(a, cro) <_

conv{ct, t e T} C cl cony{at, t e T} + cl B,

so that On cl conv{ct, t T}.
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If we had () E//, there would exist A E l(+T) such that

Since EteT )t > 0, it should be On conv{ct,t T}, and this is impossible.
Therefore, (in)

On the other hand, according with (ii), for some sequence {tk}=l C T, one has
limk__. Ila(tk)ll-lb(tk) +C. Since Ila(tk)ll _> z, necessarily limk- b(tk) +,
and we can assume then that b(tk) > 0, k 1, 2,

k 1 2, we can writeII (t )  (t )ll -<

IIc(t)ll _< Ila(t)l] + - and
d(tk)

Since limk.-, (d(tk)/b(tk)) 1, we also ssume that d(tk) > 0, k 1, 2,
Therefore,

d(tk) b(t) + 2b(tk) d(tk)

and, taking limits for k c, we get limk_o(llc(tk)ll/d(tk)) O.
Lastly,

limd(t)_l(c(tk)) (0)
which shows that () belongs to (cl ) ; i.e., a e LW. The proof is com-
plete.

LEMMA 4.5. If aO LI and b(.) is bounded, then

On cl conv{at, t T}.

Proof. Let k > 0 such that Ib(t)l <_ k for all t E T.
zSince (n) e el//0 we can find 2r (z:+1) .tT (bt), ,r 1, 2,...,

such that () lim 2. We shall denote r := teT A[, r 1, 2,
For the sequence {Pr}= C + three cases can arise.
If {p}= is unbounded, there exists a subsequence, denoted in the same way,

such that lim +. Since pjz conv{at, t T} and lim pjz On,
we get 0 cl conv{at, t T}.

If {p}= is bounded, then it contains a convergent subsequence. Without loss
of generality, we assume lim p. If p > 0 we can repeat the reasoning above
to get the imed conclusion.

If p 0, since Z+ teT A[bt, one h [z+] kp and, taking limits once
again, it holds that lim [Z+l] 0, which is a contradiction, showing that actually
this ce is impossible.

LEMMA 4.6. If ao (int LI) (int LS), then the RHS function b(.) is unbounded
on T.

Proo We have ao LB according to Theorem 4.3, and let > 0 for which a LI
for any a O such that d(a, co) . The statement will be proven by suming the
contrary, i.e., the boundedness of b(.) on T, and obtaining a contradiction. First,
observe that 0n cl conv{at, t T}, following Lemma 4.5.
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If it were On E bd cony{at, t E T}, a nonzero vector w would exist such that
wlat >_ 0 for every t T.

Now, consider or1 := {(at + sllwll-lw)’x > bt,t T}. Observe that w’(at +
sllwll-lw) >_ llwll-lw’w > 0, for all t e T, so that On el conv{at +
whereas a LI since d(a, a0) s. Applying Lemma 4.5 to oh, we conclude that
b(.) should be unbounded, and this is not possible.

Hence, 0n E int conv{at,t T} C int M0 and M0 Nn; i.e., ao LB, which
constitutes the aimed contradiction. [:1

THEOREM 4.7. If aO int LW, then b(.) is unbounded on T.
Proof. It is a straightforward consequence of Lemma 4.6. I-I
A weakly inconsistent system with an unbounded RHS function does not neces-

sarily belong to int LW (consider, e.g., {t2x >_ t, t R}).
5. Properties of the main parameter sets. This section deals with the prop-

erties of the sets LC, LS, LW, and LI, especially the existence of stable (int LC
and unstable (bd LC C bd LI 7 ) linear inequality systems in Rn with a given index
set T.

THEOREM 5.1. The following propositions hold.
(i) - int LC C LC. Moreover, LC\int LC C cl LS.
(ii) int LS C LS. Moreover, int LS if and only if ITI >_ n + 1.
(iii) = int LW nw if ITI c. Otherwise, LW .
(iv) int LI LI. Moreover, int LI if and only if ITI >_ n + 1.
(v) int LS int LW int LI if and only if IT
Proof. (i) Consider a {0x _> b,t e T}, i= 1,2, where bt -1 for M1 t e T

and bt2 0 for ll t e T. It can esily be reMized that a int LC (since 0 is n SS
element) nd a2 LC\int LC (because the Slater condition fails).

Now, let a3 {ax >_ bt, t T} LC, a3 int LC. According to Theorem 3.1,
since (v) fails, there exists a sequence (:) e N+, r 4, 5,..., such that we

xrga,), Ar e N(+T) EteT A[ 1, and I1 < r 4, 5,can write teT "t Vb,

Let a {(at u)’x >_ bt # + ,t e T},r 4,5,
whereasObviously, for any r 4, 5,..., one has d(a, co) <_ -,

so that cr LS.
(ii) Let a0 {0x >_ bt, t T} with bt 1 for all t T. According to Theorem

4.a, a0 e LS\int LS. On the other hand, if Irl < , dim _< n for all a O and int
Leo (also by Theorem 4.a). Conversely, if ITI >_ + 1, the functions at T --and bt T --. N can be chosen in a variety of ways in order to fulfill condition (ii) in
Theorem 4.3.

(iii) If IZl < oc, then any inconsistent system is strongly inconsistent, so that
int LW LW.
If ITI oc, we can take a sequence {t}__l C T, such that ti 7 tj for j. Let

ao {x >_ bt, t T}, where

r= 1,2,...,bt 0 if t =/= tr for all r.

Since el conv{at,t T} {(0_)} and lim-(b(t)/lla(t)ll) +oc,0 int
LW as a consequence of Theorem 4.4.
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The system

r--2Xn r-1
a 0’x _> 0,

t tr, r 1,2,...,
t tr for all r

is the limit, when k c, of the sequence

(r-2-k-2)xn>r-1-k-2,t=tr,r=l,2,...,} k=2,3,0nX-_> 0, t : t for all r

Since the inequality corresponding to tk in ak is itself inconsistent, a E LS for all
k 2, 3,..., whereas or1 E LW.

(iv) The first assertion is a consequence of a0 LI\int LI for a0 as in (ii), whereas
the second one comes from (ii) and (iii).

(v) The direct statement is trivial since LI LS when ITI < c. Now, assume

ITI c. Let {t}r= C T, with t : tj for j, and-consider a0 {0x _> r,t
t,r 1, 2,... ;0x _> 0, t t for all r}. We shall prove that for any a O such
that d(a, a0) < cx, it holds that F g. In fact, let a {atx >_ bt, t T} with

d(a, ao) <_ 5,5 > 0. Assuming the contrary, i.e., F , and taking any pair x G F
and t E T, the Cauchy-Schwarz inequality gives

Hence, nll5]lxll. >_ limr b(t) +cx, which is a contradiction. Consequently,
a0 int LI.

On the other hand, let us consider, for any a > 0, the following systems:

ae :--- {Xn

_
r, t tr, r 1, 2,... ;0x _> 0, t t for all r 1, 2,...}.

Since d(a,ao) and a LW for every > 0 whereas ao LS, we conclude
that a0

As a consequence of Theorem 5.1, if ITI cx, the four (proper) subsets of O
considered here are neither open nor closed. Consider
LS\int LS, whereas a0 cl LC. Hence, the symmetric inclusion of LC\int LC C cl
LS fails.

The next example shows the existence of (nontriviM) highly unstable systems.
Example 2. Assume ITI oc and take {t}= C T with t tj if i :/- j. Let

s, s2,.., be an enumeration of Q cl [0,1] and consider, for , E I, the system a
{(1 + cos2rs)xn >_ + sin2rs,t tr, r 1,2,... ;0x _> 0, t : t for all r

1,2,...}.
Since (1) cl// for /< 0, (0) (cl//o)\/t?/o and (1) // for /> 0; then

a0 e (bd nc) LW (bd LS) and a0 e (bd LC) (bd LS) (bd LW).
6. Continuous systems. In what follows T is assumed to be a compact Haus-

dorf space. Let us denote by O the (parameter) set of all the systems in Rn
with (fixed) index set T and continuous coefficient functions. Consequently, we con-
sider throughout this section only continuous perturbations of the coefficients. As
can easily be seen, d induces the uniform distance in 0, which becomes a complete
metric space.

Let us denote by CC (CW, CS, CI) the set of continuous consistent (weakly incon-

sistent, strongly inconsistent, inconsistent) systems. The main purpose of this section
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is to investigate the continuity properties of the solution set mapping F: Oc --* 2"
Such properties will be the same as those that were defined in 2, except with minor
changes. Specifically, in the definition of 1.s.c. Y will be an open set in Oc, whereas the
topological operators involved in the concepts of noncritical and regular systems are
those corresponding to C(T), whose positive cone, C+(T), replaces ]R. More in detail,
our aim is to review and complete well-known results on the stability of continuous
systems (including the finite systems, for which Oc O) by exploiting the general
theory developed in the previous sections. To achieve such a reduction we frequently
appeal to Urisohn’s lemma, which applies here since any compact Hausdorff space is
a normal topological space.

In order to avoid confusion, we shall distinguish the toplogical operators in O by
means of the subindex c. Thus, intCC denotes the interior of CC in O, which does
not coincide with its interior in O, int CC.

LEMMA 6.1. intCC Oc C? int LC.
Proof. We have only to prove that intCC C O N int LC. Assume that ao :-

{atx >_ bt, t E T} intCC and a0 int LC, and let > 0. Since a0 LC\int LC,
applying Theorem 5.1(i), we conclude the existence of a {dtx >_ dr, t T} LS(a
probably noncontinuous) such that d(a, co) < n+l"

Then, for some A N(+T), it holds that (0n) EteT At(d) and, according to
Carathodory’s theorem, a set {tl,...,tk} C T exists, with k _< n + 1, such that
At 0 for t {tl,..., tk}. Now, by Urisohn’s lemma, let fi E C(T), fi" T [0, 1],
such that fi(tj) 1, if j i, and f(tj) 0 for all j - i, i 1, 2,..., k. Consider the

k kfunctions g(t) E=I [c(t) a(t)]fi(t) and h(t)"= E=I [d(t) b(t)]f(t), which
belong to (J(T), IIg(’)[I < , IIh(’)ll < , g(ti) c(t) a(t), and h(t) d(t) b(ti),

1,2,...,k.
Finally, consider as := {(a(t) + g(t))’x >_ b(t) + h(t), t c= T}. Obviously,

and d(a, co) < e. Moreover,

dttT i=1

so that a CS. Therefore ao intcCC, which contradicts the assumption.
THEOREM 6.2. Given ao {ax >_ bt, t T} CC, the following statements

are equivalent.
(i) F is 1.s.c. at co.
(ii) ao intCC.
(iii) ao is noncritical.
(iv) ao is regular.
(v) 0n+l conv{(batt), t e T}.
(vi) a0 satisfies the strong Slater condition.
(vii) ao satisfies the Slater condition.
(viii) F is R-stable at co.
(ix) dim Fo n and ao does not contain the trivial inequality ffnX >_ O.
Proof. By Lemma 6.1, a0 e intCC if and only if a0 int LC. This condition

can be replaced by any of the other six equivalent conditions listed in Theorem 3.1,
which in some cases can be reformulated.

In fact, since { (b), t E T} is a compact set,

{(at) } {(at) tT}clconv
bt ,tT =conv

bt
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whereas Slater and strong Slater conditions coincide in Oc. Hence, (ii) is equivalent to
statements (v) through (viii) and it implies (i). On the other hand, the proofs of (i)
(ii) -, (iii) --, (iv) (v) in Theorem 3.1 remain valid here with the exception of small
changes (the details are left to the reader). Therefore, statements (i) through (viii)
are equivalent. Finally, (vii) is equivalent to (ix) by the straightforward application
of [9, Cor. 3.2.1].

Some of the equivalences established in Theorem 6.2 appeared in previous papers:
(ii) -, (v) was proven in [17, Prop. 1.3], (v) -, (vii) was proven in [4, Thm. 3.5], and
(iv) (viii) was established, in a more general frame, in [15]. Concerning the 1.s.c. of
F at co, the classical sentence establishes its equivalence with the following statement"
either ao satisfies Slater condition or IFol 1 [8, Thm. 4.1], [3, Thm. 2.1(c)], and
[13, Cor. 4.3]. The following example shows that IFol 1 is not a sufficient condition,
even for finite systems.

Example 3. Consider, for n 2 and T {1, 2, 3, 4}, the systems, for s _> 0, at :=
{xl _> ,-xl _> 0, x2 _> 0,-x2 _> 0}. Obviously, F0 {02}, whereas F for any
> 0. Since d(a, a0) , F is not 1.s.c. at a0.

COROLLARY 6.2.1. /f or0 {atx >_ bt, t E T} CC and its corresponding
homogeneous system, {ax >_ 0, t T}, has some strict solution, then F is 1.s.c.
at co.

Proo]. If atx > 0 for all t T, then some a > 0 exists such that maxteT bt
o mintT ax, so that x "= cx is a strict solution of a0. [:]

THEOREM 6.3. Given ao Oc, the following statements are equivalent.
(i) a0 intcCS.
(ii) (on) e int

(iii) ao e LB.
Proof. It is similar to the proof of Theorem 4.3.
Concerning intCW, we prove next that it is the empty set, so that its character-

ization is meaningless.
THEOREM 6.4. The following propositions hold.
(i) intcCC CC. Moreover, CC\intcVC c cl VS.
(ii) intcCS VS. Moreover, intCS = if and only if IT >_ n + 1.

(iii) intcCW O. Moreover, CW . if and only if ITI
(iv) intCI intcCS. Therefore, intcCI if and only if ITI >_ n + 1.

Proof. (i) can be proven as Theorem 5.1(i) was, realizing that the limiting process,
in the second part, can be avoided.

(ii) The first part is the same as the proof of Theorem 5.1(ii). On the other hand,
if IT[ <_. n, intcCS o as a consequence of Theorem 6.3.

Now, assume ITI >_ n + 1. Let t,...,tn+l be different elements of T and take
functions fl,..., fn+l (as in Lemma 6.1) such that fi" T --. [0., 1], fi e C(T), and
fi(tj) 1 if j i, whereas fi(tj) 0 for all j i, i 1, 2,..., n + 1.

Let 2,...,2n+ be arbitrarily chosen points in Illn+l such that (on) int
{a(t)cone{,.. n+}. Defining b(t)) := z.=l f(t), one has

{ (a,,,,) }eintcone b(t) ,i=l,2,...,n+l Cint/o

for ao := {ax >_ bt, t T}. Therefore, ao intCS (again by Theorem 6.3).
(iii) Since intcCW intcCS and intcCW c intCI, the first statement will

be a straightforward consequence of (iv).
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Now, assume ITI c. At least an w-accumulation point exists, say E T. For
an arbitrary point t E T, t -, two open disjoint sets exist, V1 and W1, such that
tl V1 and W1. Since T\VI(D W) is a compact infinite set, we can take, in the
same way, t2 T\V1, t2 : , and two open sets which do not contain t, V2, and W2,
such that t2 V2 and -E W2. We inductively obtain a sequence {t}r= C T such
that Vk N {t,t2,...} {tk},k 1,2, Given k N, consider the closed disjoint
sets {t,t2,... ,tk} and cl{t, i= k + 1,...} C T\uk=I Y, which is also closed.

Urysohn’s lemma can be applied to the above disjoint closed sets. Let f" T -[0, 1], fk e C(T), such that

fk(t) 0, i 1,2,...,k,
fk(t) 1 for all t e cl{ti,i-- k Q- 1,...}.

Hence, the function 99(t):= Ek__ 2-kfk(t) satisfies 99: T - [0, 1], 99 e C(T) and

k= k 2-Ek= 2-kf(t) 2- for r 1, 2,
Finally, let us verify that a {2(t)xn (t), t T} CW. In fact,

lim 2 992(tr

On the other hand, if it were

for some A I(+T), it would be EteT At992(t) 0, whereas EteT At99(t) 1, which is

a contradiction. Therefore (0) (el//)\h?/and a CW.
(iv) We have to prove only that intcCI C intcCS. Let a0 := {ax >_ bt, t T}

O\intCS. According to Theorem 6.3, ao LB, and there exists a vector w : 0n
such that w’at >_ 0 for all t T. Consider that a := {(at + w)’x >_ bt,t T} for
> 0. Since lim-.(at + w)’rw +cx, whereas b(.) is bounded on T, a CC for

all > 0, so that a0 intCI. This completes the proof. [:]

Finally, let us show through a suitable example the existence of nontrivial systems
in (bdCC)g (bdcCS) V (bdCW).

Example 4. Assume ITI oe and take 99 e (](T) and {t}=l c T such that
99(t) 21-, r 1,2,..., (as in the proof of Theorem 6.4(iii)). Obviously, 99-1(0) =/=. Define, for - E ,

a "= {[1 -cos99(t)]xn >_ /+ sin 99(t), t e T}.

Reasoning as in Example 2, (r0 CW, whereas a CC for -), < 0 and a CS
for - > 0. The conclusion comes straightforwardly.
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A CHARACTERIZATION AND REPRESENTATION OF THE
DRAZIN INVERSE*
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Abstract. We establish characterization and representation for the Drazin inverse of an arbi-
trary square matrix which reduce to the well-known result if the matrix is nonsingular.
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1. Introduction. If A is an n n complex matrix, then the Drazin inverse [4]
of A, denoted by AD, is the unique matrix X satisfying the relations

(1.1) Ak+IX Ak, XAX X, AX XA,

where k Ind(A), the index of A, is the smallest nonnegative integer for which
rank(Ak) rank(Ak+l).

Particularly when Ind(A) 1, the matrix X satisfying (1.1) is called the group
inverse of A and is denoted by X A#. If A is nonsingular, then it is easily seen
that Ind(A) -0 and A-1 satisfies (1.1); i.e., AD A-.

The Drazin inverse is very useful since various applications (for example, ap-
plications in singular differential difference equations, Markov chains, cryptography,
iterative methods, and multibody system dynamics) were found in the literature [2,
6, 9-11, 14-16], respectively.

In this paper, we present a characterization and representation for the Drazin
inverse which reduce to the well-known result if the matrix is nonsingular.

As usual, let R(A) be the range of A, N(A) the null space of A.

2. A characterization for the Drazin inverse, It is a well-known fact that if
A is a nonsingular matrix of order n, then the inverse of A, A-, is the unique matrix
X for which

(2.1) rank( A / )=rank(A)I X

In this section,we present a generalization of this fact to singular matrix A to
obtain an analogous result for the Drazin inverse An of A.

The following lemma is needed in what follows.
LEMMA 1. Let M be a 2n x 2n matrix partitioned as

M= PA B

Then

rank(M) rank(A) + rank(B PAQ).
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Institute of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China
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Proof. The proof is immediate from [7, Thm. 19].
We mention here that related ideas appear in [1, 3], and [5].
In the following theorem, a characterization for the Drazin inverse AD is pre-

sented.
THEOREM 1. Suppose A Cnn with Ind(A) k and rank(Aa) r. Then there

exists a unique matrix Y such that

(2.2) AkY O, YAk O, y2=y, rank(Y)=n-r
and a unique matrix X such that

( A I-Y)=rank(A(2.3) rank I- Y X

The matrix X is the Drazin inverse AD of A. Further, we have

(2.4) Y I- ADA I-- AAD.

Proof. To prove the first statement, let U be a nonsingular matrix for which

Ak=U( J 0 )U-10 0

where J is a nonsingular matrix of order r. It is easy to verify that

Y=U
0 I

satisfies condition (2.2). To show uniqueness, let Y0 be a matrix which satisfies (2.2).
Let Y1 U-1you, and let Y1 be partitioned as

G H

with E being r x r. By (2.2),

0 0 G H =0

and

G H 0 0
=0.

So E 0, F 0, and G 0. It follows that H I, since Y1 again satisfies Y Y1
and h to have rank n- r. Thus, we obtain Y0 Y.

Let A be the Drain inverse of A. Observe that hen (2.4) holds. or this Y
and

I- Y X AA X

hus, by Lemma 1 and condition (2.a), we have

(2.) X AAA O,

which by (1.1) implies X A. This completes the proof.
Notice. The projecgion Y I- AA was called he eigenprojection of A. (It

is a projection on N(A) along R(Ak); cf. [11, Chap. 2].) Methods to compute the
eigenprojecion of a square magrix A are discussed in [12].
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3. A representation of the Drazin inverse. For a nonsingular matrix A, A-1
Can be characterized in terms of a well-known limit process,

(3.1) A-I lim(el / A)-I
e--+0

where in the limit, as e -+ 0, of the above expression involving (eI + A)-, we assume
that -e a(A), the set of all eigenvalues of A. The same assumption will be used in
the following.

One extension of the limit expression (3.1) to the Drazin inverse was established
in [8], and the Drazin inverse AD can be similarly characterized by

(3.2) AD lim(eI + Al+l)-Al for every > k Ind(A).
e-*0

The representation of the Drazin inverse in terms of its eigenprojection Y
I- ADA was given in [13]"

(3.3) AD (A- y)-l(I_ y) (I- Y)(A- Y)-.
In this section, we shall give another representation of A without its eigenprojec-

tion Y.
THEOREM 2. Let A E Cnn with Ind(A) k. Then

(3.4) AD -Ak,
where Ak+l IR(Ak) is the restriction of Ak+l to R(Ak).

Proof. Notice that Ak+l IR(Ak) is a one-to-one map of R(Ak) onto R(Ak).
Since x 0 where x R(Ak), there exists a y Cn such that x Aky. However,

A2k+ly fix 0;

Thus,

y N(A2k+l) N(Ak).

x= Aky=O.

On the other hand, for every y R(Ak) there exists an x Cn such that
y Ak+(Akx) e fiR(Ak) since R(Ak) =_R(A2k+).

These indicate the nonsingularity of A.
We let X fl-lAk and consider the decomposition of any z C as z z / z2

with z N(Ak) and z2 R(Ak). It follows that there exists a t Cn such that
Z2 A}+It since R(Ak) R(Ak+).

Next, we will verify that X -IAk satisfies the three equations in (1.1):
A}+Xz A+fl-Akz Ak+-Akz2

Ak+ft-Ak+(Akt) Ak+IAkt
Az2 Az

XAXz XAi-Akz XAfi-Ak
z2

XA-Aa+(Akt) XAk+It
-Az2 i-Az Xz.



CHARACTERIZATION AND REPRESENTATION OF DRAZIN INVERSE 747

Finally,

AXz At-1Akz Aft-1Akz2

AfI-1Ak+I(At) A+It z2,

XAz ff-lAk+lz- -lAk+lz2 z2;

AXz XAz.

The above-mentioned fact is true for the arbitrary z E CA; thus we have

Ak+Ix Ak, XAX X, AX XA,

which completes the proof. [:]

Remark. Since it is always valid that k Ind(n) <_ n, we can take k n in (2.2)
and (3.4).

Acknowledgments. The author would like to thank Cao Zhihao and the referee
for their helpful comments on the original version of this paper.

REFERENCES

[1] A. ALBERT, Conditions for positive and nonnegative definiteness in terms of pseudoinverses,
SIAM J. Appl. Math., 17 (1969), pp. 434-440.

[2] S. L. CAMPBELL, C. D. MEYER, JR., AND N. J. ROSE, Applications of the Drazin inverse to
linear systems of differential equations with singular constant coeJficients, SIAM J. Appl.
Math., 31 (1976), pp. 411-425.

[3] D. CARLSON, E. HAYNSWORTH, AND T. L. MARKHAM, A generalization of the Schur complement
by means of the Moore-Penrose inverse, SIAM J. Appl. Math., 26 (1974), pp. 169-175.

[4] M. P. DRAZIN, Pseudoinverses in associative rings and semigroups, Amer. Math. Monthly, 65
(1958), pp. 506-514.

[5] M. FIEDLER AND T. L. MARKHAM, A characterization of the Moore-Penrose inverse, Linear
Algebra Appl., 179 (1993), pp. 129-133.

[6] R. E. HARTWIG AND J. LEVINE, Applications of the Drazin inverse to the hill cryptographic
system, Part III, Cryptologia, 5 (1981), pp. 67-77.

[7] G. MARSAGLIA AND G. P. H. STYAN, Equalities and inequalities for ranks of matrices, Linear
and Multilinear Algebra, 2 (1974), pp. 269-292.

[8] C. D. MEYER, JR., Limits and the index of a square matrix, SIAM J. Appl. Math., 26 (1974),
pp. 469-478.

[9] , The role of the group generalized inverse in the theory of finite Markov chains, SIAM
Rev., 17 (1975), pp. 443-464.

[10] C. D. MEYER, JR. AND R. J. PLEMMONS, Convergent powers of a matrix with applications to
iterative methods for singular linear systems, SIAM J. Numer. Anal., 14 (1977), pp. 699-
705.

[11] U. G. ROTHBLUM, Multiplicative Markov Decision Chains, Ph.D. dissertation, Stanford Uni-
versity, Stanford, CA, 1974.

[12] , Computation of the eigenprojection of a nonnegative matrix at its spectral radius, Math.
Programming Stud., 6 (1976), pp. 188-201.

[13] A representation of the Drazin inverse and characterization of the index, SIAM J.
Appl. Math., 31 (1976), pp. 646-648.

[14] B. SIMEON, C. FUHRER, AND P. RENTROP, The Drazin inverse in multibody system dynamics,
Numer. Math., 64 (1993), pp. 521-539.

[15] G. R. WANG, A Cramer rule for finding the solution of a class of singular equations, Linear
Algebra Appl., 116 (1989), pp. 27-34.

[16] Y. M. WEI AND G. R. WANG, The perturbation theory for the Drazin inverse and its applica-
tions, Linear Algebra Appl., to appear.



SIAM J. MATRIX ANAL. APPL.
Vol, 17, No. 4, pp. 748-762, October 1996

() 1996 Society for Industrial and Applied Mathematics
OO4

COMPUTING THE SMALLEST EIGENVALUE OF AN M-MATRIX*

XUE JUNGONG

Abstract. A computation of the smallest eigenvalue and the corresponding eigenvector of an
irreducible nonsingular M-matrix A is considered. It is shown that if the entries of A are known with
high relative accuracy, the smallest eigenvMue and each component of the corresponding eigenvector
will be determined to high relative accuracy. A known inverse iteration algorithm with new stopping
criterion is presented to compute them. Under certain assumptions, the algorithm will have a small
componentwise backward error, which is consistent with the perturbation results.

Key words, irreducible nonsingular M-matrix, backward error, componentwise perturbation
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1. Introduction. In this paper we consider the problem of how to accurately
compute the smallest eigenvalue and the corresponding eigenvector of an irreducible
nonsingular M-matrix. Here, "smallest" is in modules sense. It is well known [4,
p. 135] that this eigenvalue is a positive simple eigenvalue to which there corresponds
a positive eigenvector.

First, we discuss the new perturbation theory for the smallest eigenvalue. Let
A be an n n irreducible nonsingular M-matrix and 5A be a small perturbation
matrix to A with 15AI _< IAI. Here, IQI denotes the matrix of entries [Qi,jl, and
Q <_ P(Q < P) means Qi,j <_ Pi,(Qi,y < Pi,y) for all and j. For vectors, lYl and
y

_
x(y < x) are defined in an analogous way. Let A and/V be the smallest eigenvalues

of A and A + 5A, respectively. From the standard first-order perturbation theory [12,
p. 69], we have

uTlSAIv< +) uTAv

where u > 0 and v > 0 are the normalized left and right eigenvectors of A correspond-
ing to . In this paper, we prove the following stronger result: write A D- N,
where D is diagonal and N has zero diagonal. Let /denote the spectral radius of
D-IN.

Then

(1.2) [A A’[ < 1 + ’r/.A -I-’T
This error bound is independent of the angle between u and v. It is possible that
(1 + )/(1- /) << (A), where a(A)= IIAll211A-1112.

Now we consider the eigenvector. Let v > 0 be the normalized right eigenvector
of A + 5A corresponding to ’. Under the assumption that A has distinct eigenvalues
A, 1,..., An-l, the standard perturbation theory [8, p. 346] says that

n--1 yHSAv
(1.3) v’ v + E (A- AilyiHxi xi + O(r2);

i--1
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here y and x are the normalized left and right eigenvectors of A corresponding to
A. Formula (1.3) implies

(1.4) [iv, vii2 <_ n(n 1)7 + O(r]2)
s. absgapx

where

(1.5) absgap min. IA Ai]/][A[12 and s min

We call absgap the absolute gap for A as in [3]. The error is measured in norm-
wise sense and the bound depends on absgap and the angles between the right and
left eigenvectors. In this paper, even without the assumption that A has distinct
eigenvalues, we prove a generally stronger result"

/+ relgap,
1 + r + O(r2) v.(1.6) Iv v’ 2n 1 + (1 z)relgp ( )relgap

The relative gap relgap is defined s follows: let p be the smallest eigenvalue of the
principM submtrix of A obtained by deleting the ith row and column. Obviously [4,
p. 156] p > A. Define

(1.7) relgap max Pi A
A

Formula (1.6) gives the relative error bound for each component of the eigenvector.
This bound is independent of the angle between the left and right eigenvectors, and
absgap is replaced by relative gap relgp. The point is that if A has two or more
tiny eigenvalues, their absolute gap is necessarily small, but their relative gap may be
large.

To illustrate, consider the irreducible nonsingular M-matrix A D N, where

101 + 1 0 -1 )A= 0 2 -103 D=diag(10+1,2,3).
-10 -10-3 3

The smallest eigenvMue is 1 nd the second smallest is bout 3. It is esy to show that
(A) > . 10 nd absgp . 10-. But relgp 2 and ? 0.7. According
to the new perturbation theory, this problem of computing the smallest eigenvMue is
well conditioned.

In view of (1.2) and (1.6), it is desirable to hve n Mgorithm to compute the
smallest eigenvlue nd ech component of the corresponding eigenvector to guarantee
high relative accuracy. Our Mgorithm is writion of that in [6], which computes the
Perron roots of irreducible nd nonnegtive matrices. It is based on a variant of the
inverse iteration due to Noda [10], which was shown by Elsner [5] to be quadratically
convergent.

For x (xl,..., Xn)T > 0, define

min(xi)

Let y be the right Perron vector of nonnegative matrix N(D I)-1. If Sy is not
seriously large, with proper stopping criteria our algorithm computes the eigenvalue
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and the eigenvector with small componentwise backward error; i.e., the computed
eigenvalue and eigenvector are exactly those of A + E, with E here satisfying

(1.8) IEI <_ ((n + 1)e + tol)IAI.

Here e is the machine precision and tol is a small threshold. Usually we choose
tol e

Any algorithm that first reduces the matrix to Hessenberg form may not compute
the smallest eigenvalue to high relative accuracy, since reducing a dense matrix to
Hessenberg form can’t guarantee small componentwise backward error. In 6, we

present an example for which the standard QR algorithm breaks down, whereas our

algorithm computes the smallest eigenvalue with high accuracy.
This paper is organized as follows. Section 2 contains lemmas for M-matrices.

Section 3 discusses perturbation theory for the eigenvalue. We present the pertur-
bation theory for each component of the eigenvector and explain the observation in

[6] in 4. Section 5 discusses the algorithm and gives the componentwise backward
error. We present a numerical example in 6 to illustrate the stability of the proposed
algorithm.

2. Lemmas for M-matrices. An n x n matrix A is called an M-matrix if it

can be expressed in the form

A-sI-B, s>_O, B>_0

with s >_ p(B), the spectral radius of B.
First we present a basic lemma for the M-matrix. The proof can be found in [4,

p. 156].
LEMMA 1. Let B be a singular irreducible M-matrix. Then each principal sub-

matrix of B other than B itself is a nonsingular M-matrix.
The following result is due to Fiedler et al. and can be found in [7].
LEMMA 2. If P is a nonnegative irreducible matrix with Perron root p and Perron

vectors x > 0, y > 0, Px px, pTy py, then for all positive diagonal matrices A,
the inequality

yTpx <_ yTAPA-lx

holds, and the equality is attained if and only if A is a scalar matrix.
The following lemma is a consequence of Lemma 2, and it is an important tool

for establishing relative perturbation theorems in the remainder of this paper.
LEMMA 3. Let A D- N be an n x n irreducible nonsingular M-matrix, where

D is diagonal and N has zero diagonal. Let u > O, v > 0 denote left and right
eigenvectors corresponding to smallest eigenvalue A, and 7 P(D-1N) Then

uTNv
uTDv

The equality is attained if and only if D is a scalar matrix.

Proof. We apply Lemma 2 to P tI- D + N, which for sufficiently large t
satisfies the assumptions. Hence for any diagonal A,

uT(tI- D + N)v <_ uTA(tI D + N)A-v,
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from which we infer that

uTNv ( uTzNA- v.

Now choose A such that v Az, where z > 0 satisfies D-1Nz p(D-1N)z; then

uTNv
_
uTADD-1Nz 9/uTADz ,uTDAz ,,/uTDv.

The equality is attained if and only if A is a scalar matrix. This means that v is also
a Perron vector of D-1N. From the equation

(D- N)v Av,

(I D-1N)v AD-lv,

we get D-iv Tv for some constant T. Thus D is a scalar matrix.
Now we give the componentwise error bound for the inverse of a nonsingular

irreducible M-matrix. The following lemma can be found in [13].
LEMMA 4. Let A and " be as in Lemma 3. Let A be a perturbation matrix with

15A _< r/IA I. /f 0 < r/< (1 -)/(1 + -), then A + 6A is still a nonsingular M-matrix
and

](A + SA)-I A-I] < (in__ (n- ) A/r/+ 1)r/+ O(r/2

In the next two sections we will use these lemmas to derive perturbation theorems
for the smallest eigenvalue and the corresponding eigenvector.

3. A perturbation theorem for eigenvalues. In this section, we prove the
following theorem, which gives the relative error bound for the smallest eigenvalue of
an irreducible nonsingular M-matrix.

THEOREM 1. Let A, 7 be as in Lemma 3. Let 5A be a perturbation of A with
]A] _< r/]A] and 0 < r/< (1 -’)/(1 +-),). /f A and A’ are the smallest eigenvalues of
A and A + 6A, then

IA A’ < 1 +
A

Proof. Obviously

A ’r/IA <_ A + A <_ A + viAl.

Since 0 < r/ < (1 -7)/(1 + 7), A + 5A is also an irreducible nonsingular M-matrix.
Let Al(r/) and A2(/) be the smallest eigenvalues of A + /IAI and A- /[A]. We can
easily get

2(T]) ,! I(T])

For 0 <_ t <_ r/, let u(t) > 0 and v(t) > 0 be left and right eigenvectors of A + tlA
corresponding to A1 (t). We have

(A + tlAl)v(t (t)v(t).
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By differentiating this equation with respect to t, we obtain

IAIv(t + (A + tlAI)i(t (t)v(t) + (t)i(t).

Applying uT(t) to both sides of this equation, dividing by UT (t)v(t) gives

l(t) uT(t)v(t)

Thus

l(t) uT(t)(D + N)v(t)
--[lnA[t)) )[ti uT(t)[(1 + t)D (1 t)N]v(t)dt

From Lemma 3,

uT(t)((1 t)N)v(t)
uT(t)((1 + t)D)v(t)

_
p(((1 + t)D)-I((1

uT(t)Nv(t)
UT()DV(t) <- p(D-IN) ".

Thus

(3.1) _d ln(A(t)) < (1 + V)
dt (1-7)+(l+7)t"

Noting that A (0) A and integrating (3.1) from 0 to r/yields

In AI(N)- lnA <_ ln((1 -/) + (1 + 9’)r) -ln(1 -’7);

A () .,X
< ._I+:v.

A -1-

Similarly,

Thus

-1-3’

Thus the sensitivity of A to relative perturbations in entries of A is governed by
independent of the condition number to(A) and the angle between the left and right

eigenvectors.
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4. Perturbation theorems for eigenvectors. In this section we discuss the
sensitivity of each component of the eigenvector under the same small perturbation
as in 3.

LEMMA 5. Let B A- F be an n n nonsingular M-matrix with smallest
eigenvalue #. Here A is diagonal and F has zero diagonal. Let be the spectral
radius of A-1F. If () is the spectral radius of (A-a#I)-IF with 0 <_ c <_ 1, then

(4.1) (a) <
1-a(1-)"

Proof. We only consider B irreducible. Otherwise there exists a permutation
matrix P such that pTBp is a block triangular matrix with irreducible diagonal
blocks.

Let

f(a)
1 -c(1 ) (a)"

Since (0) and (1)= 1, we have

f(O) f(1) O.

If A is a scalar matrix, f(a) 0. Otherwise f(a) 0 has at most n roots. Let
and x(a) be the normalized positive left and right eigenvectors of (A- a#I)-lF. We
have

(A a#I)-iFx(a) (a)x(a).

We rewrite (4.2) as

( 1)(4.3) A- uia)F x(a) a#x(a).

Thus x(a) is the right eigenvector of A- -F corresponding to the smallest eigen-
value a#. Similarly, we can prove (A- c#I)-ly(a) is the left eigenvector. From
Lemma 3, we have

r()(h- ,z)-Fx()(4.4) yT(a)(A a#I)-Ax(a) < "
Substituting (4.2) into (4.4), we get

(4.5)
yT(a)(A a#I)-Ax(a) (a)

.r()x() .
We are now in a position to show that if there exists some e (0, 1] such that f() 0,
i.e., () ._(,), then ]() < 0.

By differentiating (4.2) with respect to a and applying yT(() to both sides, we
have

() ,. () yT(o)(A opI)-lx(o)
r()x()
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Thus

Since f(1) 0, from the above proof j(.1) < 0. Assume there exists 0 < 1 < 1 such
that f(l) < 0. From continuity and f(1) < 0 there exists 1 < 2 < 1 such that
f(2) 0. Without loss of generality, we assume there is no other root in (2, 1).
From the above proof, ](2) < 0. Thus f() < 0 for . _< < 1, which implies
.(1) >_ 0. This is in contradiction with ](1) < 0. So there is no root in (0, 1). From
f(1} < 0, we have f(a) > 0 for all a E (0, 1), which conpletes the proof.

Now we present the componentwise relative error bound for the eigenvector. The
absolute gap absgapx in standard perturbation theory is replaced by relative gap
relgap, defined in (1.7).

THEOREM 2. Let A D- N be an n n irreducible nonsingular M-matrix and
5A be a small perturbation of A with [SA[ <_ r/[A[. Let v > O, v’ > 0 be the normalized
eigenvectors of A and A + 5A corresponding to the smallest eigenvalues
repectively. If

(4.6) 0 < V <
((1 @relgap)2

(2 + (1 -7)relgap)(27 + (1 + "))relgap)

then

(4.7)

.(1+
7 + relgapx ’(1 -/)relgapa

(1 3,)relgapx r/+ O(r/2) V.

Proof. Partition

A= ( AT --a ) and A+SA= ( BT --c )
where A1 and B1 are (n- 1) x (n- 1). Let

w: ( (A-AI)-la and w’: ( (B-/VI)-lc

Without loss of generality, we assume the smallest eigenvalue # of A1 satisfies
relgap (#- A)/A.

From Theorem 1,
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The ith diagonal entries of A1 AI and B1 A’I are A, A and A, + 5A,
Noting that A, >_ #, we have

I(Ai,i-A)-(Ai,i+SAii-A’)l <
r(Ai,i + +_--A) ( 2 )< 1+ r.Ai,i A Ai,i A (1 -7)relgap

Thus

I(A1 AI)- (B, A’I)l < (1 + (1 7)relgap

Write A D1 N1, where D1 is diagonal and N has zero diagonal. Obviously
p(Di-N1) _< .

From Lemma 5,

p[(D1 -/I)-IN1] < 7
1-(1-7)/#
(1 + relgapx)7
7 + relgapx

We rewrite (4.6) as

2 ) (1 7)relgap 1 p((D1 AI)-IN1)
0 < 1 + (1 -7)relgap <

27 + (1 + 7)relgapa 1 + p((D1 AI)-N1)’

which implies that B1 A’I is still a nonsingular M-matrix. Using Lemma 4 and
noting that a and c are nonnegative vectors, we have

( (2-p((Dl-I) 1N1)
1+ rl+O(r]2) w.Iw w’ <_ n.

1 p((D1 AI)-IN1) (1 -7)relgap

Since v w/[[w[t2 and v’= w’/llw’ll2, it is straightforward to get (4.r).
Now we present an analogous result for the Perron vector of an irreducible non-

negative matrix. It is observed in [6] that the Perron vector can be computed with
high componentwise relative accuracy, but with a lack of theoretical analysis. Here
we explain this observation.

LEMMA 6. Let P A + F be an n x n nonnegative matrix, where A is diagonal
and F has zero diagonal. Let p be the spectral radius of P and a > O. Then

(4.8) p(((1 + a)pI A)-F) < 1
-l+a

Proof. For e > 0, the matrix (1 + ae)pI-A-F is a nonsingular M-matrix. Thus
(1 + ae)pI- A is nonsingular and

(4.9) p(((1 + a)pI- A)-F) < 1.

If0<e<l, wehave

( )_1l+a
.(l+ae)pI_A((l+a)pI-A)-lF=

l+ae
l+ae< ((1 + ae)pI- A)-F.
l+a

F
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Combining with (4.9), we have

I+p(((l -I- c)pI A)-IF) <
l+a

Letting 0, we obtain (4.8).
Let P A + F be an n x n irreducible nonnegative matrix, where A is diagonal

and F has zero diagonal. Let p be the spectral radius of P and p be the spectral
radius of the submatrix obtained by deleting the ith row and column. Obviously
p > p. Define the relative gap

relgap max
pP-------A.

p

The following result gives the error bound for each component of the Perron vector.
THEOREM 3. Let P be an n x n irreducible nonnegative matrix as above and let

5P be a perturbation matrix to P with ]SP <_ lP. Let u > 0 and u’ > 0 be the right
normalized Perron vectors of P and P + 5P, respectively. If

(relgap):
O<l< 2(2- relgapp)

then
1 + relgapp ]lu u’

_
4n..-(.relgap.p)2. q + O(/2) u.

Proof. Let p’ be the spectral radius of P + 6P. It is shown in [6] that

Ip- p’l <- rip.

Partition

P1 a
and P + 6P dTP

bT o

where P1 and ql are (n- 1) x (n- 1). Let

w= ( (PI-P1)-la I ( )1
and w’= (p’I Q)-lc

1

Without loss of generality, we assume that the spectral radius pl of P satisfies
retgapp (p Pl)/P.

Write P D + N1, where D is diagonal and N has zero diagonal. From
Lemma 6,

p((pI- D1)-N1)
_

Pl/P.
The ith diagonal entries of pI- P1 and p’I- QI are p- Pi,i and p’-Pi,i- 6Pi,i.
Noting that p > p > Pi,i, we have

[(P- P,) (P’- P, -5P,)I < n(P, + p)
p- Pi,i p- Pi,i

Thus
2

I(PI P1) (p’I Q1)I <-- relgap-------- llpI

The rest of the proof is similar to that of Theorem 2. []

Because this error bound depends only on relgapp, it is stronger than that for an
M-matrix.
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5. The algorithm. Let A be a nonsingular irreducible M-matrix, ) be the small-
est eigenvalue of A, and v > 0 be the corresponding eigenvector with Ilvll 1. In
this section we present an algorithm that computes A and v accurately.

For any two n vectors x (Xl,... ,Xn)T and y (Yl,... ,Yn)T, Y > 0, we define

and

max max--, min min xi
l<i<n Yi l<_i<_n Yi

OSC ()= max ()--min ()
In [10], Noda provided an inverse iteration for computing the Perron root of an irre-
ducible nonnegative matrix. This algorithm was shown to be quadratically convergent
by Elsner [5]. Now we modify it to compute the smallest eigenvalue of a nonsingular
irreducible M-matrix.

INVERSE ITERATION ALGORITHM. For a given v0 > 0 iteratively define

,s min (Av--A)’vs
ws (A- AsI)-Ivs,

Vs

Then As N As+l N A and A- As+ N c(A- A), where c is a constant depending on
v0 and A.

This inverse iteration algorithm is the basis for our algorithm. The main tk in
each step is to solve the linear equations (A-AsI)w = %. If v0 is not a scalar multiple
of v, A- AsI is an M-matrix. The algorithm due to Ahac and Olesky [1] can be used
to compute the solution. It is shown in [9] that if A is tridiagonal, this algorithm has
small componentwise backward error. If A is general, as recommended by Skeel [11],
we add one step of iterative refinement to get small componentwise backward error.
To prevent cancellation in computing A, we get A from As- following the relation

As=min(AVsk vs ] =min( Aws-)ws-1 =As-l+min(Vs=)
Thus we can formulate our algorithm as follows.

ALGORITHM. Let tol be a small threshold and e be the machine precision. Start
with v0 > 0 and A0 min(Avo/vo). For s 0, 1,...

1. Compute the LU factorization

(A- As/) LsUs

and solve for ws,

by the Ahac and Olesky algorithm; save the LU factors.
2. Compute r (A- AsI)ws -vs.
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3. Solve (A- AsI)d r using the saved LU factors Ls and Us.
4. Update s ws d.
5. Compute

6. Proceed until

and

1 1
osc < tol.

mi.

Denote (A)= ]IIAIIA-1111 and a(A,x)= max(IAIIxl)/min(IAIIxl). According
to Skeel’s theorem [11], which is stated in a simpler form in [2], there exists a function
f(A- AsI, s). Under the assumption

(A- AsI)a(A- AsI, s) <_ (f(A- AsI, s)e)-1,

the iterative refinement in Steps 2, 3, and 4 can solve (A- AsI)ws vs with the com-
ponentwise backward error no more than (n / 1). In [11], Skeel states that although
f(A- AsI,s) typically behaves as O(n), it can grow exponentially. However, in
our algorithm f(A- AsI, s) must grow modestly since we use the Ahac and Olesky
algorithm to compute the LU factorization. Now we explain this.

From Skeel’s theorem, the function f(A-/ksI, s) depends on IICIl, where C is
a nonnegative matrix satisfying

(5.e)

From the error analysis in [8, p. 115], the computed solution ws satisfies

(A- AsI + E)ws vs,

where

(5.3) ]E <_ n(31A- AsI] + T) +

Here, P, Ls, and Us are the computed analogs of P, Ls, and Us. We denote by
f(J) and g(J) the jth columns of the matrices A- AsI and Isl, respectively. The
algorithm of Ahac and Olesky guarantees that

(5.4) JJf( )ll < n- 1.
II,(,)ll 

Noting that P is a permutation matrix and each entry of ILI is no more than 1, we
can easily construct a matrix C with IICII O(n3) to rewrite (5.3) as

(5.5) IEI C[A- AsI I,

which implies that

(5.6)

Thus the function f(A- AsI, s) grows modestly.
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Now we explain the stopping criteria in Step 6. In fact, this stopping criteria can
be written as

As+l As < tol.
min Ai,i

In the following, variables conputed by the algorithm are denoted by hats.
THEOREM 4. Let e. [[s]]j and e. osc(s/+l). Suppose that the algorithm

terminates when ele2/minAi,i < tol. Suppose further that e2 > (n + 1)e, (n + 1)tol <
1, and (A sI)a(A I,) <_ (f(A I, @)e) -1. Then + el and +1 are,
respectively, the exact smallest eigenvalue and its corresponding eigenvector of matrix
A, where

[A- A <_ [(n + 2)e + 2tol]lA I.

Proof. It follows from Skeel’s theorem that

(5.8) (A sI- E) V + Av,

where

IEI _< (n + 1)elA-

Dividing by IIsl], we can write (5.3) as

and IAvl _< (n+ 1)e. v%.

(A- AI- E)s+ 1 (I -t- D),

where D is a diagonal matrix such that [fi[ < (n + 1)e with D(i, i) fi. Noting
that the infinity norms of +1 and s equal 1 and that they are both positive, we can
get the following inequality as in [6]"

(1 e2)+1 _< _< (1 + e2)s+l.

Hence we can write (I + De2)s+l, where D. is a diagonal matrix such that

Ihl <_ e2 with D2 (i, i)= hi.
Substituting into (5.4) yields

(A- lI- E)v’s+l el (I + D)(I + D.)+.

This can be rewritten as

(Ai,i Ei,i el (1 + fi)(1 + hi) As)s+ (i)
n

E (-Ai,y + Ei,y),+(j).
j=l,ji

Using the condition e > (n + 1)e and (n + 1)tol < 1, we get

IEi,i -’ l(fi + hi) -- elfihi] < 1
(IEi,i] + 2e1(2 + (n + 1)(l2e)A,

< (n + 2)e + 2tol,

which completes the proof. [:]
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From Theorem 1, we have

A-(As+ei) < l+7((n+l)e+2tol).
A -1-3’

The relative precision of the computed eigenvalue depends on tol.
Now we comment on condition (5.1). First we give the upper bounds for

and a(A AsI, s+l)"
THEOREM 5. Let A, D, N, 7, and A be as in Theorem 1. Let s+l and As denote

the quantities computed in the algorithm for some value of s. For x > O, define

min(x)

Let ys > 0 with Ilysll 1 be the right Perron vector of N(D- "sI) -1. Let xs
(D-AsI)v’s+l/ll(D AsI)s+llloo. Suppose Ixs-ys] <_ rlys. IfO < < 1 and As > O,
then

max(IA Aslls+l) < 1 + Z/Sy,m--n(- slls+l) i " /

(5.11) {llA- AslI(A- AsI)-illoo < 1 + S,.
A-As 1-7

Proof. Observing that A, > A > As, we can get

IA- .-rl D- AsI + N.

Let pl be the spectral radius of N(D- sI)-1. From Lemma 5,

i (I 7)As/A

Thus

IA sIIv"+l (I + N(D sI)-l)(D sI)s+l _< c(1 + /)(1 + Pl)Ys,

where

c [[(D- ’5’/11.

Similarly,

IA ,Xll+ _> c(1 r/)(1 + Pz)Ys.

Combining the above two inequalities, we prove (5.7). We have

IA "sI](A sI)-1 I + 2N(D sI)-1 (i N(D sI)-1)-1.

Let P2 be the spectral radius of IA- "sIl(A- si)-1. Then

1 + Pl < 1 +
2A 7

1-pl A-sl-7
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Obviously Ys is the right Perron vector of IA- sIl(A- sI) "-1. Let e be the vector
of all ones and Dy diag(ys(1),..., ys(n)). We have

D8[A- I[(A- sI)-lDe <_ p2e.

Using the definition of S, we have

[[[A-AslI(A-AsI)-I]]I < 1q-
A-A 1-’

Using the definition of Sys, we prove (5.11). [:]

If the algorithm converges, then As converges to A and s+l converges to v in
componentwise sense. Thus xs and ys converge to y, the Perron vector of N(D-AI)
in componentwise sense. For sufficiently large s, the assumptions in Theorem 5 can
be satisfied.

It is stated in [6] that whether condition (5.1) holds depends mainly on Sv and
the absolute accuracy of the computed eigenvalue A- As, whereas in our analysis it
depends on Sy and (A- As)/A, the relative accuracy of the computed eigenvalue. It
is possible that Sy << Sv and A As << (A- As)/A. The following 2 x 2 matrix
illustrates this:

A=( 108+1 --102)--106 2

If Sv is sufficiently large, or A- As is small but still does not achieve the required
accuracy, (5.1) doesn’t hold according to the analysis in [6], while it may still hold
according to our analysis.

Finally, we now discuss how to choose tol. The smaller tol is, the more accurate
the computed solution is. On the other hand, tol should be chosen u little large to
make the algorithm converge in finite precision. We recommend choosing tol 0(1/2 ).
We have tested this threshold on many matrices nd have found that. the algorithm
always converges. The interesting thing is that the relative accuracy of As +
is near to the machine precision e, whereas Theorem 4 predicts the relative accuracy
to be O(e1/2). The observation is akin to that in [6]. Unfortunately, we can’t explain
this phenomenon.

6. A numerical example. In this section, we give a typical numerical example
from our experiment to illustrate the stability of our algorithm. Let A be the 7 7
matrix

2 -10-6

-10 103 + 1
-104 106 + 1

A -10 109 + 1
-10l 1012 + 1

-1013 1015 + 1

\ --1016 2

It is easy to see that A 1 and v (10-6, 10-8, 10-1, 10-12, 10-14, 10-16, 1)T. We
can estimate that (A) > 1016 and absgap < 5.10-15 But 1-/ 0.18 and
relgap >_ 1, and according to the new perturbation theory, this eigenproblem is not
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TABLE

tol As
-10-1 0.604737
10-3 0:998518
iO-5 01998’518

’"i0-7 619999’99

As + el max [vs(i) V(i)l/v(i
0.944033 5.6 x 10-2
’0.999999 1.6 X 10.-6

0.’999999 i.O x 10-6

11000000 1.’0 10-7

ill conditioned. Choosing v0 (1, 1, 1, 1, 1, 1, 1) in Table 1, we give the numerical
results. The experiment is performed with computer precision e 10-7 using an
IBM 486. The iteration is stopped when el e2/min Ai,i <_ tol. It takes 33 steps to get
the result on the first line, 35 steps on the second line and third line, and 36 steps
on the fourth line. Our algorithm computes A accurately, while the standard QR
algorithm of MATLAB (the function eig(A)) gives the result 0.7567.
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ON LINEAR LEAST-SQUARES PROBLEMS WITH DIAGONALLY
DOMINANT WEIGHT MATRICES*

ANDERS FORSGREN*

Abstract. The solution of the unconstrained weighted linear least-squares problem is known to
be a convex combination of the basic solutions formed by the nonsingular subsystems if the weight
matrix is diagonal and positive definite. In particular, this implies that the norm of this solution is
uniformly bounded for any diagonal and positive definite weight matrix. In addition, the solution set
is known to be the relative interior of a finite set of polytopes if the weight matrix varies over the set
of positive definite diagonal matrices. In this paper, these results are reviewed and generalized to the
set of weight matrices that are symmetric, positive semidefinite, and diagonally dominant and that
give unique solution to the least-squares problem. This is done by means of a particular symmetric
diagonal decomposition of the weight matrix, giving a finite number of diagonally weighted problems
but in a space of higher dimension. Extensions to equality-constrained weighted linear least-squares
problems are given. A discussion of why the boundedness properties do not hold for general symmetric
positive definite weight matrices is given. The motivation for this research is from interior methods
for optimization.

Key words, unconstrained linear least-squares problem, weighted linear least-squares problem,
equality-constrained linear least-squares problem

AMS subject classifications. 65F20, 65F35, 65K05

1. Introduction. A fundamental problem in linear algebra is the linear least-
squares problem; see, e.g., Lawson and Hanson [19], Golub and Van Loan [13, Chap. 5],
and Gill, Murray, and Wright [11, Chap. 6]. In this paper, we consider the weighted
linear least-squares problem

(1.1) minimizere. IIW1/2(ATr g)l122,

where A is an m x n matrix of full row rank and W is a positive definite symmetric
n x n matrix. (Here, W1/2 denotes the matrix square root of W; see, e.g., Golub
and Van Loan [13, p. 554].) In many cases, W is diagonal, but it is also of interest
to consider the case in which W is a general symmetric positive definite matrix. A
motivation for this is given in 1.1. An individual problem of the form (1.1) can be
converted to an unweighted problem by substituting AW1/2 and WI/2g.
However, our interest is in sequences of weighted problems, where the weight matrix
W changes and A is constant (see 1.1). In this situation, the weight matrix is of
importance.

The solution of (1.1) is given by the normal equation

(1.2) AWAT AWg

or alternatively as the solution to the augmented system (or Karush-Kuhn-Tucker
KKT system)

W-1
(1.3)

A
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There are a large number of papers giving reasons for solving systems of the type
(1.2) or (1.3), starting with Bartels, Golub, and Saunders [i]. Although our intention
is ultimately to focus on computational aspects, in this paper we deal with the linear
algebra. For recent papers with discussions on computational aspects, see, e.g., Duff et
al. [9], BjSrck [5], Gulliksson and Wedin [16], Wright [27, 28], BjSrck and Paige [6],
Vavasis [24], Forsgren, Gill, and Shinnerl [I0], and Gill, Saunders, and Shinnerl [12].

This paper concerns properties of the solution to (I.I) when W varies over a par-
ticular set of symmetric matrices. Note that if W is positive definite and symmetric,
the solution of (I.I) given by (1.2) is unique. If W is positive semidefinite and sym-
metric, then the solution is unique if and only if AWAT is nonsingular, i.e., positive
definite. We shall consider sets of matrices of these two types, and, in either case, the
solution of (1.1) is unique and given by

(1.4) r (AWAT)-1AWg.

The characterization of 7r when W varies over the set of diagonal and positive definite
matrices is known, and these results are reviewed in 2, together with the closely
related case when W varies over the set of matrices for which W is diagonal and
positive semidefinite and AWAT is positive definite. Section 3 gives an expression
for r of (1.4) when W is a general symmetric matrix such that AWAT is nonsingular
by means of diagonal decomposition. In 4, a particular diagonal decomposition,
called the signature decomposition, is presented. This decomposition is the key to
the analysis of 5, where the characterization of 7 for W belonging to the set of
diagonal positive definite weight matrices is extended to the case in which W belongs
to the set of matrices for which W is symmetric, positive semidefinite, and diagonally
dominant, and AWAT is positive definite. In essence, the analysis for diagonal weight
matrices can still be applied but in a space of higher dimension. In 6, the signature
decomposition is used to generalize the results to the case of equality-constrained
linear least-squares problems, i.e., the case in which infinite diagonal weight is put
on some constraints. Finally, a concluding discussion is given in 7. The signature
decomposition here gives some insight into why the properties of r for positive definite
diagonal weight matrices do not hold for general positive definite symmetric weight
matrices.

1.1. Motivation. Our interest in this problem is from interior methods for opti-
mization. There are a vast number of papers on interior methods; here we give only a
brief motivation for the weighted linear least-squares problems that arise. For detailed
discussions of the summary given here and an overview of interior methods, see, e.g.,
Gonzaga [14] and Wright [26]. We derive the primal barrier equations associated with
a linear programming problem in standard form

minimize
xE

(I.5) subject to

cx
Ax b,
x>O.

We assume that A is an m x n matrix of full row rank and that the relative interior of
the feasible region is nonempty; i.e., there is an E 11 such that A b and 2 > 0.
For a positive barrier parameter #, the associated barrier subproblem is

nminimize cTx- # -]i=1 In xi
(1.6) x]-

subject to Ax b.
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The optimality conditions for (1.6) are given by

(1.7a) c- #x-le ATr O,
(1.Tb) Ax b 0,

with X diag(x) and e the n-dimensional vector with all components one. If
denotes the minimizer of (1.6), then under mild conditions lim_.0+ x(#) x*, where
x* is a minimizer of (1.5). The Newton equations associated with (1.7) are given by

c- #X-le- AT )Ax b

If x is strictly feasible (i.e., x is positive and satisfies Ax b), then a comparison
of (1.3) and (1.8) shows that. the Newton equations (1.8) can be associated with a
weighted linear least-squares problem with a diagonal and positive definite weight
matrix (1/#)X2. For the case of convex quadratic programming, where the objective
function of (1.5) is changed to

-xHx + cTx,2

for a positive semidefinite and symmetric H, the weight matrix in (1.8) is altered to
(H+#X-2) -1, and it is not’diagonal in general. A sequence of strictly feasible iterates
{xk}=o gives rise to a sequence of weighted linear least-squares problems where the
weight matrix changes but A is constant. Moreover, if limk_ xk x*, the condition
numbers of the corresponding weight matrices tend to infinity in general.

Our motivation for considering extensions to nondiagonal weight matrices is pri-
marily twofold: (i) to investigate what perturbations can be made to diagonal weight
matrices and the properties of the solution still remain the same and (ii) to see if more
general weight matrices can be considered using the same analysis.

1.2. Notation. When referring to vector norms and matrix norms, when we
make no explicit reference to what type of norm is considered, it can be any vector
norm and associated subordinate matrix norm such that II(xT o)TII Ilxll holds for
any vector x. This condition on the norm is made to make the notation convenient,
and it is not strictly necessary. Any frequently used matrix norm satisfies this con-
dition; see, e.g., Golub and Van Loan [13, p. 57]. For a matrix M, we denote by
IMI the matrix whose components are the absolute values of the components of M.
The identity matrix of appropriate dimension is denoted by I, and its ith column is
denoted by ei. For a vector r, we denote by ri its ith component, and for a matrix
U, we denote by u its ith column. For a diagonal matrix D, a slightly different
notation is used, and d denotes the ith diagonal element. In 6, partitioned vectors
and matrices are considered. A partition of a vector r as rT (r r2T), and similarly
for matrices, means the partition of r into two blocks of a specified size. The meaning
will be clear from the context.

The signature operator is used frequently. For a vector r, when we write sign(r),
we mean the vector s of the same dimension as r with components s 1 if r > 0,
si 0 if ri 0, and s -1 if r < 0. We refer to a vector s with all components
-1, 0, or 1 as a signature vector, and if all components of s are nonzero, i.e., -1 or
1, we refer to it as a dense signature vector. Similarly, for a vector r, when we write
sign+ (r), we mean the vector s of the same dimension as r with components s 1
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if ri >_ 0 and si -1 if ri < 0. Hence, for any vector r, sign+ (r) is a dense signature
vector.

For an m x n matrix A of full row rank, we shall be interested in its nonsingular
mxm submatrices. Let 7 denote the (n) subsets of { 1 2 n} that have cardinalitym
m. For J E 5Y, we denote by Aj the m x rn submatrix of A comprising the columns
of A with indices in J. We denote by 7(A) the family of such sets of column indices
associated with the nonsingular m x m submatrices of A; i.e., 7(A) {J E 7
Aj is nonsingular}. For example, if

0 1 -2

then 7(A) { { 1, 2 }, { 1, 3} }, and associated with (A) we have

1 -1
and A{1,3A{1,2} 0 1 0 -2

Associated with J jr(A), for a diagonal n x n matrix D, we denote by Dj the m x m
diagonal matrix formed by the elements of D that have row and column indices in J.
Similarly, for a vector g of dimension n, we denote by gj the vector of dimension m
with the components of g that have indices in J. For example, with jr(A) as above,
if

D 0 2 0 and g 5

0 0 3 6

then

1 0 1 0 4
and g{1,3}D{1,2} 0 2

D{l’3}
0 3

g{1,2} 5 6

The slightly different meanings of Aj, Dj, and 9 are used in order not to make the
notation more complicated than necessary. The analogous notation is used for an
m x n matrix A of full row rank and an n x r matrix U of full row rank in that we
associate (AU) with the set of column indices corresponding to nonsingular m x m
submatrices of AU. Associated with J jY(AU), for a diagonal r x r matrix D, we
denote by Dj the m x m diagonal matrix formed by the elements of D that have row
and column indices in J. Similarly, for a vector g of dimension r, we denote by gj

the vector of dimension m with the components of g that have indices in J. Since
column indices of AU are also column indices of U, for J 7(AU), we denote by Uj
the n x m submatrix of full column rank formed by the columns of U with indices in
J. Note that each element of 7(A) as well as each element of ,7(AU) is a collection
of m indices.

2. Review of results for diagonal weight matrices. The case in which W
is a diagonal positive definite matrix has been considered independently by several
authors. In this section, some of these results are reviewed. To stress that the weight
matrix is diagonal, we replace W by D. We consider two sets of n n diagonal weight
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matrices associated with an m n matrix A of full row rank. The first set is :D+(A),
defined by

(2.1) :D+(A) {D e lnn D is diagonal and positive definite},

and the second is :Do (A), defined by

(2.2) :Do(A) {D e Inn
D is diagonal and positive semidefinite, ]
ADAT is positive definite f

Note that :D+(A) c_ :D0(A), and both :D+(A) and :D0(A) are convex sets in which
ADAT is positive definite. The reason we stress that :D+ (A) and :D0(A) are associated
with A is that the dimensions of the diagonal matrices in +(A) and :D0(A) aregiven
by the number of columns of A. In 5, the results reviewed in this section are used,
but with the matrix A replaced by AU(s), where U(s) is a matrix of full row rank

n(n+l) In this circumstance, the number of columns of AU(s)with dimension n 2
determines the size of matrices in :D+ (AU(s)) and :Do(AU(s)), meaning that they are

diagonal matrices of dimension n(’+!2 n(n+21)

The following theorem, which states that the diagonally weighted linear least-
squares solution can be written as a certain convex combination, has been given
independently by several authors. To the best of our knowledge, Dikin [8, p. 55]
was the first to state this result in the convergence analysis of the interior method
for linear programming he proposed [7]; see Vanderbei and Lagarias [23, p. 118].
The proof is based on the Cauchy-Binet formula and Cramer’s rule; see, e.g., Horn
and Johnson [18, pp. 21-22]. The same result is given by Ben-TM and Teboulle [3,
Cor. 2.1]. Also, the closely related result for unweighted linear least-squares problems
where A may not have full row rank is given by Berg [4, p. 67]. Extending this
analysis, Ben-Israel [2, p. 108] shows that Theorem 2.1 can be generalized to the case
in which A does not have full row rank.

THEOREM 2.1 (see Dikin [8]). Let A be an m n matrix of full row rank, let g
be a vector of dimension n, and let :D+(A) be defined by (2.1). If D e :D+(A), then

(ADAT)-IADg= E det(Dj) det(Aj)2 ) j gJEie(A) det(DK)det(AK)2
A-T

where if(A) is the set of column indices associated with nonsingular m m submatrices

olA.
.Proof. See, e.g., Ben-Tal and Teboulle [3, Cor. 2.1]. (See also Theorem 3.1

below.)
Theorem 2.1 implies that if the weight matrix is diagonal and positive defi-

nite, then the solution to the weighted least-squares problem (1.1) lies in the con-
vex hull of the basic solutions formed by satisfying m linearly independent equations.
Hence, this theorem provides an expression on the supremum of
and II(ADAT)-ADII for D diagonal and positive definite, as the following corollary
shows.

COROLLARY 2.2. Let A be an m n matrix of full row rank, let g be a vector o.f
dimension n, and let T)+(A) be defined by (2.1). Then

sup II(nDnT)-lnDgl] max ]IAj-TgjI] and
DeT+ A) Jeff(A)

sup I](ADAT)-IADI[ max
DeT+ (A) Jeff(A)
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where (A) is the set of column indices associated with nonsingular mxm submatrices

of A.
Proof. Let (A) denote the set of column indices associated with nonsingular

m m submatrices of A. If D is diagonal and positive definite, then det(Dj) > 0 for
all J E if(A). Theorem 2.1 and norm properties immediately give

II(ADAT)-ADgI[ <_ max [IAj-TgjII
JEff(A)

and hence

(2.3) sup I[(ADAT)-ADg[I _< max IIAj-TgJII.
DET+ (A) JEff(A)

Let K if(A) be such that the maximum in the right-hand side of (2.3) is achieved;
i.e.,

(2.4) IIAcTgKII max
JE.7(A)

Assume that A cn be prtitioned as A =(AK A) without loss of generMity. For
positive e, let D() be partitioned conformally with A as D(e) diag(I, eI). Then
D(e) e +(A) for e > 0 with

(2.5) lim ]](AD(e)AT)-dD(e)g]] ]]ATg[[.
eO+

A combination of (2.3), (2.4), and (2.5) gives

(2.6) sup I(ADAT)-ADg]]- max ]ATgj,
D+(A) JGJ(A)

proving the first statement.
Since (2.6) is n identity for every g , we obtain

(2.7) max sup ](ADAT)-ADg]] max mx ]]Aj-Tgj[[.
[g=l D+(A) ]g[[=l Jff(A)

Reversing the order of the maximizations in (2.7) gives

sup ]](ADAT)-AD]] max
DG+(A) JGJ(A)

proving the second statement.
In this paper, we only consider the cse in which A has full row rank, but we are

interested in replacing the condition D diagonal and positive definite by D diagonal
nd positive semidefinite such that ADAT is positive definite. Adding zero diagonMs
is of no significance to the bove results, as the following corollary shows.

COROLLARY 2.3. Theorem 2.1 and Corollary 2.2 still hold if +(A) is replaced
by o(A), with o(A) dCned by (2.2).

Proof. Let D G 0(A). Assume that D can be prtitioned s D dig(D+, 0)
without loss of generality, where D+ is diagonal nd positive definite. Let A and g

T g[ )T. Thenbe prtitioned conformally with D as A A+ A0 and g g+
T andADAT A+D+A+

(2.8) (ADAT)-ADg (A+D+A)-A+D+g+.



WEIGHTED LINEAR LEAST-SQUARES PROBLEMS 769

Since D+ is positive definite, Theorem 2.1 applies to (A+D+AT+)-IA+D+g+. If 7(A)
denotes the set of column indices associated with nonsingular m m submatrices of
A, for each J E 7(A), any Dj having at least one zero diagonal has det(Dj) 0.
Hence, they do not affect the convex combination of Theorem 2.1.

Hanke and Neumann [17] give the geometry of the set (ADAT)-IADg as D varies
over the set of positive definite diagonal matrices. The result is that this set is the
union of the relative interiors of a finite number of polytopes and in general a proper,
and possibly nonconvex, subset of the convex hull of the basic solutions. The trick
used by Hanke and Neumann [17] is to divide into several cases, depending on the
signature of the residual vector r of (1.3). We review this result below and give a

direct proof. For a more elaborate discussion, see Hanke and Neumann [17].
THEOREM 2.4 (see Hanke and Neumann [17]). Let A be an rn n matrix of full

row rank, let g be a vector of dimension n, and let

H+(A)(A,g) {(ADAT)-IADg D e :D+(A)},

with 9+(A) defined by (2.1). If S denotes the set of n-dimensional signature vectors,
then

IIz+(A) (A, g) t2sesYIS(A, g),

where

//8(A,g) {r" Su + ATr g, ASv 0, u > 0, v > 0},

with S diag(s).
Proof. Suppose r II+ (A) (A, g). Then ADATr ADg for some D

Hence, with r D(g- ATr), these r and r solve the augmented system (1.3) given
by

Let s sign(r) and S diag(s). Define v with components vi Iril if r 0 and

v 1 ifr 0. Then, Sv r andv > 0. Let u D-v. Then Su= SD-v
D-Sv.= D-r and u > 0. Hence, we have

(2.10)
S 0 AT

u

0 AS 0
v

0

with u > 0 and v > 0. Consequently, r IIS(A, g) for s sign(r), and it follows that
II+(A)(A, g) C_ UsesIIS(A, g).

Conversely, suppose that r e HS(A, g) for some signature vector s. Then there
are positive vectors u and v such that r, u, and v satisfy (2.10) with S diag(s).
Let r Sv and D YV-1, with U diag(u) and Y diag(v). Since v and u are

positive vectors, D is well defined and positive definite, and we have Su SUV-Iv
UV-Sv D-r. Hence, this choice of D gives r and r as the solution of (2.9). Since
s is an arbitrary element in ,S, we conclude that tsesIIS (A, g) c_ YIZ)+(A)(A,g).

In the later analysis, we shall also be concerned with the geometry of the set
(ADAT)-ADg as D varies over the set of positive semidefinite diagonal matrices
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such that ADAT is positive definite. In principle, this can be dealt with by considering
subsets of columns of A such that the submatrix created that way has full row rank.
However, in order not to make the notation too complex, we shall only associate
this set with Hz+(A) (A, g) and its closure V+(A)(A,g), as stated in the following
corollary.

COROLLARY 2.5. Let A be an m n matrix of full row rank, let g be a vector of
dimension n, and let

Hz(A)(A,g) {(ADAT)-IADg D e D0(A)},
with T)o(A) defined by (2.2). Then

llz+(A)(A, g) C_ llz(A)(A, g) C_ z+(A)(A, g),

where HV+(A)(A,g) is defined by Theorem 2.4 and z+(A)(A,g) denotes the closure
of Hv+(A) (A, g).

Proof. Since :D+(A) C_ T)0(A), we obtain IIV+(A)(A,g)
_
HV(A) (A, g).

To show that IIZ(A) (A, g)

_
W+(A)(A,g), suppose that r E IIW(A) (A, g).

Then 7 (ADAT)-IADg for some positive semidefinite and diagonal D such that
ADAT is positive definite. For e > 0 let

(2.11) r(e) (A(D + eI)AT)-XA(D + I)g.

Then r() E II+(A)(A,g) for e > 0, and, since ADAT is nonsingular, (2.11) gives

lira 7r(e)
e---0+

and hence
The essence of Corollary 2.5 is that the difference between the sets HV+(A)(A, g)

and IIV(A)(A, g) is insignificant in that they have the same closure.
Stewart [21] gives a bound on the supremum of IIAT(ADAT)-ADII2 for D di-

agonal positive definite. This bound has subsequently been shown to be sharp by
O’Leary [20], and the anMysis has also been generalized to the case in which A does
not have full row rank by Wei [25]. For an orthonormM matrix Q whose columns
span the range space of AT the bound is given as the inverse of the smallest positive
singular value of any submatrix of Q that has zn columns. Since

IIAT(ADAT)-ADII2 I[Q(QTDQ)-QTDII2 II(QTDQ)-IQTDII2
and since for (j, a nonsingular rn rn submatrix of Q, it holds that

1

O’min ((J
where (Tmin(Qj) denotes the smallest singular value of Qj, this result can also be
obtained from Corollary 2.2 with the additional information that the smallest positive
singular value of any submatrix of Q that has rn columns can be found by minimizing
the smallest singular value of the nonsingular m rn submatrices of Q. Todd [22,
pp. 1011-1012] also derives the boundedness of II(ADAT)-IADglI2 but without giving
an explicit bound.

At this point, it Mso deserves mention that the bound provided by Corollary 2.2 is
a uniform bound, but it can still be arbitrarily large. If A (1 0), then

SUPD II(ADAT)-ADII 1, but if A (1 e), then suPD II(ADAT)-ADII lie
for e 0. Hence, although the bound is independent of D, it may be impossible to
compute in finite precision arithmetic. For a discussion of these matters, see Vava-
sis [24].
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3. Generalization to nondiagonal weight matrices. If W is a general posi-
tive definite symmetric matrix, the boundedness property of Corollary 2.2 does not
hold. In Stewart [21], a nondiagonal example is given by

(3.1) A= 0 1 and W(5,)=
(1-) 2+

Then W(5, e) is positive definite for any positive 5, and it holds that

( )e2+5
1

Stewart [21] observes that (3.2) implies that for a fixed e (e > 0) we have

(3.3) lim (AW(5, e)AT)-IAW(5, e) (e-1 1).

Hence, (3.3) implies that II(AW(5, e)AT)-IAW(5, )11 can be arbitrarily large when
and e are close to zero. In this situation W(5, ) is close to diagonal. Note, however,
that there is a certain relationship required between 5 and e for the norm to become
unbounded. This is discussed further in 7.

Theorem 3.1 below gives the characterization of (AWAT)-IAW for a symmetric
matrix W, such that AWAT is nonsingular when a symmetric diagonal decomposition
of W is known; i.e., W UDUT for some conformally dimensioned matrices. When
U is square and nonsingular and W is positive definite, the generalization is immediate
from Theorem 2.1. Typically, this could be the eigenvalue decomposition; see, e.g.,
Hanke and Neumann [17, 6]. A problem that arises when analyzing nondiagonal
matrices using the eigenvalue decomposition is that not only do the eigenvalues change
with W but also the eigenvectors. The way to overcome this difficulty, presented in
4, is to define a decomposition where U is rectangular, with more columns than rows,
but there are only a finite number of different U-matrices. In this situation D may
be indefinite, although W is positive definite.

The proof technique in Theorem 3.1 follows that of Ben-Tal and Teboulle [3,
Thm. 2.1] for the unweighted linear least-squares problem. The difference is that we
do not require the diagonal matrix to be positive definite, and therefore an "unsym-
metric" form of AWAT is used; see (3.5). For the sake of completeness, we give the
total proof.

THEOREM 3.1. Let A be an rn n matrix of full row rank, and let W be a

symmetric n x n matrix such that AWAT is nonsingular. Suppose W UDUT,
where D is diagonal. Then

det(Dj) det(AUj)2 ) (AUj)_TuT(AWAT)-IAW E -Ke:Z(AU) det(D) det(AUK)2 g’

Je7(AU)

where 7(AU) is the set of column indices associated with nonsingular rn rn subma-
trices of AU.

Proof. Using the nonsingularity of AWAT and the identity W UDUT, we
obtain

(3.4) r (AWAT)-IAWg (AUDUTAT)-AUDUTg.
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We first show that AU has full row rank. This is done by contradiction. Suppose
uTATr 0 for some r 0. Then 0 AUDUTATr AWATr, contradicting the
nonsingularity of AWAT. Hence, AU has full row rank.

Let A- AU, [3 AUD, and - UTg. Then (3.4) gives

(3.5)

The remainder of the proof consists of rewriting (3.5) using the Cauchy-Binet formula
and Cramer’s rule (see, e.g., Horn and Johnson [18, pp. 21-22]). Cramer’s rule in
conjunction with (3.5) gives

det(/.T + (/- [3fiTei)eT)(3.6) ri 1,...,m.
det(BAT)

Application of the Cauchy-Binet formula on the denominator of (3.6) now gives

(3.7) det(/AT) E det(/K)det(fi,K),

where J() is the set of column indices associated with nonsingu~lar mxm submatrices
of .d. Note that since D is diagonal, if J E J(fi,), then Bj Djj. Hence,
det(/j) 0 only if det(fi,g) 0, and application of the Cauchy-Binet formula and
Cramer’s rule to the numerator of (3.6) gives

We can now identify fi,g AUj and j Uyg. As was observed above, we obtain
[1g AUjDj and det(/g) det(AUg)det(Dg). Substitution of these quantities in
(3.7) and (3.8) and insertion into (3.6) yield

(AWAT)-iAW9= E
JE,7(AU)

det(Dg) det(AUg)2 ) (AUj)_TUTjg
EKeJ(AU) det(Dg) det(AUg)2

where J(AU) is the set of column indices associated with nonsingular rn rn subma-
trices of AU. Since g is an arbitrary n-vector, the proof is complete. []

4. The signature decomposition. In this section, we present a symmetric
diagonal decomposition of a symmetric n n matrix W. This decomposition is referred
to throughout as the signature decomposition. Loosely speaking, it is a decomposition
of W on an elementwise outer-product form. It has the form

W U(s(W))D(W)U(s(W))T,

where we refer to s(W) as the dense signature vector associated with W, U(s(W))
as the signature matrix associated with s(W), and D(W) as the diagonal-dominance
matrix associated with W. The definition of s(W) is given in (4.1), and the .definition
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of D(W) is given in (4.6). For a dense signature vector s, with dimension equal to
that of s(W), the definition of U(s) is given in (4.4). Finally, Lemma 4.1 shows that
with these definitions, the signature decomposition is well defined.

We define the dense signature vector of W as the vector of dimension n(-D with2
components

(4.1) st(i,j)(W) sign+(wij), 1 _< i < j _< n,

where t(i,j) n(i- 1)- (+1)
2 + j. The notation t(i,j) is used to stress that t(i,j)

corresponds to the off-diagonM element wy. The ordering corresponds to the strict
upper-triangular part of W, ordered by rows, i.e., w12,...,Wn, W23,...,W2n,...,

wn-,n. This means that

i-1

t(i j) -(n k) + j i n(i -1) i(i + l)
2

The vector s(W) essentially describes the signature of the off-diagonM elements of
W; the only difference is that zero elements are given signature one. For example,
associated with the matrix W defined as

(4.) w
2 0 -3 /0 1 1

-3 1 6

we obtain t(1, 2) 1, t(1, 3) 2, and t(2, 3) 3, and the dense signature vector is

( 1 -1

Associated with a dense signature vector s of dimension n(n-), we define the
,(n+l) with columnsassociated signature matrix U(s) as the matrix of dimension n x

n(,+l) defined byui(s), i 1,..., 2:

(4.ha) u() ei, 1,..., n, and

(4.4b) u,+t(i,)(s) e + st(,j)ej, 1 < j n,

where t(i j) n(i- 1) e j. For s(W) of (4.3), the associated U(s(W)) is

given by

(4.) u((w))
1 0 0 1 1 0 /0 1 0 1 0 1

0 0 1 0 -1 1

Associated with W, we define the diagonal-dominance matrix D(W) as the di-

agonal matrix of dimension n(n+l)2 x (n+1)2 with diagonal elements d(W),
n(n+) defined by1,..., 2

n

(4.6b) dn+t(i,i)(W) Iwijl, 1 <_ i < j <_ n,
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{(+)where t(i,j) n(i 1) 2 + J" For W of (4.2), we obtain D(W) as

(4.7) diag(D(W)) -1 0 2 0 :3 1

Finally, the following lemma formally defines the signature decomposition.
LEMMA 4.1. Let W be smmetric n x matriz, ad let s(W) be the corre-

sponding dense signature vector defined by (4.1). Let U(s(W)) be the signature matrix
associated with s(W) defined by (4.4), and let D(W) be the diagonal-dominance matrix
associated with W defined by (4.6). Then

W U(s(W))D(W)U(s(W))T.

Proof. Let W be a symmetric n x n matrix. We may write W in outer-product
form as

n n n

i--1 i--1

Rearrangement using the identity w0 IwoIsign+(wj) and the symmetry of W gives

(4.8)

The proof is now complete by comparing (4.8) with the definitions in (4.1), (4.4), and
(4.6).

The motivation for considering the signature decomposition of Lemma 4.1 is that
there are only a finite number of different signature vectors s and consequently only
a finite number of different U(s) matrices. Hence, when studying convergence prop-
erties of sequences of W-matrices, all the information that changes continuously is
confined to D(W). In particular, this means that Theorem 3.1 in conjunction with
the signature decomposition gives the solution of (1.1) as a linear combination of a
subset of vectors from a finite set. The following corollary makes this precise.

COROLLARY 4.2. Let A be an m x n matrix offull row rank, and let W be a sym-
metric nn matrix such that AWAT is nonsingular. Let W U(s(W))D(W)U(s(W))T
be the signature decomposition of W given by Lemma 4.1. Then

(AWAT)-IAW E aJ(W)(AUj(s(W)))-TUj(s(W))T’
JeJ(AU(s(W)))

with

det(Dj(W)) det(AUj(s(W)))2

aj(W)
Edet(D(W))det(AUg(s(W)))2’

KE7(AU(s(W)))
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where ,(AU(s(W))) is the set of column indices associated with nonsingular m m

of
Proof. Application of Theorem 3.1 to the signature decomposition defined by

Lemma 4.1 gives the result.
Note that zero diagonals in D(W) occur for two reasons: among the first n

columns because the associated row of W has the row sum of absolute values of
the off-diagonal elements equal the diagonal element, among the last n(n-1) columns2
because the associated off-diagonal element wij is zero. In the factors of the example
W defined in (4.2) the former occurs in the second diagonal element of D(W-) and
the latter in diagonal four of D(W); see (4.7). Such diagonal elements of D(W)
and associated columns of U(s(W)) are redundant and may be removed from the
decomposition. In order to keep the notation as simple as possible, we leave them.
(If they are removed, the dimensions of U(s(W)) and D(W) depend on W.) The
following lemma shows that with the above definitions, D(W) is unique if its last
n(n-1) diagonal elements are nonnegative. It also implies that if D D(W) and2
W U(s)DU(8)T, U(8) differs from U(8(W)) only in columns corresponding to zero
diagonals of D.

LEMMA 4 3 Let s be a dense n(n-1)_dimensional signature vector’, let U(s) be2
the signature matrix associated with s defined by (4.4), and let D be a diagonal matrix

of dimension n(n+l).2 2n(+1) whose last (-1)2 diagonal elements are nonnegative.
if

W U(s)DU(s)T,

then D D(W) and

djuj(s) dj(W)uj(s(W)), j=l..
n(n+l)

2

where D(W) is the diagonal-dominance matrix associated with W, defined by (4.6);
s(W) is the dense signature vector associated with W, defined by (4.1); and U(s(W))
is the signature natrix associated with s(W), defined by (4.4).

n(n 1)Proof. Let s be a dense 2- -dimensional signature vector, let U(s) be the
associated signature matrix, and let D be a diagonal matrix of dimension n(+l)

2 x
(n-1) diagonal elements are nonnegative. If(+). whose last

W-U(s)DU(s)T,

then we may write W in outer-product form as

(4.9) w

Throughout the proof, let t(i, j) n(i- 1)
in (4.9) gives

i(i+) - j. Identification of components2

i--1 n

(4.10a) wii d + E d+t(j,i) + E dn+t(i,j), i 1,..., n,
j=l j=i+l

(4.10b) wji --wij dn+t(i,j)st(i,j), 1 < < j < n.
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Since s is a dense signature vector and for 1 _< < j < n we have dn+t(i,j) >_ O, (4.10b)
gives

for 1 _< i < j <_ n.

Insertion of (4.11)into (4.10a) now gives

Comparison of (4.11) and (4.12) with (4.6) shows that D D(W).
Finally, since D D(W) and the first n columns of U(s) and U(s(W)) are

independent of s and s(W), it suffices to show that

(4.13) dn+t(i,j)Un+t(i,j)(8) dn+t(i,j)(W)un+t(i,j)(s(W)),

Since W U(s(W))D(W)U(s(W))T, (4.10b)gives

l<i<j<_n.

(4.14) wji wij dn+t(i,j)(8(W))st(i,j)(W), 1 <_ < j <_ ft.

A combination of (4.10b) and (4.14) with the definition of U(s) from (4.4) gives (4.13),
completing the proof. El

It may appear a bit counterintuitive that D(W) of (4.7) is indefinite although W
of (4.2) is positive definite. However, when looking at the definition of D(W) given
by (4.6), it is immediate that a symmetric W is positive semidefinite and diagonally
dominant if and only if D(W) is positive semidefinite. Hence, the linear combination
of Corollary 4.2 is a convex combination if W is positive semidefinite, symmetric, and
diagonally dominant. This is essential in the analysis of 5.

5. Results for diagonally dominant weight matrices. In this section, it is

shown that the boundedness property of diagonally weighted least-squares solutions
can be extended also to weight matrices that are diagonally dominant. Using stan-
dard terminology, we define a symmetric positive semidefinite n n matrix W to be
diagonally dominant if

n

i=1

for j 1,...,n;

see, e.g., Horn and Johnson [18, p. 349]. (Note that the absolute value normally put
on wjj is unnecessary, since we require W to be positive semidefinite.) Similar to the
diagonal case, we are concerned with two sets of n n symmetric weight matrices
associated with an rn n matrix A of full row rank. The first set is )/V+ (A) defined
by

W+(A) {W e Rnxn"
W is symmetric, diagonally dominant, and’(
positive definite ]

and the second is W0(A) defined by

fW e Nnxn .W is symmetric, diagonally dominant, and posi-
W0(A)

tive semidefinite; AWAT is positive definite J
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Note that ]/Y+(A) c_ YY0(A), and both /Y+(A) and ]/Y0(A) are convex sets in which
AWAT is positive definite.

Recall from 4 that the virtue of the signature decomposition is that it trans-
forms the question of positive semidefiniteness and diagonal dominance of a matrix
W to positive semidefiniteness of its associated diagonM-dominance matrix D(W) at
the same time as there are only a finite number of signature matrices U(s). This
means that with W symmetric, positive semidefinite, and diagonally dominant we
may rewrite (1.1) as

minimize IID(W)I/2(U(s(W))TATTr

This observation is used below to derive the main results of the paper. Corollary 4.2
and Lemma 4.3 imply that the case of positive semidefinite and diagonally dominant
symmetric weight matrices can be reduced to the union of a finite number of cases of
positive semidefinite and diagonal weight matrices, one diagonal case for each dense
signature vector. The following theorem makes this precise.

THEOREM 5.1. Let A be an rn n matrix of full row rank, and let g be a vector

of dimension n. Let ,S denote the set of dense n(n-1)-dimensional signature vectors,2
and for s E $ let U(s) be the associated signature matrix defined by (4.4). Let

IIW(A)(A,g) {(AWAT)-AWg W e Wo(A)},

with Wo(A) defined by (5.2). Then

Hw(A) (d, g) LJsesFI(Av(s)) (dV(s), V(s)Tg),

where V(s) is defined by (a.4), and the set H(AU(s))(AU(s), V(s)Tg) is given by
Corollary 2.5 with A replaced by AU(s), g replaced by U(s)Tg, and n replaced by
n(n-I-1)

2

Proof. Suppose
]/Y0(A). Let W U(s(W))D(W)U(s(W))T be the signature decomposition of W
from Lemma 4.1. Since W is positive semidefinite and diagonally dominant, (4.6)
implies that D(W) is positive semidefinite, and with the notation of Corollary 2.5, it
follows that r e II(AU(s(w)))(dV(s(W)), V(s(W))Tg). Hence, since s(W) e $, we
conclude that HW(A)(A, g) c_ (_JesHo(AV())(AV(s), V(s)Tg).

Conversely, suppose r e HZ(AU(s))(AU(s), U(s)Tg) for some s e $. Then

r (AU(s)DU(s)TAT)-IAU(s)DU(s)Tg
for some positive semidefinite and diagonal D such that AU(s)DU(s)TAT is positive
definite. Let W U(s)DU(s)T. Lemma 4.3 ira_plies that D D(W), and hence
(4.6) ensures that W is positive semidefinite and diagonally dominant. Consequently,
W V0(A), and hence r IIW(A)(A, g). Since s is an arbitrary element in ,S, we
conclude that LJsesII(AU(s)) (AU(s), U(s)Tg)

We have preferred to state the result for the case when W is allowed to be positive
semidefinite, as long as AWAT is positive definite. However, as in Corollary 2.5
for the diagonal case, the following corollary shows that the difference between this
requirement and requiring W to be positive definite is very small.

COROLLARY 5.2. Let A be an m n matrix of full row rank, let g be a vector of
dimension n, and let

HW+(A)(A,g) {(ADAT)-ADg D e 1/V+(A)},
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with YY+ (A) defined by (5.1). Then

IIW+(A)(A,g) C HW(A)(A,g) C W+(A)(A,g),

where IIW(A)(A, g) is defined by Theorem 5.1 and IW+(A)(A, g) denotes the closure
of IIW+(A)(A, g).

Proof. The proof is analogous to the proof of Corollary 2.5, with :D+ (A) replaced
by V+(A) and :D0(A) replaced by ]/Y0(A). I-!

Hence, the boundedness properties of the diagonal case carry over to the diago-
nal!y dominant case in a straightforward manner. In particular, Corollary 5.2 implies
that the same boundedness properties hold for both sets 1410 (A) and 147+ (A).

COROLLARY 5.3. Let A be an rn n matrix of full row rank, and let 14]o(A) be

defined by (5.2) Let S denote the set of dense n(n-1)-dimensional signature vectors,2
and for s E S let U(s) be the associated signature matrix defined by (4.4). Then

sup II(AWAT)-IAWg[[ max max
WEVo(A) sES Jff(AU(s))

sup I](AWAT)-AW]I- max mx
Weo(A) se8 ge3"(AU(s))

(AUj(s))-TUj(s)Tgll

(AUj(s))-TUj(s)T II,

and

where ff(AU(s)) is the set of column indices associated with nonsingular m m
submatrices of AU(s). In addition, the same properties hold if l/Yo(A) is replaced by
Yl)+ (A), with 14)+ (A) defined by (5.1).

Proof. Theorem 5.1 shows that we may obtain the result for II(AWAT)-IAWgll
with W E VV0(A) by applying Theorem 2.1 and Corollaries 2.2 and 2.3 for each
individual s S and taking the maximum. Since we thus have an identity for each g,
the result for II(AWAT)-IAWII with W 1420(A) follows. Corollary 5.2 shows that
the same properties hold if l/Y0(A) is replaced by +(n).

Loosely speaking, finding the maximizing Uj(s) in Corollary 5.3 involves finding
a particular nonsingular rn rn matrix where each column is either a column of A or
the sum or difference of a pair of columns of A. (No pair of columns appears more
than once.) As an example of where a simple explicit formula can be given, consider
the case of Euclidean norm when A consists of only one row.

COROLLARY 5.4. Let a be a nonzero n-vector, and let Yl]o(aT) be defined by (5.2).
Then

1II(aTWa)-laTWll2 mx
min lal’ }

Proof. The result is straightforward from Corollary 5.3 upon observing that if s
is a dense signature vector with associated signature matrix U(s), we have

aTu(s) a
aTun+t(i,j)(S) a + st(i,j)aj

and Ilu()ll 1, i= 1,...,n,
and Ilu,+,,(,)(s)llz x/, 1 < i < j < n,

where t(i, j)= n(i- 1) i(i+1)2 t-j. 1-1

6. Extension to equality-constrained linear least-squares problems. The
analysis above allows positive diagonal weights of any size, and in particular the
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weights may tend to infinity. This implies that the above results in a straightfor-
ward manner may be extended to a class of equality-constrained linear least-squares
problems of the form

minimize tlW)2(ATTr gl)ll 2
(6.1) . 2

subject to A2TTr g2.

Here, we have partitioned A as A =(A A.), where A1 has nl columns and A has
n2 columns. Conformally with A, we partition g as g =(g g)T. The weight matrix
W is symmetric and positive definite of dimension n n. As before, we assume
that A has full row rank, and we also assume that A has full column rank. (Note
that the assumption that A has full row rank is not significant. If the equations

A g are compatible, linearly dependent columns of A can be removed without
changing the problem.) We denote by (W, A1, A, g, g) the optimal solution of

It is well known that the equality-constrained problem can be viewed as the
limiting case of an unconstrained problem when an infinite diagonal weight matrix is
associated with A; see, e.g., Lawson and Hanson [19, Chap. 22]. This is reviewed in
the following lemma.

LEMMA 6.1. Let A be an m n matrix of full row rank, which is partitioned
as A =(A A), where A1 has nl columns and A is of full column rank and has
n2 columns. Let g be a vector of dimension n, partitioned conformally with A, as
g =(g g)T. Let WI be a positive definite diagonal matrix of dimension nl n,
and let (Wll, A1, A, g, g) denote the optimal solution of (6.1). Then, with as
the solution of the linear system

o o
A A 0 0

it holds that (W, A, A, 9, 9). Moreover, if W(e) is defied as

0)
for e > O, then limo+(AW(e)A)-AW(e)9 (W,A,A,9,9).

Pro@ The characterization and uniqueness of follows for example from the
analysis of Gould [1]. or completeness, we give a direct proof. Since (6.1) is a convex
quadratic programming problem, where the objective function is bounded from below,
he first-order optimality conditions are necessary and sucien for optimality; i.e.,

(6.4a) AWIA Ar AW91,

With r W(9 A), (6.4) is equivalent to (6.2). To show that the system (6.2)
is nonsingular, assume that there is a solution

+ 0,
=0,

(6.5C) AII + A292 0.
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Premultiplication of (6.5a) by UlT, taking into account (6.5c) and (6.5b), gives

TAT It1TWI1Uo .yw;i .l .l Wl  .l
Since Wll is positive definite, this means Ul 0. But if It 0, the full row rank of
A in conjunction with (6.5a) and (6.55) implies u3 0. Similarly, (6.5c) and the full
column rank of A2 implies that u2 0. Hence, rl, r2, and r are the unique solution
of (6.2), and r 71(Wll, A1, A2, gl, g2).

If r(e)= (AW(e)AT)-IAW(e)g, with W(e) defined by (6.3), (1.3)implies that
r(e), together with rl(e) and r2(e), is uniquely defined by

(6.6) 0 eI A r2 (e)
A1 A2 0 7r(e)

Since (6.2) and (6.6) are nonsingular systems that are identical when e 0 and the
solution of (6.6) is a .continuous function of e, we obtain lim_0+

Note that ibr e > 0, W(e) defined by (6.3) is positive definite and diagonal if and
only if Wll is positive definite and diagonal, and W(e) is symmetric, positive definite,
and diagonally dominant if and only if Wll is symmetric, positive definite, and diag-
onally dominant. Hence, Lemma 6.1 implies that the boundedness properties of 2
and 5 apply for the two cases. In addition, the signature vector s(W(e)) is indepen-
dent of e. Also, the expression for (AW(e)AT)-IAW(e)g provided by Corollary 4.2
involving the signature decomposition of W(e) is in terms of m x m matrices where
each column is either a column of A or the sum or difference of a pair of columns of
A. Hence, it seems plausible that the limiting case can be obtained by letting the
infinite diagonal weights on the columns of A2 mean that A2 is a submatrix of each
AUj(s(W(e))) with a nonzero coefficient. This is indeed the case, as the following
corollary shows.

COROLLARY 6.2. Let A be an m n matrix of full row rank, which is partitioned
as A =(At A2), where A1 has nl columns and A2 is of full column rank and has n2
columns. Let g be an n-vector, partitioned conformally with A, as g =(gT gT2 )T" Let
Wll be a positive definite symmetric matrix of dimension n x n. Let W be the n x n
positive definite matrix defined by

(6.7) W--( Wll
0 0).I

Suppose W U(s(W))D(W)U(s(W))T is the signature decomposition ofW given by
Lamina 4.1. Then, if r(Wl, A, A2, gl, g2) denotes the optimal solution of (6.1), it

holds that

7r(W11,A1,A2, gl, g2) E aJ(W)(AUj(s(W)))-TUj(s(W))Tg’
Je.V=(AV(s(W)))

with

det(Dj(W)) det(AUj(s(W)))2

aj(W)
E det(DK(W)) det(AUK(s(W)))2’

KE,=(AU(s(W)))
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and J=(AU(s(W))) {J e J(AU(s(W))) J: c_ J c_ J+}, where J(AU(s(W))) is
the set of column indices associated with nonsingular mxm submatrices ofAU(s(W)),

i(i+x)J= {nx + 1,...,n}, and for t(i,j) n(i- 1) 2 -J

J+ {{1,...,n} U {n + t(i,j) 1 <_ < j <_ nl}}.

Proof. Let W be defined by (6.7), and let W(e) be defined by (6.3). Since W(e)
and W differ only in some diagonal elements, we have s(W(e)) s(W), and hence
U(s(W(e))) U(s(W)). Moreover, (4.6) gives

(6.8a)

(6.8b)

(6.8c)
(6.8d)

dj(W(e)) =dj(W),

dj(W())
1 1
edj(W)

d+t(i,j) (W(e) d+t(i,j) (W),
d+t(i,j)(W()) d+t(i,j)(W) O, l_i<j, nl+l_j_n.

For J e J(AU(s(W))), let i2J denote the number of elements of J= that are included
in J. Note that i2J E n2 for all J e J(AU(s(W))). Also, since A2 has full column
rank and A has full row rank and is a submatrix of AU(s), there is at least one

e J(AU(s(W))) with i2J n2. Hence, since det(Dj(W(e))) occurs both in the
numerator and in the denominator of aj(W(e)) of Corollary 4.2, we may replace
det(Dj(W(e))) by n2 det(Dj(W(e))) in the definition of aj(W(e)) of Corollary 4.2.
A combination of (6.11) and the identity s(W(e))= s(W) with Corollary 4.2 gives

(6.9) (AW(e)AT)-XAW(e)9 aJ(W(e))(AUj(s(W)))-Tuj(s(w))Tg,
JEJ(AU(s(W)))

with

(6.10)
en det(Dj(W(e)))det(AUj(s(W)))2

aj(W(e))
E det(DK(W(e))) det(AUK(s(W)))2

KEJ(AU(s(W)))

Now (6.8) gives

(6.11) en det(Dj(W(e))) - det(Dj(W)).

Thus (6.11) gives

(6.12a) en det(Dj(W(e))) det(Dj(W)) if J= C_ J,
(6.12b) lim e": det(Dj(W(e))) 0 if J=

_
J.

e--,O+

It also follows from (6.8) that det(Dj(W(e))) det(Dj(W)) 0 unless J C_ J+.
Hence, a combination of (6.10) and (6.12) gives

(6.13a) lim aj(W(e))=
det(Dj(W)) det(AUj(s(W)))2

if J= c J,
o+ Edet(DK(W))det(AUK(s(W)))2

Ke,7=(AU(s(W)))

aj(W(e))=0 if J=_J.lim
e--,O+

(6.13b)
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It follows from (6.13) that the limit of the right-hand side of (6.9) is well defined.
Taking the limit of both sides of (6.9) using (6.13) and, as above, the fact that
det(Dj(W)) 0 if J J+ gives the required result. F1

From the result provided by Corollary 6.2, the analysis for the unconstrained case
can be extended also to the equality-constrained case. The discussion is analogous
to the unconstrained case, and we just summarize it briefly below, first for diagonal
weight matrices and then for diagonally dominant weight matrices.

6.1. Diagonal weight matrices and equality constraints. To stress that
the weight matrix is diagonal, we replace Wll by Dll. Similar to the unconstrained
case, we associate a set of weight matrices with an m x n matrix A of full row rank,
partitioned as A =(At A2), where A1 has n columns and A2 has n2 columns. We
denote by T(A1) the set of n x n positive definite diagonal weight matrices; i.e.,

(6.14) :D(A1) {DI e nlxnl"Dll is diagonal and positive definite}.

When the weight matrix of (6.1) is diagonal, Corollary 6.2 takes a simpler form.
The following corollary is the counterpart of Theorem 2.1.

COROLLARY 6.3. Let A be an rn n matrix of full row rank, which is partitioned
as A =(At A2), where A1 has nl columns and A2 is of full column rank and has n2
columns. Let g be an n-vector, partitioned conformally with A, as g =(gT g)T. Let
Dll be a positive definite diagonal matrix of dimension nl x nl. Let D be the n x n
positive definite matrix defined by D diag(Dll,I). Then if 7(D11,A,A2,gl,g2)
denotes the optimal solution of (6.1) with weight matrix Dll, it holds that

7r(Dll, A1, A2, gl, g2) E
JEJ=(A)

det(Dj) det(Aj)2 ) -T

EKe,=(A) det(DK) det(AK)2 Aj gj,

with

S=(A) {J e S(A) J= c_ J},

where (A) is the set of column indices associated with nonsingular rn x rn submatrices
of A and J= {nl + 1,...,n}.

Proof. If we denote by D(D) the diagonal-dominance matrix associated with the
diagonal matrix D defined by (4.6), we have det(Dj(D)) det(Dj) if J c_ {1,..., n}
and det(Dj(D)) 0 if Y {1,..., n}. Also, if g c_ {1,..., n}, it follows from (4.4)
that AUj(s(D)) Aj. Hence, the result follows from Corollary 6.2. 13

Corollary 6.3 immediately provides the boundedness result corresponding to Corol-
lary 2.2, as the following corollary shows.

COROLLARY 6.4. Let A be an rn x n matrix of full row rank, which is partitioned
as A =(A1 A.), where A1 has nx columns and A is of full column rank and has n
columns. Let g be an n-vector, partitioned conformally with A, as y =(gT gT2 )T" Let
T_(A1) be defined by (6.14), and for Oil e T)(A1) let 7r(Dll,A1,A2,gl,g2) denote
the optimal solution of (6.1) with weight matrix Dll. Then

sup I[Tr(D11, A1, A2, gl, g2)[I
D.T_(A

sup max ]lr(Dll,A1,A2,gl,g2)ll--

-TAj ggll and
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with

:Y=(A) {J e 7(A) J= C_ J},

where 7(A) is the set of column indices associated with nonsingular rn rn submatrices
oIA.

Proof. The proof is analogous to the proof of Corollary 2.2 with 7(A) replaced
by 7=(A).

Finally, by considering the signature of the residual vector r of (6.2), Theorem 2.4
is immediately generMized to the constrained case.

COROLLARY 6.5. Let A be an rn n matrix of full row rank, which is partitioned
as A -(A1 A2), where AI has n columns and A2 is of full column rank and has n2
columns. Let g be an n-vector, partitioned conformally with A, as g =(gT g)T. Let
:D(A1) be defined by (6.14), and for D E T)(A) let r(Dl,A,A2, g,g2) denote
the optimal solution of (6.1) with weight matrix DI. Let

Hz)Y(A1)(A,A2,gl,g2) {r(D,A1,A2,gl,g2) D :D(A1)}.

If denotes the set of n-dimensional signature vectors, then

//-(A1) (A, A2, g, g2) UsesHs’ (A1, A2, g, g2),

where

H (A, A2, g, g2) {r Sul + ATtar g, AT2r g2,

A1SlVl-bA2v2 0, Ul > 0, Vl > 0f’
with S diag(s).

Proof. Suppose r IIZ)-(AI)(A, A2, gl, g2). Then Lemma 6.1 implies that there
are r and r2 such that r, r, and r2 solve the augmented system (6.2) given by

(6.15)
D-I 0

0 0

A1 A2
AT re
0 -Let s sign(r1) and S diag(sl). Define v with components (v) I(r)[ if

(r)i = 0 and (vl)i 1 if (rl) 0. Then Svl r and v > 0. Let v2 r2, and
let Ul D11v1. Then Su SiD)v DISv Dlr and u > 0. Hence, we
have

(6.16)
S1 0 0

0 0 0

0 AIS A2
A2T

vl

0
v2

with u > 0 and v > 0. Consequently, 7r II(Ai,A2,g,g2) for s sign(r),
giving Hz)7- (A (A A2, gl g2) C_ t.Js esH (A1, A2, gl g2).

Conversely, suppose that r TIs (A, A2, gl, g2) for some signature vector s.
Then there are u, v, and v2, with u > 0 and v > 0 such that r, ul, v, and v2
satisfy (6.16) with $1 diag(sl). Let r SlVl, r2 v2, and D VU-, with
U1 diag(ul) and V diag(vl). Since v and u are positive vectors, DI is well
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defined and positive definite, and we have SlUl S1U1V-lvl U1V-ISlvl
D11rr. Hence, this choice of Dll gives r, rl, and r2 as the solution of (6.15).

H (A1, A2,91, g2) CSince sl is an arbitrary element in S, we conclude that UleS
H(A)(A,A2, gI,g2).

Wei [25] generalizes the results of Stewart, discussed in 2, to cover also the
constrained linear least-squares problem (6.1) for diagonal weight matrices.

6.2. Diagonally dominant weight matrices and equality constraints. As
in the diagonal case, we associate a set of weight matrices with an m x n matrix A
of full row rank, partitioned as A =(Ai A2), where A has nl columns and A2 has
n2 columns. We denote by W(A) the set of n x nl positive definite symmetric
diagonally dominant weight matrices; i.e.,

(6.17) 2(A1) {Wll nl Xnl. Wll is symmetric, diagonally dominant, }and positive definite

The following corollary gives the result for the constrained case corresponding to
the result of Theorem 5.1 for the unconstrained case. For brevity, we sacrifice some
precision and only consider the closure of the sets.

COROLLARY 6.6. Let A be an m n matrix of full row rank, which is partitioned
as A =(A1 A2), where A1 has nl columns and A2 is of full column rank and has n2
columns. Let g be an n-vector, partitioned conformally with A, as g =(gT g)T. Let
]/VF(A1) be defined by (6.17), and for Wll E Y(A1) let (Wll,A1,A2,gl,g2) denote
the optimal solution of (6.1) Let 1 denote the set of dense nl(nl-1)-dimensional

2
signature vectors, and for sl 1 let U1 (sl be the associated signature matrix defined
by (4.4). Let

Hw-(A1)(A1,A2,gl,g2) {Tr(Wll,A1,A2,g1,g2) W11 e 147(A1)}.
Then

FIwF (A1) (A1, A2, gl, g2) [.jsl Esl [-[Fe (A1Ul (sl )) (Ai Ul (Sl ), n2, U1(81)Tgl g2),

where the set H7(A1UI(sl))(A1UI(sl),A2, UI(sl)Tg,g2) is given by Corollary 6.5,
with A replaced by A1UI (Sl 91 replaced by UI (sl )Tg and nl replaced by 2

Here [IW(A1)(A1,A,gl,g2) denotes the closure of the set H(A1)(A1,A2,gl,g),
and similarly (A1UI()) (A1 U1 (Sl), A2, U1 (sl )Tgl, g.) denotes the closure of the set
HY(A Vl (I )) (A1U1 (81), A2, U1 (sl )Tgl g).

Proof. The proof is analogous to the proof of Theorem 5.1, replacing the optimal-
ity conditions (1.2) by (6.4), upon observing that the distinction of the sets considered
in Corollary 2.5 is of no significance, since only the closures are considered here.

Finally, the boundedness properties corresponding to Corollary 5.3 can also be
derived.

COaOLLARY 6.7. Let A be an m n matrix of full row rank, which is partitioned
as A =(A A), where A has nl columns and A2 is of full column rank and has
n2 columns. Let g be an n-vector, partitioned conformally with A, as g =(gT g)T.
Let I/Y.(A1) be defined by (6.17), and for Wll e 14]?(A1) let r(Wl,A1,A.,gl,g2)
denote the optimal solution of (6.1) Let S denote the set of dense n(n-1)-dimensional

2
signature vectors, and for s S let U(s) be the associated signature matrix defined by
(4.4). Then

sup
Wll EI/ (A1)

liar(W11, A1, A, gl, )11 max max
es e=(A(,))

(AUj(s))-Tuj(s)Tgll
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and

sup max tlTr(W, A, A2, g., g2)[I max max
Wll V(A1) Ilgll- s,s J,Z=(AU(s))

(AUj(s))-Tuj(s)T II,

with 7:(AU(s)) {J e ,7(AU(s)) J= c_ J c_ J+}, where (AU(s)) is the set
of column indices associated with nonsingular m m submatrices of AU(s), J=
{nl + 1,..., n} and, for t(i, j)= n(i- 1) i(i+1)2 +J,

J+ {{1,...,n} kJ {n + t(i,j) l < < j <_ nl}}.

Proof. The proof is analogous to the proof of Corollary 5.3 with the set :7(AU(s))
replaced by ,7=(AV(s)). rl

7. Discussion. Returning to the nondiagonal example (3.1) of Stewart [21], our

analysis shows that the unboundedness of the norm predicted by (3.3) can only occur
because the absolute value of the off-diagonal element of W(5, e) is at least as large
as the smallest diagonal elements. If we let 5 and e be such that W(5, e) from (3.1) is
diagonally dominant, (3.1) gives le(1- )l-< min{ll + e21, e2 + 1}, and (3.2) gives

(7.1) I(AW(,e)AT)-AW(,e)I <_ ( 1 1 ),
independently of 5. It follows from (3.1) and (3.2) that for the norm of the matrix

(AW(5, e)AT)-IAW(5, e) to remain bounded it suffices if the off-diagonal element of
W(5, e) is bounded in comparison with the diagonal elements, and it is not necessary
for W(5, e) to be diagonally dominant. Hence, it seems that one could expect to easily
find a larger class of matrices for which the norm remains bounded. However, let

nt (2 e2

Note that det(W(e)) e2(1-e). It is straightforward to verify that W(e) has positive
diagonal elements if e 0, and hence W(e) is positive definite for e < 0 and e E (0, 1).
Moreover, as e 0, W(e) converges to a matrix which is diagonal (but it is not
diagonally dominant if e E (-1/2,0) or e > 0), and

(1)(7.3) (())()_AW_e_AT_-AW_e_ 1 +- 1

Hence, we have lim_0 [[(AW(e)AT)-AW(e)[[- oc. Consequently, although it is
quite possible that there is a larger class of matrices for which this finite-norm property
holds, it is not immediate.

This unboundedness of lim_0 II(AW(e)AT)-IAW(e)II is predicted by Corollary
4.2. For e > 0 and e <_ -1, if the signature decomposition of Lemma 4.1 is denoted
by W(e)= U+(e)D+(e)U+(e)T, then

(7.4) U+(e)=
1 0 1

and D+(e)= 0 -e 0
0 1 1

0 0 e+e2
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Note that D+() is not positive semidefinite if > 0. This is predicted by (4.6) since

W() is positive definite but not diagonally dominant if E (0, 1). For > 0 or
<_ -1, upon observing that AUI ()- 0, Corollary 4.2 and (7.4) give

For e E (-1,0), the signature decomposition of Lemma 4.1 gives W(e)
U-(e)D- (e)U-(e)T with

1 0 1
and D-(e)= 0 e+2e2 0U-(e)=

0 1 -1
0 0 -e-e2

and similarly to (7.5) we obtain

1
(7.6) (AW(e)AT)-IAW(e)-(2+ )(0 1)-(1+)(-1 1).

0)or e (0 1)Since W(e) is positive definite but not diagonally dominant if e (-,
(4.6) implies that D+(e) is not positive semidefinite for e (0, 1) and D-(e) is not

0). Hence, the linear combination of Corollary 4.2positive semidefinite for e (-g,
is not necessarily a convex combination. All we know is that the coefficients sum up
to one. This is manifested in (7.5) and (7.6), where in both cases the two nonzero
coefficients have different signs and tend to infinity in magnitude, as e tends to zero
frotn plus and minus, respectively.

8. Summary and further research. It has been shown that the properties
of the least-squares solution (AWAT)-IAWg of (1.1) when W belongs to the set of
diagonal and positive definite matrices can be extended also to the larger class of
matrices where W is symmetric, diagonally dominant, and positive semidefinite and
AWAT is positive definite. Similar results have been obtained for the matrix operator
(AWAT)-IAW.

In essence, the signature decomposition of 4 has provided a tool for deriving the
results of this paper for diagonal matrices but in a space where the dimension of the

(+1) The results for the diagonaldiagonal matrices has been expanded from n to
case also apply for the diagonal-dominant case, taking into account the additional
complexity induced by the dense signature vectors associated with the off-diagonal
elements of the weight matrices. The decomposition has also been used to generalize
the results to the case of infinite diagonal weights, i.e., equality constraints. Finally,
it has also given some insight into why the boundedness properties do not hold for
general symmetric positive definite weight matrices.

An interesting line of research is to investigate if this insight into the boundedness
properties of the solution of the least-squares problem (1.1) can be used to analyze the
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stability of solving the normal equations (1.2) by Cholesky factorization for weight
matrices that are positive definite and diagonal or diagonally dominant.
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DEFLATION TECHNIQUES FOR AN IMPLICITLY RESTARTED
ARNOLDI ITERATION*

R. B. LEHOUCQt AND D. C. SORENSEN*

Abstract. A deflation procedure is introduced that is designed to improve the convergence of
an implicitly restarted Arnoldi iteration for computing a few eigenvalues of a large matrix. As the
iteration progresses, the Ritz value approximations of the eigenvalues converge at different rates. A
numerically stable scheme is introduced that implicitly deflates the converged approximations from
the iteration. We present two forms of implicit deflation. The first, a locking operation, decouples
converged Ritz values and associated vectors from the active part of the iteration. The second,
a purging operation, removes unwanted but converged Ritz pairs. Convergence of the iteration is
improved and a reduction in computational effort is also achieved. The deflation strategies make
it possible to compute multiple or clustered eigenvalues with a single vector restart method. A
block method is not required. These schemes are analyzed with respect to numerical stability, and
computational results are presented.

Key words. Arnoldi method, Lanczos method, eigenvalues, deflation, implicit restarting
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1. Introduction. The Arnoldi method is an efficient procedure for approximat-
ing a subset of the eigensystem of a large sparse n x n matrix A. The Arnoldi method
is a generalization of the Lanczos process and reduces to that method when the matrix
A is symmetric. After k steps, the algorithm produces an upper Hessenberg matrix

Hk of order k. The eigenvalues of this small matrix Hk are used to approximate a
subset of the eigenvalues of the large matrix A. The matrix Hk is an orthogonal pro-
jection of A onto a particular Krylov subspace, and the eigenvalues of Hk are usually
called Ritz values or Ritz approximations.

There are a number of numerical difficulties with Arnoldi/Lanczos methods.
In [34] a variant of this method was developed to overcome these difficulties. This
technique, the implicitly restarted Arnoldi iteration (IRA iteration), may be viewed
as a truncation of the standard implicitly shifted QR iteration. This connection will
be reviewed during the course of the paper. Because of this connection, an IRA iter-
ation shares a number of the QR iteration’s desirable properties. These include the
welt-understood deflation rules of the QR iteration. These deflation techniques are
extremely important with respect to the convergence and stability of the QR itera-
tion. Deflation rules have contributed greatly to the. emergence of the practical QR
algorithm as the method of choice for computing the eigensystem of dense matrices.
In particular, the deflation rules allow the QR iteration to compute multiple and
clustered eigenvalues.

This paper introduces deflation schemes that may be used within an IRA iteration.
This iteration is designed to compute a selected subset of the spectrum of A such as

Received by the editors February 10, 1995; accepted for publication (in revised form) by A.
Greenbaum November 8, 1995. This work was supported in part by ARPA (U.S. Army ORA4466.01),
by U.S. Department of Energy contract DE-FG0f-91ER25103, and by National Science Foundation
cooperative agreement CCR-9120008.

Computational and .Applied Mathematics Department, Rice University, Houston, TX 77251
(lehoucq@rice.edu). Current address: Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL 60439 (lehoucq@mcs.anl.gov) (http://www.mcs.anl.gov/home/
lehoucq/index,html).

Computational and Applied Mathematics Department, Rice University, Houston, TX 77251
(sorensen@rice.edu).

789



790 R.B. LEHOUCQ AND D. C. SORENSEN

the k eigenvalues of largest real part. We refer to this selected subset as wanted
and the remainder of the spectrum as unwanted. As the iteration progresses some
of the Ritz approximations to eigenvalues of A may converge long before the entire
set of wanted eigenvalues has been computed. These converged Ritz values may be
part of the wanted or the unwanted portion of the spectrum. In either case, it is
desirable to deflate the converged Ritz values and corresponding Ritz vectors from
the unconverged portion of the factorization. If the converged Ritz value is wanted, it
is necessary to keep it in the subsequent Arnoldi factorizations. This is called locking.
If the converged Ritz value is unwanted then it must be removed from the current and
subsequent Arnoldi factorizations. This is called purging. These notions will be made
precise during the course of the paper. For the moment we note that the advantages
of a numerically stable deflation strategy include

reduction of the working size of the desired invariant subspace,
prevention of the effects of the forward instability of the Lanczos and QR
algorithms [27, 39],
the ability to determine clusters of nearby eigenvalues without need for a
block Arnoldi method [18, 32, 33].

The fundamentals of the Arnoldi algorithm are introduced in 2 as well as the de-
termination of Ritz value convergence. The IRA iteration is reviewed in 3. Deflating
within the IRA iteration is examined in 4. The deflation scheme for converged Ritz
values is presented in 5. The practical issues associated with our deflation scheme
are examined in 6. These include block generalizations of the ideas examined in

5 for dealing with a number of Ritz values simultaneously and avoiding the use of
complex arithmetic when a complex conjugate pair of Ritz values converges. An error
analysis of the deflated process is presented in 7. A brief survey of and comparisons
with other deflation strategies is given in 8. An interesting connection with the var-
ious algorithms used to reorder a Schur form of matrix is presented in 9. Numerical
results are presented in 10.

Capital and lowercase letters denote matrices and vectors whereas lowercase Greek
letters denote scalars. The jth canonical basis vector is denoted by ej. The norms
used are the Euclidean and Frobenius ones denoted by I1" and I1" IIF, respectively.
The range of a matrix A is denoted by 74(A).

2. The Arnoldi factorization. Arnoldi’s method [1] is an orthogonal projec-
tion method for approximating a subset of the eigensystem of a general square matrix.
The method builds, step by step, an orthogonal basis for the Krylov space

K/ (A, ’/31) span{vi, A01,..., A/-lfl }

for A generated by the vector vx. The original algorithm in [1] was designed to
reduce a dense matrix to upper Hessenberg form. However, the method only requires
knowledge of A through matrix-vector products, and its ultimate value as a technique
for approximating a few eigenvalues of a large sparse matrix was soon realized. When
the matrix A is symmetric, the procedure reduces to the Lanczos method [22].

Over a decade of research was devoted to understanding and overcoming the nu-
merical difficulties of the Lanczos method [26]. Development of the Arnoldi method
lagged behind due to the inordinate computational and storage requirements associ-
ated with the original method when a large number of steps are required for conver-
gence. Not only is more storage required for V and H when A is nonsymmetric,
but in general more steps are required to compute the desired Ritz value approxi-
mations. An explicitly restarted Arnoldi iteration (ERA iteration) was introduced
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by Saad [30] to overcome these difficulties. The idea is based on similar ones devel-
oped for the Lanczos process by Paige [25], Cullum and Donath [10], and Golub and
Underwood [17]. Karush proposed the first example of a restarted iteration in [21].

After k steps, the Arnoldi algorithm computes a truncated factorization,

(2.1) AVa VaHa + faea,

of A E Rnn into upper Hessenberg form where vTva Ia. The vector fa is the
residual and is orthogonal to the columns of Va. The matrix .Ha E Raa is an upper
Hessenberg matrix that is the orthogonal projection of A onto T(Va) --/Ca(A, vl).

The following procedure shows how the factorization is extended from length k
to k+p.

ALGORITHM 2.1.

function [Va+p, Ha+p, fa+p] Arnoldi (A, Va, Ha, fa, k, p)
Input: AVk VkHk fke with vTVk Ik vaTfk O.

T VaT+pVa+p Ia+p, VkT+pfa+pOutput: AVa+p- Va+pHa+p fa+pea+p with O.
1. For j 1,2...p

2. a+j - Ilfa+j-1 I; if a+y -0 then stop;
-13. va+j

4. w
T w;5. ha+j +-- vaT+j_Iw; aa+j e-- va+j

[ Hk+j- hk+j 16. H+y T
+jek+j-1 Ok+j

7. fa+j W Vk+j-lhk+j Vk+jOk+j;

If k 0 then V1 v represents the initial vector. In order to ensure that
V[fa 0 in finite precision arithmetic, the above algorithm requires some form of
reorthogonalization at step 7; see Chapter 7 of [23].

In exact arithmetic, the algorithm continues until fa 0 for some k _< n. All
of the intermediate Hessenberg matrices Hi are unreduced for j _< k. A Hessenberg
matrix is said to be unreduced if all of its main subdiagonal elements are nonzero.
The residual vanishes at the first step k such that dimEa+(A, Vl) k and hence is
guaranteed to vanish for some k _< n The following result indicates when an exact
truncated factorization occurs. This is desirable since the columns of Va form a basis
for an invariant subspace and the eigenvalues of Hk are a subset of those of A.

THEOREM 2.2. Let equation (2.1) define a k step Arnoldi factorization of A,
with Ha unreduced. Then fk 0 if and only if v. QkY where AQk QkRk with
QYQa Ia, and Ra is an upper quasi-triangular matrix of order k.

Proof. See Chapter 2 of [23] or [34] for a proof based on the Jordan canonical
form.

In Theorem 2.2, the span of the k columns of Qa represents an invariant subspce
for A. The mtrix equation AQa QaRa is partial real Schur decomposition of
order k for A. The diagonal blocks of Ra contain the eigenvalues of A. The complex
conjugate pairs are in blocks of order-2 and the reM eigenvMues are on the diagonM
of Ra, respectively. In particular, the theorem gives that if the initial vector is
linear combination of k linearly independent eigenvectors then the kth residuM vector
vanishes. It is therefore desirable to devise a method that forces the starting vector
v to lie in the invariant subspace associated with the wnted eigenvalues.

The algorithms of this paper are appropriate when the order of A is so large
that storage and computational requirements prohibit completion of the algorithm
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that produces Vn and Hn. We also remark that working in finite precision arithmetic
generally removes the possibility of the computed residual ever vanishing exactly.

As the norm of fk decreases, the eigenvalues of Hk become better approximations
to those of A. Experience indicates that llfkll rarely becomes small, let alone zero.
However, as the order of Hk increases, certain eigenvalues of Hk may emerge as
excellent estimates to eigenvalues of A. When an eigenvalue Hk is sufficiently near
one of A, we will say that convergence occurred. Since the interest is in a small
subset of the eigensystem of A, alternate criteria that allow termination for k << n
are needed. Let Hky yO where IlYll 1. Define the vector x Vky to be a Ritz
vector and 0 to be Ritz value. Then

(2.2) -IIfll T

indicates that if the last component of an eigenvector for Hk is small the Ritz pair
(x, 0) is an approximation to an eigenpair of A. This pair is exact for a nearby prob-
lem: it is easily shown that (A + E)x xO with E T-(ek y)f The advantage of
using the Ritz estimate (2.2) is to avoid explicit formation of the quantity AVy-VyO
when accessing the numerical accuracy of an approximate eigenpair. Recent work by
Chatelin [8], Chatelin and Frayse [9], and Godet-Thobie [14] suggests that when
A is highly non-normal, the size of Te y is not an appropriate guide for detecting
convergence. If the relative departure from normality defined by the Henrici num-
ber IIAAT ATAII/IIAII is large, the matrix A is considered highly non-normal.
Assuming that A is diagonalizable, a large Henrici number implies that the basis of
eigenvectors is ill conditioned [8]. Bennani and Braconnier compare the use of the
Ritz estimate and direct residual I]Ax- xOII in Arnoldi algorithms [4]. They suggest
normalizing the Ritz estimate by the norm of A, resulting in a stopping criteria based
on the backward error. The backward error is defined as the smallest, in norm, per-
turbation AA such that the Ritz pair is an eigenpair for A + AA. Scott [33] presents
a lucid account of the many issues involved in determining stopping criteria for the
unsymmetric problem.

3. The implicitly restarted Arnoldi iteration. Theorem 2.2 motivates the
selection of a starting vector that will lead to the construction of an approximate
basis for the desired invariant subspace of A. The best possible starting vector would
be a linear combination of a Schur basis for the desired invariant subspace. The
IRA iteration iteratively restarts the Arnoldi factorization with the goal of forcing
the starting vector closer and closer to the desired invariant .subspace. The scheme
is called implicit because the updating of the starting vector is accomplished with an
implicitly shifted QR mechanism on H. This will allow us to update the starting
vector by working with orthogonal matrices that live in Rkk rather than in Rnn.

The iteration starts by extending a length k Arnoldi factorization by p steps.
Next, p shifted QR steps are performed on H+p. The last p columns of the factor-
ization are discarded resulting in a length k factorization. The iteration is defined by
repeating the above process until convergence.

As an example, suppose that p 1 and that k represents the dimension of the
desired invariant subspace. Let # be a real shift and let H+ #I QR with Q
orthogonal and R upper triangular matrices, respectively. Then from (2.1)

(3.1) (A I)Vk+l Vk+l (Hk+l #I) f+lek+
(A ttI)Vk+l Vk+QR fk+ek+T
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(A- #I)(Vk+IQ) (vk+IQ)(RQ) fk+lekT+Q,
+ r

+ RQ+#I and the latter ma-The matrices are updated via Vk V+Q and Hk+
trix remains upper Hessenberg since R is upper triangular and Q is upper Hessenberg.
However, equation (3.2) is not quite a legitimate Arnoldi factorization. The relation
of equation (3.2) fails to be an Arnoldi factorization since the matrix fk+ Tek+lQ has
a nonzero kth column. Partitioning the matrices in the updated equation results in

T T Qe+l Equating the first k columns of (3.3) giveswhere ak ek+Qe and ek+

(3.4) + +AV+ Vk+H+k + ++ vk+

Performing the update f+ + + + o’kfk+ and noting that (Vk+ T +fk =0, it+-- /k+lVk+l
follows that equation (3.4) is a length k Arnoldi factorization.

We now show that the IRA iteration is equivalent to forming the leading portion
of an implicitly shifted QR iteration. Note that equations (3.1) and (3.2) are valid
for 1 _< k _< n. In particular, extending the factorization of equation (3.1) by n- k
steps gives fn 0, and AV, V,H, 0 defines a decomposition of A into upper
Hessenberg form. Let QnRn Hn #I where Q and Rn are orthogonal and upper
triangular matrices of order n, respectively. Since Q and R are the leading principal
submatrices of order k + 1 for Q and Rn, respectively, VnQnRnel Vk+IQRe and
eT1R,el eT1Re follow. Postmultiplication of equation (3.2) with e exposes the
relationship

(A- #I)vl Vk+lQ, elPll YnQnelpll V+l
where Pll eRel, Vl Vk+lel, and gkl( V?. In other words, the first column
of the updated k step factorization matrix is the same as the first column of the
orthogonM matrix obtained after a complete QR step on A with shift #. Thus, the
IRA iteration may be viewed as a truncated version of the standard implicitly shifted
QR iteration. This idea may be extended for up to p > 1 shifts [34]. One cycle of the
iteration is pictured in Figures 3.1-3.3. Application of the shifts may be performed
implicitly as in the QR algorithm. If the shifts are in complex conjugate pairs then
the implicit double shift can be used to avoid complex arithmetic.

Numerous choices are possible for the selection of the p shifts. One immediate
choice is to use the p unwanted eigenvalues of Hk+p. In exact arithmetic, the last p
subdiagonal elements of H+p are zero and the Arnoldi factorization decouples. For
example in equation (3.4) +/k+ 0 when # is an eigenvalue of Hk. The reader is
referred to [7, 23, 34] for further information.

The number of shifts to apply at each cycle of the above iteration is problem
dependent. At present there is no a priori analysis to guide the selection of p relative
to k. The only formal requirement is that 1 <_ p <:_ n- k. However, computational
experience suggests that p _> k is preferable. If many problems of the same type are
to be solved, experimentation with p for a fixed k should be undertaken. This usually
decreases the required number of matrix-vector operations but increases the work and
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TFIG. 3.1. The set of rectangles represents the matrix equation YkwpHkWp - fkWpek.Fp Of an

Arnoldi factorization. The unshaded region on the right is a zero matrix of k + p- 1 columns.
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FIG. 3.2. After performing p implicitly shifted QR steps on Hk+p, the middle set of pictures
illustrates Vk+pQQTHk+pQTfk+pe+pQ. The lastp+l columns of fk T+pek+pQ are nonzero because

of the QR iteration.

storage required to maintain the orthogonal basis vectors. The optimal crossover with
respect to CPU time varies and must be determined empirically. Lehoucq makes a
connection with subspace iteration, in Chapter 8 of [23]. There has been considerable
experience with subspace iteration, and this connection may eventually shed light on
how to select p relative to k. For example, it is well known that performing subspace
iteration on a subspace of dimension larger than the number of eigenvalues required
typically leads to improved convergence rates; see the paper of Duff and Scott [12] for
a discussion and further references.

Among the several advantages an implicit updating scheme possesses are

fixed storage requirements,
the ability to maintain a prescribed level of orthogonality for the columns of
V since k is of modest size,
application of the matrix polynomial v+ - (A)vl without needing to apply
matrix-vector products with A,
the incorporation of the well-understood numerical and theoretical behavior
of the QR algorithm.

These last two points warrant further discussion. Quite often, the dominant cost dur-
ing Arnoldi iterations is the matrix-vector products with A. Thus, the IRA iteration
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FIG. 3.3. After discarding the last p columns, the final set represents VkHk + fke of a length
k Arnoldi factorization.

may result in a substantial reduction in time when building a length k / p Arnoldi
factorization. The last point is important since it allows the possibility of constructing
general purpose and reliable software for the large-scale eigenvalue problem.

4. Deflation within an IRA iteration. As the iteration progresses, the Ritz
estimates (2.2) decrease at different rates. When a Ritz estimate is small enough, the
corresponding Ritz value is said to have converged. The converged Ritz value may
be wanted or unwanted. In either case, a mechanism to deflate the converged Ritz
value from the current factorization is desired. Depending on whether the converged
Ritz value is wanted or not, it is useful to define two types of deflation. Before we do
this, it will prove helpful to illustrate how deflation is achieved. Suppose that after
m steps of the Arnoldi algorithm we have

T + feT(41) A[ V1 V2 V1 V2
IgeleJ Hz

where V 6 Rnx/, H 6 Rixj for 1 j < m. If e is suitably small then the factor-
ization decouples in the sense that a Ritz pair (y, 0) for H provides an approximate
eige,pair (z Vy, O) with a Rit estimate of leYl. Setting e to zero splits a nearby
problem exactly and setting e 0 is called deflation. If e is suitably small, then all
the eigenva]ues of H1 may be regarded as converged Ritz values.

4.1. Locking. If deflation has taken place, the column vectors in V are con-
sidered locked. This means that subsequent implicit restarting is done on the basis
V2. The submatrices affected during implicit restarting are G, H2, and V2. However,
during the phase of the iteration that exends the Arnoldi factorization from k to
k + p steps, ii of the columns of V V2 prticipate lust as if no deflation had
occurred. This ensures that all of the new Arnoldi basis vectors are orthogonalized
against converged Ritz vectors and prevents the introduction of spurious eigenvalues.

After dtion, quting tht m-j oumn of (.1) rut in (Z-VV)AV
TVzHz + fern_j Thus, deflating V and H from the factorization defines a new Arnoldi

factorization with the matrix (I- VV)A and starting vector V2e. This equivalence
was noted by Saad [31, p. 182]. Moreover, this provides a means to safely compute
multiple eigenvalues when they are present. A block method is not required if deflation
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and locking are used. The concept of locking was introduced by Stewart and Jennings
[37] as a deflation technique for simultaneous iteration.

4.2. Purging. If deflation has occurred but some of the deflated Ritz values
are unwanted then a further mechanism, purging, must be introduced to remove the
unwanted Ritz values and corresponding vectors from the factorization. The basic
idea of purging is perhaps best explained with the case of a single deflated Ritz value.

Let j 1 in (4.1) and equate the first columns of both sides to obtain

(4.2) Av V10 -- e.V2el,

where v Vie1 and H1 al. Equation (4.2) is an Arnoldi factorization of length
one. The Ritz value al has Ritz estimate

Equating the last rn- 1 columns of (4.1) results in

T(4.3) AV2 VG + V2H2 + fern_

Suppose that al represents an unwanted Ritz value. If A were symmetric then G
eeT and equation (4.3) would become

T(A + E)V2 V.H2 + fern_l,

where E --evl(V2e)T (V.e)vT1 Since IIEII e equation (4.3) defines a length
rn- 1 Arnoldi factorization for a nearby problem. The unwanted Ritz pair (Vl,
may be purged from the factorization simply by taking V V2 and H H2 and
setting G 0 in (4.3). If A is not symmetric, the 1 (m- 1) matrix G couples Vl
to the rest of the basis vectors V2. This vector may be decoupled using the standard
Sylvester equation approach [15, pp. 386-387]. Purging then takes place as in the
symmetric case. However, the new set of basis vectors must be reorthogonalized in
order to return to an Arnoldi factorization. This procedure is developed in 5 and 6
including the case of purging several vectors.

4.3. Complications. An immediate question follows: do any subdiagonal ele-
ments in the Hessenberg matrix of the factorization (4.1) become negligible as an
IRA iteration progresses? Since a cycle of the Arnoldi iteration involves performing a
sequence of QR steps, the question is answered by considering the behavior of the QR
iteration upon upper Hessenberg matrices. In exact arithmetic, under the assumption
that the Hessenberg matrix is unreduced, only the last subdiagonal element may be-
come zero when shifting. But the other subdiagonal elements may become arbitrarily
small.

In addition, in exact arithmetic, the purging technique would not be necessary
as the implicit shift technique would accomplish the removal of the unwanted Ritz
pairs from the leading portion of the iteration. For example, using the unwanted Ritz
values as shifts accomplishes this removal.

Computing in finite precision arithmetic complicates the situation. A robust
implementation of the QR algorithm sets a subdiagonal element to zero if it is in
magnitude less than some prescribed threshold and this technique is also adopted
for deflation. This deflation overcomes the technical difficulty associated with tiny
subdiagonals and improves the convergence of the IRA iteration. In addition, it may
be impossible to accomplish the removal of the unwanted Ritz values from the leading
portion of the iteration due to the forward instability [27, 39] of the QR algorithm.

The phenomena of the forward instability of the tridiagonal QR iteration [27] was
initially explored by Parlett and Le. They observe that while the implicitly shifted QR
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iteration is always backward stable, there are cases where severe forward instability
can occur. It is possible for a QR iteration to result in a computed Hessenberg matrix
with entries that have no significant digits in common with the corresponding entries
of the Hessenberg matrix that would have been determined in exact arithmetic. The
implication is that the computed subdiagonal entries may not be reliable indicators
for decoupling the Arnoldi factorization. Parlett and Le’s analysis formally implies
that the computed Hessenberg matrix may lose significant digits when the shift used
is nearly an eigenvalue of H and the last component of the normalized eigenvector is
small. We also mention the work of Watkins [39], which investigates the transmission
of the shift during a QR step through H.

Since convergence of a Ritz value is predicated upon the associated Ritz estimate
being small, using shifts that are near these converged values may force the IRA
iteration to undergo forward instability. This indicates that it may be impossible
to filter out unwanted eigenvalues with the implicit restarting technique, and this is
the motivation for developing both the locking and the purging techniques. Further
details may be found in Chapter 5 of [23].

5. Deflating converged Ritz values. During an Arnoldi iteration, a Ritz value
may be near an eigenvalue of A with no small elements appearing on the subdiagonal
of Ha. However, when a Ritz value converges, it is always possible to make an
orthogonal change of basis in which the appropriate subdiagonal of Ha is zero. The
following result indicates how to exploit the convergence information available in the
last row of the eigenvector matrix for Hk. For notational convenience, all subscripts
are dropped on the Arnoldi matrices V, H, and f for the remainder of this section.

LEMMA 5.1. Let Hy yO where H E Rkxk is an unreduced upper Hessenberg
matrix and 0 R with IlYll 1. Let W be a Householder matrix such that Wy el"
where T --sign(eTy). Then

where Ilwll <_ v/leyl and

(5.2) WTHWel ei O.

Proof. The required Householder matrix has the form

where -y (1 + leTyl)- and - --sign(eTy). A direct computation reveals that

(5.3) T T
W
T

ek W ek +

where wT /ey(-eT1 yT). Estimating

leT y] V/2(1+ leT yl)
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establishes the bound on IIwll. The final assertion (5.2) follows from

WTHWei "r-1WTHy
7--IOWTy
z--OWy
Oel.

(WT W)

Lemma 5.1 indicates that the last row and column of W differ from the last row
and column of Ik by terms of order T

ek YI" The Ritz estimate (2.2) will indicate when
it is safe to deflate the corresponding Ritz value 0. Rewriting (2.1) as

AVW VWWTHW + feW
and using both (5.1) and (5.2) and partitioning we bbtain

(5.4) AVW= VW [ 0 [tT ]0 + fe + fwT.

Equation (5.4) is not an Arnoldi factorization. In order to return to an Arnoldi
factorization, the matrix of order k 1 needs to be returned to upper Hessenberg
form and the term fwT dropped. Care must be taken not to disturb the matrix fe
and the first column of WTHW. To start the process we compute a Householder
matrix Y1 such that

[ ]e-2 7

with ek_lY1T ek_l.T The above idea is repeated resulting in Householder matrices
Y, Y2,..., Yk-3 that return H to upper Hessenberg form. Defining

[1 0

Ty T andit follows by the construction of the Yj that ek ek

(5.5) yTWTHWYel 0el.

The process of computing a similarity transformation as in equation (5.5) is not new.
Wilkinson discusses similar techniques in [40, pp. 587-596]. Wilkinson references
the work of Feller and Forsythe [13], who appear to be the first to use elementary
Householder transformations for deflation. Problem 7.4.8 of [15, p. 371] addresses the
case when working with upper Hessenberg matrices. What appears to be new is the
application to the Arnoldi factorization for converged Ritz values.

Since IlfwTyII ]lfll [[yTw][ [[f[[ ][w[I, the size of IlfwTI] remains unchanged.
Making the updates

V VWY, H ,,-- yTWTHWY, wT wTy

we obtain the relation

AV VH + fey + fwT.
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A deflated Arnoldi factorization is obtained from equation (5.6) by discarding the
term fwT.

The following theorem shows that the deflated Arnoldi factorization resulting
from this scheme is an exact k step factorization of a nearby matrix.

THEOREM 5.2. Let an Arnoldi factorization of length k be given by (5.6), where
gy y0 and v/leyl Ilfll <- elldll for some e > O. Then there exists a matrix
E E Rnn such that

(A + E)V VH + fe,
where

[
Solving the linear system

IIE[I  I[AII.

Proof. Subtract fwT from both 8ides of equation (5.6). Set E -f(Vw)T and
then

EV -f(Vw)TV -fwT

and equation (5.7) follows. Using Lemma 5.1 gives

]]EII [If[[ ][wl[ x/[ey] I[/][- e]lA]]. [:]

If A is symmetric then the choice E -f(Vw)T -(Vw)fT results in a symmetric
perturbation. If e is on the order of unit round-off then the deflation scheme introduces
a perturbation of the same order to those already present from computing the Arnoldi
factorization in floating point arithmetic.

Once a converged Ritz value 0 is deflated, the Arnoldi vector corresponding to
0 is locked or purged as described in the previous section. The only difficulty that
remains is purging when A is nonsymmetric.

If A is not symmetric, then the Ritz pair may not be purged immediately because
of the presence of h. A standard reduction of H to block diagonal form is used. If 0
is not an eigenvalue of/, then we may construct a vector z E Rk-1 so that

Ik-1 Ik-1 [-I

(5.9) (/T 0I_)z

determines z. Define

1 zT ]Z= I_

Postmultiplication of equation (5.6) by Z results in

AVZ=vz[O] T+ fek + fwTZ

TZ T Equating the last k- 1 columns of the previous expression results insince ek %.

(5.10) AV
Ik-1

V
Ik-1 + fekT- + fwT Ik-
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Compute the factorization (using k- 1 Givens rotations)

(5.11) QR=
ik_l

where Q E Rkk-1 with QTQ I-1 and R is an upper triangular matrix of order
k- 1. Since the last k- 1 columns of Z are linearly independent, R is nonsingular.
Postmultiplying equation (5.10) by R-1 gives

(5.12) -1 TAVQ VQRHR-1 + pk_lfek_l + fwTQ,

T Re,c_1 The last term fwTQ in (5.12) is discarded by the deflationwhere pk-1 ek_l
scheme, and this relation shows that the discarded term is not magnified in norm
by the purging procedure. The matrix RR-1 remains upper Hessenberg since R is
upper triangular.

Partitioning Q conformally with the right side of equation (5.11) results in

11 R---
Q21 I-1

and it follows that R-1 Q21. Using the Cauchy-Schwarz inequality, it follows that

IPk-ll-1 lek_1TQ21ek-ll _< 1 and hence the Arnoldi residual is not amplified by the
purging. The final purged Arnoldi factorization is

(5.13) -1 eTAVQ VQRQI + p-lf

Performing the set of updates

-1V VQ, H RHQ21, f Pk-lf

defines equation (5.13) as an Arnoldi factorization of length k- 1. Theorem 5.2
implies this is an Arnoldi factorization for a nearby matrix. It is easily verified that
vTf(ecT_ + WT) 0 and that H is an upper Hessenberg matrix of order k- 1.

Since the term fwT is discarded, the Ritz estimates given by the updated Arnoldi
factorization for the remaining Ritz values will be slightly inaccurate. Lemma 5.1 and
the fact that IIR-1 <- 1 may be used to show that the errors in these estimates are
bounded above by Ilfll(x/ Te Yl)" If w 0 then the Ritz estimates for the updated
factorization would be exactly the same as the Ritz residuals and estimates for the
original one.

6. A practical deflating procedure for the Arnoldi factorization. The
practical issues associated with a numerically stable deflating procedure are addressed
in this section. These include

1. performing the deflation in real arithmetic when a converged Ritz value has
a nonzero imaginary component,

2. deflation with more than one converged Ritz value,
3. error analysis.

Section 6.2 presents two algorithms that implement the deflation schemes. The error
analysis of the two deflation schemes is presented in the next section.
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6.1. Deflation with real arithmetic. Suppose H(y + iz) ( + i#)(y + iz)
where y and z are unit vectors in Rk, H E I:tkk, and # 0. It then follows that

H[ y z ]=[ y z [ 0-# #1 =-[ z ]C.

TThus, we may deflate a complex Ritz value in real arithmetic if leyl and lek z are
small enough.

Suppose that H corresponds to an Arnoldi factorization of length k and that

IT T
ek Yl O(e) lek Z I. Factor

]=u [ T ]0

where uTu It and T is an upper triangular matrix. It is easily shown that y and
z are linearly independent as vectors in Rk since # 0 and the nonsingularity of T
follows. Performing a similarity transformation on H with U gives

UTHU[ el e2 ]= 0

In order to deflate the complex conjugate pair of eigenvalues from the factorization
TU T UTin an implicit manner, we require that ek e + where [[u[I O(e).

We now show that the magnitudes of the last components of y and z are not
sufficient to guarantee the required form for U. Suppose that z y cos + r sin
where r is a unit vector orthogonal to y and measures the positive angle between
y and z. Lemma 5.1 implies that a Householder W matrix may be constructed such
that

y z ]= Tlel Tlel COS + WTrsin ]---- [wT T1
0

where T1 +1 and the last column and row of W and Ik are the same up to order
T

eky. To compute the required orthogonal factorization in equation (6.1) another
Householder matrix Q [ ] is needed so that T +l]llel" But Lemma 5.1

only results in T ( T Tek_ ek_ + with ]11] O(e) if ek_Tif is small relative to
Unfortunately, if is small, WTz Tlel and ]]11 . Hence we cannot obtain the
required form for U WQ.

Fortunately, when y and z are nearly aligned, # may be neglected, as the following
result demonstrates.

LEMMA 6.1. Let H(y + iz) ( + i#)(y + iz) where y and z are unit vectors in
Rk, H R, and # O. Suppose that measures the positive angle between y and
z. Then

(6.2) I1 sin IIHII.
Proof. Let z y cos + r sin where r is a unit vector orthogonal to y and

measures the positive angle between y and z. Equating real and imaginary parts of
H(y + iz) ( + i#)(y + iz) results in Hy y z# and Hz y# + z. The desired
estimate follows since

2# yTHz zTHy sin (yTHr rTHy)
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results in lit <_ sinllHII. Cl

For small , y and z are almost parallel eigenvectors of H corresponding to a
nearly multiple eigenvalue. Numerically, we set # to zero and dellate one copy of 0
from the Arnoldi factorization.

A computable bound on the size of the angle is now determined using only the
real and imaginary parts of the eigenvector. The second Householder matrix Q should
not be computed if

Recall that Lemma 5.1 gives eW ekT + WT where WT ,.ekTy(,re yT) and
/= (1 + leTlyl) -1. Thus

4w 4Wz ffz +
where the symmetry of W is used. The estimate

o T IT WT sin sin

follows since W is orthogonal and r is a unit vector. Rewriting equation (6.3), we
obtain

T
k Z --- wTzsin < T
k Z

wTz
1+

ek Z

(6.4) 1 + /(71elTz yTz ey
ekZ

as our computable bound.
Suppose that HX XD where X Rxj and D is a quasi-diagonal matrix.

The eigenvalues of H are on the diagonal of D if they have zero imaginary component
and in blocks of two for the complex conjugate pairs. The columns of X span the
eigenspace corresponding to diagonal values of D. For the blocks of order-2 on the
diagonal the corresponding complex eigenvector is stored in two consecutive columns
of X, the first holding the real part, and the second the imaginary part. If we want
to block deflate X, where the last row is small, from H we could proceed as follows.
Compute the orthogonal factorization X Q[ R0] via Householder reflectors where
QTQ Ik and R Rxk is upper triangular. Then the last row and column of Q
differ from that of Ik with terms on the same order of the entries in the last row of
X if the condition number of R is modest. Thus, if the columns of X are not almost
linearly dependent, an appropriate Q may be determined. Finally, we note that when
H is a symmetric tridiagonal matrix, an appropriate Q may always be determined.

6.2. Algorithms for deflating converged Ritz values. The two procedures
presented in this section extend the ideas of 4 to provide deflation of more than one
converged Ritz value at a time. The first purges the factorization of the unwanted con-
verged Ritz values. The second locks the Arnoldi vectors corresponding to the desired
converged Ritz values. When both deflation algorithms are incorporated within an
IRA iteration, the locked vectors form a basis for an approximate invariant subspace
of A. This truncated factorization is an approximate partial Schur deconposition.
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Locked Vectors

Active Factorization

FIG. 6.1. The matrix product VmHra of the factorization upon entering Algorithm 6.2 or 6.3.
The shaded region corresponds to the converged portion of the factorization.

When A is symmetric, the approximate Schur vectors are Ritz vectors and the upper
quasi-triangular matrix is the diagonal matrix of Ritz values.

Partition a length rn Arnoldi factorization as

(6.5) A[Vj /m j ]=IVy /rm j I gj Gj 1 T
0 [-I,_y / f’em / fwT’

where Hj and Hm-j are upper quasi-triangular and unreduced upper Hessenberg
matrices, respectively. The matrix Hj E Ryj contains the wanted converged Ritz
values of the matrix H,. The columns of Vj E Rnj are the locked Arnoldi vectors
that represent an approximate Schur basis for the invariant subspace of interest. The
matrix H,_j designates the trailing submatrix of order m- j. Analogously, the last
rn j columns of Vm are denoted by Vm-j. We shall refer to the last m j columns
of (6.5) as the active part of the factorization. Finally, Gj Rj(m-j) denotes the
submatrix in the northeast corner of Hm. Figure 6.1 illustrates the matrix product
VmH, of equation (6.5).

If A is symmetric, the two deflation procedures simplify considerably. In fact,
purging is only used when A is nonsymmetric for otherwise Gy Oj (m-j) and both
Hy and H,_j are symmetric tridiagonal matrices. Both algorithms are followed by
remarks concerning some of the specific details.

ALGORITHM 6.2.
function [Vm, Hm, fn] Lock (Vm, Hm, fm, X, j)

INPUT: A length rn Arnoldi factorization AVm VmHn + fmeTm The first j
columns of Vm represent an approximate invariant subspace for A. The leading prin-
cipal submatrix Hj of order j of Hm is upper quasi-triangular and contains the con-
verged Ritz values of interest. The columns of X a(m-j)i are the eigenvectors
corresponding to the eigenvalues that are to be locked.
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OUTPUT: A length m Arnoldi factorization defined by V,, Hm, and fm where
the first j + columns of Vm are an approximate invariant subspace for A.

1. Compute the orthogonal factorization

where Q R(m-j)x(m-j) using Householder matrices;
2. Update the factorization,_ - QT[t,_Q; ?,_ - ?,_iQ; G - G,Q;
3. Compute an orthogonal matrix P R(m--i)m--i) using Householder ma-

trices that restore m-y-i to upper Hessenberg form;
4. Update the factorization

m--j--i PTm-y-iP; m--j-i -- m-j-iP; Gj+i --Gy+iP;

Line 1 computes an orthogonal basis for the eigenvectors of/m-y that correspond
to the Ritz estimates that are converged. The matrix of eigenvectors in line 1 satisfies
the equation Hm-jXi XiDi where Di is a quasi-diagonal matrix containing the
eigenvalues to be locked. From 6.1, we see that the leading submatrix of QTm_jQ
of order is upper quasi-triangular. The required relation eTmQ eTm / qT, with
small, is guaranteed if the condition number of Ri is modest. Since i is typically a
small number, we compute the condition number of Ri. The number of vectors to be
locked is assumed to be such that the condition number of Ri is small. In particular,
if It, is a symmetric tridiagonal matrix, Q always has the required form. Lines 3-4
return the updated Hm-j to upper Hessenberg form.

Before entering Purge, the unwanted converged Ritz pairs are placed at the front
of the factorization. A prior call to Lock places the unwanted values and vectors to the
beginning of the factorization. Unlike Lock, the procedure Purge requires accessing
and updating the entire factorization when A is nonsymmetric. Thus, for large-scale
nonsymmetric eigenvalue computations, the amount of purging performed should be
kept to a minimum.

ALGORITHM 6.3.
function [V,_i, Hm-i, fm-i] Purge (Vm, H,, fm, j, i)

INPUT: A length m Arnoldi factorization AVm VmHm + fmeTm The first i
j columns of Vm represent an approximate invariant subspace for A. The leading
principal submatrix Hi+y of order i - j of Hm is upper quasi-triangular and contains
the converged Ritz values The unwanted converged eigenvalues are in the leading
portion of Hi+y. The converged complex conjugate Ritz pairs are stored in 2 2 blocks
on the diagonal of Hi+y.

0UTPUT: A length m- Arnoldi factorization defined by Vm-i, Hm-i, and fm-
purged of the unwanted converged Ritz values and corresponding Schur vectors.

Lines 1-3 purge the factorization of the unwanted converged Ritz values contained
in the leading portion of Hm;

1. Solve the Sylvester set of equations,

ZHm- HZ G,

for Z R.ix(m-i) that arise from block diagonalizing Hm
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Vectors to be Purged

Locked Vectors- Active Factorization

FIG. 6.2. The matrix product VmHm of the factorization just prior to discarding in Algorithm
6.3. The darkly shaded regions may now be dropped from the factorization.

2. Compute the orthogonal factorization

where Q E am(m-i) using Householder matrices;
3. Update the factorization and obtain a length m- i factorization

Hm-i - Rm-iH,-iQ,-i; Vm-i V,Q; fm-i Pm-i,m-ifm;
where Pm-i,m-i m--i iem--i;

At the completion of Algorithm 6.3 the factorization is of length m- i and the
leading submatrix of order j will be upper quasi-triangular. The wanted converged
Ritz values will be either on the diagonal if real or in blocks of two for the complex
conjugate pairs. Figure 6.2 shows the structure of the updated V,Hm just prior to
discarding the unwanted portions.

The solution of the Sylvester equation at line 1 determines the matrix Z that
block diagonalizes the spectrum of Hm into two submatrices. The unwanted portion
is in the leading corner and the remaining eigenvalues of Hm are in the other block.
A solution Z exists when the Hi and Hm-i do not have a common eigenvalue. If
there is an eigenvalue that is shared by Hi and Hm-i, then Hm has an eigenvalue of
multiplicity greater than one. The remedy is a criterion that determines whether to
increase or decrease i, the number of Ritz values that require purging. Analysis similar
to that in 5 demonstrates that after line 3 the Ritz estimates for the eigenvalues of
Hm-i are not altered. We also remark that Rm-i is nonsingular since the matrix

is of full column rank and Ip_,m_l _< 1.
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7. Error analysis. This section examines the numerical stability of the two
deflation algorithms when computing in finite precision arithmetic. A stable algorithm
computes the exact solution of a nearby problem. It will be shown that Algorithms 6.3
and 6.2 deflate slightly perturbed matrices.

For ease of notation

Hll H12 ]H21 H22

replaces Hm E Rmm used by procedures Lock and Purge of 6.2. The submatrix
Hll is of order and H21 is zero except for the subdiagonal entry of H located in the
northeast corner. Analogously, /:/ represents H after the similarity transformation
performed by Lock or Purge partitioned conformally.

7.1. Locking; The locking scheme is considered successful if the desired eigen-
values end up in HI and H2 is small in norm. The largest source of error is from
computing an orthogonal factorization from the approximate eigenvector matrix con-
taining the vectors to be locked.

The matrix pair (X,D) represents an approximate quasi-diagonal form for H.
The computed eigenvalues of H are on the diagonal of D if they have zero imaginary
component and in blocks of two for the complex conjugate pairs. The computed
columns of X span the right eigenspace corresponding to diagonal values of D. For
the blocks of order-2 on the diagonal, the corresponding complex eigenvector is stored
in two consecutive columns of X, the first holding the real part and the second the
imaginary part. We assume that X is a nonsingular matrix and that each column is
a unit vector.

Standard results give IIXD HXII <_ e IIHII where is a small multiple of ma-
chine precision for a stable algorithm. Defining the matrix E (XD-HX)YT where
X- yT it follows that (H + E)X XD. If a(X) is the smallest singular value
of X then IIx-lII-- o’nl(x). Since each column of X is a unit vector, Ilxll _< v/-.
If (x) IIxIIIIx-ll is the condition number for the matrix of approximate eigen-
vectors, ]]EII <_ el(X)]IHII. If X is a well-conditioned matrix, then the approximate
quasi-diagonal form for H is exact for a nearby matrix. In particular, if H is sym-
metric then E is always a small perturbation. As the columns of X become linearly
dependent, am (X) decreases and E may represent a large perturbation.

The following result informs us that locking is a conditionally stable process.
THEOREM 7.1. Let H Rmxm be an unreduced upper Hessenberg matrix with

distinct eigenvalues. Suppose that

is an approximate quasi-diagonal form for H that satisfies (H + E)X XD where
IIE]I _< e(X)IIH[[. Let QR XI e Rmj where QTQ Ij. Suppose a QR
factorization of X is computed so that , X + whereT Im and IIJll <_
211XII. Both and e2 are small multiples of the machine precision eM. Let e

max(e,2e2) and let (R1) IIRIIIIR-III be the condition number for R where
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If O =_ e((X)+e#(1 +e#(R1))) < 1, then there exists a matrix C e Rmm such
that

0 H22

where /-/11 is an upper quasi-triangular matrix similar to D and

(7.1) IlCll ((X)+ )lIHll + 0(2).

A few remarks are in order.
1. If H is symmetric, 0 and is diagonal. Procedure Lock is sta-

ble, since noted previously a(X) 1 and 1. Parlett [26, pp. 85-86]
proves Theorem 7.1 for symmetric matrices when locking one approximate
eigenvector.

2. If only one column is locked, then 1 + O(e) and ]]C]I is small relative to

3. If a(R) is large, the columns of X are nearly dependent. In this case,
will also be large and locking will likely introduce no more error into the
computation than already present from computing the quasi-diagonal pair
(X,D). The factor of may be minimized by decreasing j, the number of
columns locked.

4. A conservative strategy locks only one vector at a time. The only real concern
is when locking two vectors corresponding to a complex conjugate pair. If
the real and imaginary parts of the complex eigenvector are nearly aligned,
will be large and locking may be unstable. But as 6.1 explains, the complex
conjugate pair may be numerically regarded as a double eigenvalue with zero
imaginary part. Only one copy is deflated and 1.

Proof. Partition

0]0 D
The columns ofX are a basis for ghe right eigenspace to be locked, and D contains
the corresponding eigenvalues. We assume that the eigenvalues of D and D are
distinct and that X is nonsingular. Let

denote the inverse of X. The rows of Y1T
computed eigenvalues^of D1.

span the left eigenspace associated with the

Let the product QR be an exact QR factorization of a matrix near XI:

where I1?11 _< llXlll. Using Theorem 1.1 of Stewart [36], since IIi-lllll?ll < 0 < 1
there exist matrices W1 E Rxj and F1 E Rjx such that (Q+W1)(R+F) 01/1
where
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and (Q1 + W1)T (Q1 -- W1) j. Define

F=[ F1 ] andW=[ W 0]0

The matrices W and F are the perturbations that account for the backward error
produced by computation.

Partitioning W conformally with Q gives

(THd) (,TXDyT( TE
T(ZDY + X2D2Y) QTE

Q [(XD1YF+X2D2Y:)[Q Q2(.) Q
+ W(XDY + ZDY[)[ Q Q

where the second-order erms involving W are ignored. om the decomposition
X QR i follows thag Q1 XIR which gives QX1 0. The equality
yr X-1 implies hatX I for 1, 2 and YX 0 YX and hence
[ =0.

Using these relationships, equation (7.2) becomes

(. + d,
where the matrix absorbs the three magrix producs involving W or E on the right-
hand side of equation (7.2). We note
R is a diagonal matrix, and hence R1D1R D1. Thus H is also a symmetric
matrix. Defining C dr equation (7.4) is rewritten r(H- C) . Since
Q (XDY + XDY)Q and using the definition of d from equation (7.2),

it follows tha IlCll llWrllllll + I111. he rsu of Theorem 1.1 of Stewar [a6]
also provides the estimate

where O(e3) terms are ignored. For modest values of #, W is numerically orthogonal
to Q. om equation (7.5)

((x) +( + (Rx)))llgll + (1 + (R))lICll
OlHll + 011Cll,

where the second inequality uses equation (7.4). Since < 0, rearranging the last
inequality gives [[C[(1-0) 0[[H[[. Ignoring O(0) terms []C]] 0[[H[]. The estimate
on the size of C in equation (7.1) now follows since 0 e(a(X) + (1 + ea(X)))
((x) + ,) + o().
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7.2. Purging. The success of the purging scheme depends upon the solution of
the Sylvester set of equations required by Algorithm 6.3. We rewrite the Sylvester
set of equations in Algorithm 6.3 as ZH22 Hi1Z H12. The job is to examine the
effect of performing the similarity transformation RH22R-1, where

Q I =S.

The last relation implies that R-1 Q2T. In actual computation, this equality obvi-
ates the need to solve linear systems with R necessary for the similarity transforma-
tion. For the error analysis that follows, R- is used in a formal sense.

Let 2 be the computed solution to the Sylvester set of equations. In a similar
analysis, Bai and Demmel [2] assume that the QR factorization of S is performed
exactly and we do also. The major source of error is that arising from computing Z.

Suppose that /)= [2x]___ 6. Write Z+EwhereEistheerror in . If
QR S and IIR-11111EII < 1, then Theorem 1.1 of Stewart [36] gives matrices W and
F such that (Q + W)(R + F) (/ where (Q + w)T(Q + W) I,. The result gives
the bound IIFII <_ IIRIIIIEII + O(IIEII2). Up to first-order perturbation terms,

/H22/- (R + F)H22(R + F)-1 RH22R- + RH22R-1FR- + FH22R-1.

Defining the error matrix C H22R-1F + R-1FH22 it follows that

/H22- R(H22 + C)R-1.

Ignoring second-order terms, we obtain the estimate

The invariance of I1" under orthogonal transformations gives (S) IIR-IIIIIRII.
Since the singular values of S are the square roots of the eigenvalues of STS it follows
that

/ 1 + a2mx(Z)
V 1 -}- 2min (Z)’

where O’max(Z and min(Z) are the largest and smallest singular values of Z. Since
zTz is a symmetric positive semidefinite matrix, ;mx(ZTZ) IIZII, and then
n(S) <_ V/1 + IIZII 2, with equality if zero is an eigenvalue of zTz.

The previous discussion is summarized in the following result.
THEOREM 7.2. Let be the computed solution to the Sylvester set of equations,

ZH22-H1Z H12, where the eigenvalues ofHl and H22 are distinct. Let Z Z+E
where E is the error in 2 and suppose that IIR- [IIIEII < 1 where QR- [z].

Then there exists a matrix C such that

/H22/-1 R(H22 + C)R-1,

where

(7.6) IICII 2v/ + IlZll 2 IIEII IIHII.
If IIEI[ is modest multiple of machine precision and the solution of Sylvester’s

equations is not large in norm, then purging is backward stable since I]CII is small
relative to IIHI].
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The two standard approaches [3, 16] for solving Sylvester’s equation show that
II[IF

_
3(IIHlllIF-}" [[H22[IF)[[IIF where / H12- ZH22 + HllZ and 3 is a

modest multiple of machine precision. Standard bounds [8, 15] also give
sep- (Hll, H22)]]H12[[F where

sep(g11, H22) min XH22 HIXF

is the separation between H and H22. Although

sep(H, H22)
k,l

Varah [38] indicates that if the matrices involved are highly non-normal, the smallest
difference between the spectrums of Hll and H22 may be an overestimate of the actual
separation. Recently, Higham [19] gave a detailed error analysis for the solution of
Sylvester’s equation. The analysis takes into account the special structure of the
equations involved. For example, Higham shows that lIE[IF sep-(g, H22)[[[[F,
but this may lead to an arbitrarily large estimate of the true forward error. For use
in practical error estimation, LAPACK-style software is available.

A robust implementation of procedure Lock determines the backward stability by
estimating both [[ZI and

8. Other deflation techniques. Wilkinson [40, pp. 584-602] has given a com-
prehensive treatment of various deflation schemes associated with iterative methods.
Recently, Shad [31, pp. 117--125, 180-182] discussed several deflation strategies used
with both simultaneous iteration and Arnoldi’s method. Algorithm 6.2 is an in-place
version of one of these schemes [31, p. 181]. Saad’s version explicitly orthonormalizes
the newly converged Ritz vectors against the already computed approximate j Schur
vectors. This is the form of locking used by Scott [33]. Instead, procedure Lock

achieves the same task implicitly through the use of Householder matrices in Rmxm.
Thus, we are able to orthogonalize vectors in R" at a reduced expense since m << n.

Other deflation strategies include the various Wielandt deflation techniques [31,
40]. We briefly review those that do not require the approximate left eigenvectors
of A or complex arithmetic. Denote by A1,..., Aj the wanted eigenvalues of A. The
Wielandt and Schur-Wielandt forms of deflation determine a rank j modification of
A,

(8.1) Aj A- UjSjU,
where Sj Rj x j and j represents the dimension of the approximate invariant sub-
space already computed. The idea is to choose Sj so that Aj will converge to the
remainder of the invariant subspace desired. For example, Sj is selected to be a

diagonal matrix of shifts a,...,aj so that Aj has eigenvalues {A1 -al,...,Aj-
aj, Aj+I,...,

Both forms of deflation differ in the choice of Uj. The Wielandt variant uses
converged Ritz vectors while the Schur-Wielandt uses approximate Schur vectors.
With either form of deflation, the eigenvalues of Aj are
otherwise, and both forms leave the Schur vectors unchanged. This motivates Shad
to suggest that an approximate Schur basis should be incrementally built as Ritz
vectors of Aj converge. Braconnier [6] employs the Wielandt variant and discusses
the details of deflating a converged Ritz value that has a nonzero imaginary part in
real arithmetic.
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We now compare our locking scheme to the Schur-Wielandt deflation technique.
We shall assume that AUj UjRj is a real partial Schur form of order j for A, and
we will put Sj Rj in the Schur-Wielandt deflation scheme. Suppose that

is a length m + j Arnoldi factorization obtained after locking. Consider any asso-
ciated round-off errors as being absorbed in A here. Equate the last m columns of
equation (8.2) to obtain

(8.3) AV, UjMj + VmH, + Sm+jem.

Since Uj is orthogonal to Vm, it follows that (I- UjUf)A(I- UjU)V, V,H, +
T This implies that the Arnoldi factorization (8.2) is equivalent to applyingfm+jem.

Arnoldi’s method to the projected matrix (I-UjU)A(I-UjU) with the first column
of Vm as the starting vector. Keeping the locked vectors active in the construction and
the IRA update of this Arnoldi factorization ensures that the Krylov space generated
by Vm remains free of components corresponding to locked Ritz values. The appear-
ance of spurious Ritz values in the subsequent factorization is automatically avoided.
Note that when A is symmetric, this is equivalent to the selective orthogonalization
scheme proposed by Parlett [26, pp. 275-284] and Scott.

In contrast to locking, consider the consequences of applying the Schur-Wielandt
deflation scheme to construct a new Arnoldi factorization using V,e as a starting
vector. In the symmetric case with exact arithmetic, the two schemes would be
mathematically equivalent. Without these assumptions, there may be considerable
differences. From equation (8.3), it follows that (with A replaced with Aj of equation
(8.1))

(8.4) (A- UjRjUf)V, A(I- UjU)V, UjMj + V,H, + f,+jeTm

From equation (8.4) we can use an easy induction to derive the relations

(A- UjRjU)Vme (UjMj + VmHm)H-e, >_ 1.

Thus, the Krylov subspace ](A- UjRjUf, Vines) and hence the corresponding
Arnoldi factorization of A- UjRjU must be corrupted with components in T(Uj)
when the starting vector is orthogonal to T(Uj). Within the context of Arnoldi iter-
ations, the Schur-Wielandt technique does not deflate the invariant subspace infor-
mation contained in the T(Uj) from the remainder of the iteration. In other words,
Schur-Wielandt deflation is unstable.

This helps to explain why Shad suggests that Wielandt and Schur-Wielandt de-
flation techniques should not be used "to compute more than a few eigenvalues and
eigenvectors" [31, p. 125]. We note that if My .. 0, then the Wielandt forms of defla-
tion may safely be used within an Arnoldi iteration. This will always be true when A
is symmetric.

The cost of matrix-vector products with Aj increases due to the rank j mod-
ification of A required. Moreover, every time an approximate Schur vector or a
Ritz vector converges, the iteration needs to be explicitly restarted with Aj. The
two deflation techniques introduced in this paper allow the iteration to be implicitly
restarted--avoiding the need to build a new factorization from scratch.



812 R.B. LEHOUCQ AND D. C. SORENSEN

Finally, we mention that the idea of deflating a converged Ritz value from a
Lanczos iteration is also discussed by Parlett and Nour-Omid [28]. They present an
explicit deflation technique by using the QR algorithm with converged Ritz values
as shifts. Parlett indicates that this was a primary reason for undertaking the study
concerning the forward instability of the QR algorithm [27].

9. Reordering the Schur form of a matrix. We now establish a connection
between the IRA iteration with locking and the algorithms used to reorder the Schur
form of a matrix. Suppose a matrix A is reduced to upper quasi-triangular form by
the QR algorithm

Tli(9.1) QTAQ T =_
0 T22

where Q is the orthogonal matrix computed by the algorithm. Equation (9.1) is a
Schur form for A of order p + q where the submatrices T11 and T22 are of order
p and q, respectively. Assume that the spectrums of T11 and T22 are distinct. In
practice, the order in which the computed eigenvalues of A appear on the diagonal
of T is somewhat random. The first p columns of Q are an orthogonal basis for the
unique invariant subspace associated with the eigenvalues of TI. If the eigenvalues
of interest are located in T22 and an orthonormal basis for them is wanted, we must
either increase the number of columns of Q used or somehow place them at the top of
T. Algorithms for reordering a Schur form accomplish this task by using orthogonal
matrices that move the wanted eigenvalues to the top of T. The recent work of Bai
and Deinmel [2] attempts to correct the occasional numerical problems encountered by
Stewart’s algorithm [35] EXCHNG. Their work was motivated by that of Ruhe [29] and
that of Dongarra, Hammarling, and Wilkinson [I I]. Both algorithms swap consecutive
1 x 1 and 2 x 2 blocks of a quasi-triangular matrix to attain the desired ordering.

Let both T and T22 of equation (9.1) be matrices of at most order-2. When
swapping adjacent blocks of order-l, p 1 q, EXCHNG constructs a plane rotation
that zeros the second component of the eigenvector corresponding to the eigenvalue
A2 T22. A similarity transformation is performed on T with the plane rotation
and the diagonal blocks are interchanged. We refer to a strategy that constructs
an orthogonal matrix and performs a similarity transformation to interchange the
eigenvalues as a direct swapping algorithm. Consider the following alternate iterative
swapping algorithm: Perform a similarity transformation on T with an arbitrary
orthogonal matrix followed by one step of the QR iteration with shift equal to A2.
The arbitrary orthogonal similarity transformation introduces a nonzero off-diagonal
element in the 2, 1 entry so that the transformed T is an unreduced upper Hessenberg
matrix with the diagonal blocks now coupled. The standard convergence theory of
the QR algorithm dictates that /kl and /k2 are switched and the 2, 1 entry is zero.
If the order of T22 is equal to two, EXCHNG uses the iterative swapping strategy
using a standard double shift to reorder the diagonal blocks. The direct swapping
algorithm instead computes an appropriate orthogonal matrix by computing the QR
factorization of a basis of two vectors that span the desired invariant subspace. For
example, the factorization used in equation (6.1) in 6.1 may be used. The reader is
referred to [2, II] for further details.

The iterative swapping algorithm is equivalent to the implicit restarting technique
used by the IRA iteration, since both depend upon an implicitly shifted QR step
applied to an unreduced upper Hessenberg matrix to interchange TI and T22. The
direct swapping algorithm is equivalent to the locking technique. An orthogonal
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matrix is constructed from a basis for the invariant subspace corresponding to T22.
When this is applied as a similarity transformation, the diagonal blocks of T are
swapped. In exact arithmetic, both swapping variants result in a matrix that is
upper quasi-triangular with the blocks interchanged. Unfortunately, these existing
reordering techniques do not preserve the leading portion of the Arnoldi factorization
and thus explicit restarting would have to be used.

The following example demonstrates that the two variants may produce dras-
tically different output matrices when computed in floating point arithmetic. The
following experiment was carried out in MATLAB, Version 4.2a, on a SUN SPARC
station IPX. The floating point arithmetic is IEEE standard double precision with
machine precision of eM 2-52 2.2204. 10-16. Let

T= [ I+10M 1 ]0 1

An eigenvector corresponding to A2 1 is

10eM 1"
Denote by Z the plane rotation that transforms this eigenvector to a multiple of the
first column of the identity matrix in Rx. Let

U
10eM 1

so that U is orthogonal up to a small multiple of machine precision. The matrix U
acts as the arbitrary orthogonal transformation required by the iterative algorithm.
Let denote the matrix computed by performing one step of the OR iteration to
the matrix UrTU with shift equal to ,1 1 + 10eM. We remark that for matrices
of order-2, the explicit and implicit formulations of the QR iteration are equivalent.
The two computed matrices are

ZrTZ
0 1 + 10eM

[ 1. 000o000000000 12.000000000000002 10-1 6.000000000000001 10-1

The computed eigenvalues of are 1.0000000aaa20011 and 9.999999666799921.10-1

which both lost eight digits of accuracy. If we perform another QR step on the matrix
with the same shift,

[1.0000000000000031.000000000000001]1.09.10-15 1

is computed. Note that the off-diagonal element is slightly larger than machine pre-
cision so that a standard QR algorithm does not set it to zero. Moreover, even if
the off-diagonal element is set to zero, the iterative swapping algorithm fails to inter-
change the eigenvalues. Continuing to apply QR steps with the shift equal to/i does
not result in a properly interchanged matrix.

The explanation of why the iterative algorithm fails to work is simple enough. The
matrix T constructed is poorly conditioned with respect to the eigenvalue problem
since the eigenvectors are nearly aligned. The eigenvalues of UTTU are

1.000000033320011 and 9.999999666799921.10-I
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Thus, the small relative errors on the order of machine precision that occur when
computing UTTU produce a nearby matrix in which both eigenvalues differ by eight
digits of accuracy. Performing a shifted QR step with 1 incurs forward instability
since the last components of the eigenvectors for UTTU are on the order of ex/F.
This is the necessary and sufficient condition of Parlett and Le [27]. Another QR
step with the same shift on almost zeros out the subdiagonal element since the last
components of the eigenvectors for are of order 10-1 and the shift is almost the
average of the eigenvalues of T and quite close to both. We emphasize that the loss
of accuracy of the computed eigenvalues is one of the deleterious effects of forward
instability.

Bai and Demmel [2] present an example which compares their direct swapping
approach with Stewart’s algorithm EXCHNG. The matrix considered is

A()

7.001 -87 39.4- 22.2z-
5 7.001 -12.2- 36.0-
0 0 7.01 -11.7567
0 0 37 7.01

When - 10, ten QR iterations are required to interchange the two blocks. As before,
the eigenvalues undergo a loss of accuracy. The iterative swapping algorithm fails for
the matrix A(100). No explanation is given for the failure of Stewart’s algorithm.
The explanation for the failure is the same as for the previous example. Using a
direct algorithm, the eigenvalues of A(10) and A(100) are correctly swapped and the
eigenvalues lose only a tiny amount of accuracy.

Bai and Demmel present a rigorous analysis of their direct swapping algorithm.
Although backward stability is not guaranteed, it appears that only when both Tll
and T22 are of order-2 and have almost indistinguishable eigenvalues [5] is stability
lost. In this case, the interchange is not performed. Bojanczyk and Van Dooren [5]
present an alternate swapping algorithm that appears to be backward stable.

10. Numerical results. An IRA iteration using the two deflation procedures of
6.2 was written in MATLAB, Version 4.2a. An informal description given parameters
k and p is given in Table 10.1. The codes are available from the first author upon
request. A high-quality and robust implementation of the deflation procedures is
planned for the Fortran software package ARPACK [24].

In the examples that follow, Qk and Rk denote the approximate Schur factors
for an invariant subspace of order-k computed by an IRA iteration. All the exper-
iments used the starting vector equal to randn(n, 1), where the seed is set with
randn(’ seed’, 0) and n is the order of the matrix. The shifting strategy uses the
unwanted eigenvalues of Hk+p that have not converged. An eigenpair (0, y) of Hk+p
is accepted if its Ritz estimate (2.2) satisfies

T%/pyl Ilfk/pll --<  101.
The value of r/is chosen according to the relative accuracy of the Ritz value desired.

10.1. Example 1. The first example illustrate8 the use of the deflation tech-
niques when the underlying matrix has several complex repeated eigenvalues. The
example also demonstrate8 how the iteration lock8 and purge8 block8 of Ritz values in
real arithmetic. A block diagonal matrix C was generated having n blocks of order-2.
Each block was of the form -
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where

TABLE 10.1
Formal descptionofan IRA iteration.

1. Initialize an Arnoldi factorization of length k
2. Main Loop

3. Extend an Arnoldi factorization to length k + p
4. Check for convergence

Exit if k wanted Ritz values converge
Let and j denote the wanted and unwanted converged
Ritz values, respectively

5. Lock the +j converged Ritz values
6. Implicit application of shifts resulting in an

Arnoldi factorization of length k + j
7. Purge the j unwanted converged Ritz values.

=i+j-1 =-- 4sin2 2(n + 1)
+4sin2

2(n+l)

for 1 _< i, j < n, and Tz -: x/. The eigenvalues of C are +7i where %-i. Since
the eigenvalues of a quasi-diagonal matrix are invariant under orthogonal similarity
transformations, using an IRA iteration on C with a randomly generated starting
vector is general. An IRA iteration was used to compute the k 12 eigenvalues
of C450 with smallest real part. The number of shifts used was p 16 and the
convergence tolerance U was set equal to 10-1. With these choices of k and p,
the iteration stores at most 28 Arnoldi vectors. There are four eigenvalues with
multiplicity two. Table 10.2 shows the results attained. Let the diagonal matrix O12
denote the eigenvalues of the upper triangular matrix/{12 computed by the iteration.
The diagonal matrix A12 contains the wanted eigenvalues. After 24 iterations, 12 Ritz
values converged. But the pair of Ritz values purged at iteration 21 was a previously
locked value which the iteration discarded. This behavior is typical when there are
clusters of eigenvalues.

10.2. Example 2. Consider the eigenvalue problem for the convection-diffusion
operator

+ +

on the unit square [0, 1] x [0, 1] with zero boundary data. Using a standard five-
point scheme with centered finite differences, the matrix Ln2 that arises from the
discretization is of order n2 where h 1/(n + 1) is the cell size. The eigenvalues of
Ln2 are

cos / 1

for 1 < i,j < n where phi2. An IRA iteration was used to compute the k 6
smallest eigenvalues of L625 where p 25. The number of shifts used was p 10 and
the convergence tolerance was set equal to 10-s. With these choices of k and p,
the iteration stores at most 16 Lanczos vectors. Let the diagonal matrix D6 denote
the eigenvalues of the upper triangular matrix R6 computed by the iteration. The
diagonal matrix A6 E R6x6 contains the six smallest eigenvalues. We note that there
are two eigenvalues with multiplicity two. Table 10.3 shows the results attained. The
diagonal matrix D6 approximates A6. After 30 iterations six Ritz values converged.
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TABLE 10.2
Convergence history for Example 1.

IRA iteration for C450

k 12 and p 16 with convergence tolerance r/--- 10-1

Iteration Ritz values Locked Ritz values Purged

9 2 0

10 2 0

12 2 0

13 2 0

17 2 0

21 0 2

24 2 0

28 0 2

3i 2 0

Totals 14 4

Number of matrix-vector products 436

]]C450Q12 -Q12R12]] 10-12

I1. ll -o-’

But the Ritz value purged at iteration 24 was a previously locked value. The other
purged Ritz values are approximations to the eigenvMues of L625 larger than ,k6.

Figure 10.1 gives a graphical interpretation of the expense of an IRA iteration in
terms of matrix-vector products when the value of p is increased. For all values of
p shown, the results of the iteration were similar to those of Table 10.3. The results
presented in Table 10.3 correspond to the value of p that gave the minimum number
of matrix-vector products. For the value of p 1, the iteration converged to the five
smallest eigenvalues after 999 matrix-vector products. But the iteration was not able
to converge to the second copy of/k5. For p 2, the only form of deflation employed
was locking. All other values of p shown demonstrated similar behavior to that of
Table 10.3.

In order to determine the benefit of the two deflation techniques, experiments were
repeated without the use of locking or purging. In addition, all the unwanted Ritz
values were used as shifts, converged or not. The first run used the same parameters
as given in Table 10.3. After 210 matrix-vector products, the iteration converged to
six Ritz values. But the second copy of the fifth smallest eigenvalue was not among
the final six. The value of p was increased to 23 with the same results.

10.3. Example 3. The following example shows the behavior of the iteration
on a matrix with a very ill-conditioned basis of eigenvectors. Define the Clement
tridiagonal matrix [20] of order n / 1:

Bn+l

0 n 0
1 0 n-1

0 n 0
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TABLE 10.3
Convergence history for Example 2.

IRA iteration on L625

k 6 and p 10 with convergence tolerance 10-s

Iteration Ritz values Locked Ritz values Purged

14 1 0

16 1 0

19 1 0

21. 1 0

23 1 1

24 0 1

30 1 0

35 0 1

38 1 1

Totals 7 4

Number of matrix-vector products 325

[IL625Q6- Q6R611 10-9

IIQL625Q6 R611 10-9

1106- A611c 10-7

The eigenvalues are =kn, +n- 2,..., +1, and zero if n is even. We note that Bn+l
Sn+lAn+lC_l where Sn2+1 diag(1, n n n--1 nA

-f, T-Y-,’", n!) is a diagonal matrix. Thus
the condition number of the basis of eigenvectors for Bn+l is IISn+lll n/ll which
implies that the eigenvalue problem for Bn+l is quite ill conditioned. An IRA iteration
was used to compute the k 4 largest in magnitude eigenvalues of B1000. The
number of shifts used was p 16, and the convergence tolerance was set equal to
10-6. With these choices of k and p, the iteration stores at most 20 Arnoldi vectors.
Let the diagonal matrix D4 denote the eigenvalues of the upper triangular matrix

R4 computed by the iteration. The diagonal matrix A4 E R44 contains the four
largest in magnitude eigenvalues. Table 10.4 shows the results attained. Although
the iteration needed a large number of matrix-vector products, the iteration was able
to extract accurate Ritz values given the convergence tolerance.

10.4. Example 4. Finally, we present a dramatic example of how the conver-
gence of an IRA iteration benefits from the two deflation procedures. A matrix T of
order-10 had the values

-1 10-6, Ti=2:8 ---i. 10-3, Tg:10 1

on the diagonal. Since the eigenvalues of a matrix are invariant under orthogonal
similarity transformations, using an IRA iteration on T with a randomly generated
starting vector is general. An IRA iteration was used to compute an approximation
to the smallest eigenvalue. The number of shifts used was p 3 and the convergence
tolerance r was set equal to 10-3. Table 10.5 shows the results attained. Another
experiment was run with the locking and purging mechanisms turned off. Addition-
ally, all unwanted Ritz values were used as shifts. The same parameters were used
as in Table 10.5 but the iteration now consumed 41 matrix-vector products. As in
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FIG. 10.1. Bar graph of the number of matrix-vector products used by an IRA iteration for
Example 2 as a function of p.

TABLE 10.4
Convergence history for Example 3.

IRA iteration on B1000

k 4 and p 16 with convergence tolerance ? 10-6

Iteration Ritz values Locked Ritz values Purged

76 1 0

85 1 0

91 2 0

Totals 4 0

Number of matrix-vector products 1423

IIBloooQ4- Q4R411/I]Bloooll 10-6

[[QT4BzoooQa Rail 10-6

[[Q4TQ4 14[[ lO-14

lID4 h411/llBloooll 10-6

the results for Table 10.5, the modified iteration converged to one of the dominant
eigenvalues after one iteration. After six iterations, the leading block of Ha split off,
having converged to the invariant subspace corresponding to 9:10. But since purg-
ing was turned off, the modified iteration had to continue attempting to converge to

1 using only the lower block of order-2 in H4. Incidentally, if the iteration instead
simply discarded the leading portion of the factorization corresponding to ’9:10 after
the sixth iteration, convergence to never occurred. Crucial to the success of an

IRA iteration is the ability to deflate converged Ritz values in a stable manner. Both
purging and locking allow faster convergence.

11. Conclusions. In the paper, we developed deflation techniques for an im-
plicitly restarted Arnoldi iteration. The first technique, locking, allows an orthogonal
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TABLE 10.5
Convergence history for Example 4.

IRA iteration on T

k 1 and p 3 with convergence tolerance 10-3

Iteration Ritz values Locked Ritz values Purged

1 0 1

15 1 1

Totals 1 2

Number of matrix-vector products 32

IITQ1 QIR II/-,-, lO-3

IIQTTQ R ]1/’1 10-3

IIR I1/ 0-
change of basis for an Arnoldi factorization which results in a partial Schur decompo-
sition containing the converged Ritz values. The corresponding Ritz value is deflated
in an implicit but direct manner. The second technique, purging, allows implicit
removal of unwanted converged Ritz values from the Arnoldi iteration. Both della-
tion techniques are accomplished by working with matrices in the projected Krylov
space which for large eigenvalue problems is a fraction of the order of the matrix from
which estimates are sought. Since both deflation techniques are implicitly applied
to the Arnoldi factorization the need for explicit restarting associated with all other
deflation strategies is avoided. Both techniques were carefully examined with respect
to numerical stability and computational results were presented. Convergence of the
Arnoldi iteration is improved and a reduction in computational effort is realized.
Although a direct comparison with block Arnoldi/Lanczos methods was not given,
computational experience shows that if an IRA iteration builds the same size factor-
ization used by the block methods and the convergence tolerance is small enough,
multiple or clustered eigenvalues are correctly computed. The connection between an
IRA and QR iteration explains the reason for the size of the convergence tolerance
used.
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ON THE DYNAMICS OF THE LINEAR PROCESS
Y(k) A(k)Y(k 1) WITH IRREDUCIBLE MATRICES A(k)*

MARC ARTZROUNI

Abstract. An upper bound is given for the projective distance d(Y(k), V(k)), where Y(k)
A(k)Y(k- 1) is a nonautonomous linear process in the positive quadrant of n (A(i) irreducible for
all i) and the V(i)’s are the Perron vectors of the A(i)’s. This bound shows that the larger k is,
and the more slowly the Perron vectors have varied in the recent past preceding k, the smaller the
distance d(Y(k), V(k)) will be. Corollaries are given concerning the growth of the Y(k)’s and the
behavior of the backward product of matrices A(1)A(2)...A(k). The results are illustrated with
numerical simulation. The cases of stochastic matrices and cyclic matrices are investigated.

Key words, nonnegative matrices, projective distance, products, ergodicity, Perron root,
Perron vector, cyclic matrix, stochastic matrix
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1. Introduction. Infinite products of matrices are used in the study of linear
inhomogeneous processes. In many applications the matrices are nonnegative, and
this case has received a fair amount of attention ([3-10],. among others).

One approach to this problem is the consideration of the linear nonautonomous
process Y(k) A(k)Y(k- 1), where the Y(k)’s are vectors in the positive quadrant
of ]R and the A(k)’s are nonnegative square matrices of order n. Indeed, when Y(0)
is the vector with rth component "1" and zeros elsewhere, Y(k) is the rth column
of the backward product U(0, k) A(k)A(k- 1)...A(1). We let U(O,k)s denote
the entry in the rth row, sth column of U(0, k). Results on the growth and structure
of the product U(0, k) were then derived when the A(k)’s are slowly varying primi-
tive matrices that satisfy a number of technical conditions (for example, a condition
of "uniform primitivity’) [1]. In particular, it was shown that the slower the Per-
ron vectors V(k) of the A(k)’s vary in the recent past preceding any large k0, the
closer the ratios U(0, k0 + 1),.8/U(O, ko),.s are to A(k0 + 1) (where A(k) denotes the
Perron root of A(k)). This result (which extends to inhomogeneous products a well-
known result on the powers of a primitive matrix) hinged crucially on the slow varia-
tion of the matrices A(k). This means that there exists an c such that the distances
IIA(k + 1) A(k)l between all consecutive matrices must be less than c in order for
the results to hold; e exists but its value is not known, and therefore there is no way
of knowing how slowly the matrices must vary in order for the results to hold.

Numerical simulations, however, suggested that the results concerning the prox-
imity between U(O, ko + 1)rs/U(O, ko) and (k0 + 1) for slow.ly varying Perron
vectors V(k) in the recent past may in fact be true even without the matrices A(k)
themselves varying slowly. This possibility, clearly hinted at in [1, p. 55], is the subject
of the present paper.

* Received by the editors November 30, 1994; accepted for publication (in revised form) by G. P.
Styan November 12, 1995.

Department of Applied Mathematics, University of Pau, 64000 Pau, France (artzrouni@crisvl.
univ-pau.fr).

The term "Perron vector" will refer to the right Perron vector. We will later add "left" to
refer to the left Perron vector.
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The main theorem proved below assumes only that the matrices are irreducible
and that the product U(O, k) is weakly ergodic at a geometric rate. No assumption
is made concerning the rate of change of the A(k)’s and the V(k)’s. For any k0 the
theorem provides an upper bound for the projective distance d(Y(ko), Y(k0)). This
bound shows that the slower the Perron vectors V(k) have changed in the recent past
preceding some large k0 (i.e., the smaller the quantities d(Y(k), Y(k- 1)) are for k
less than k0) the smaller d(Y(ko), Y(ko)) will be. Thus Y(k0) is close in direction to
V(ko). Corollaries that extend previous results are given concerning the growth and
structure of the vectors Y(k) and the product of matrices U(0, k).

2. Results on the structure of each Y(k). The projective distance between
two vectors X (xi) and Y- (yi) in the positive quadrant of Rn is defined as

(1) d(X , in

where the superscript "T" denotes the transpose of a vector or matrix.
Given a column-allowable nonnegative matrix A, its coefficient of ergodicity T(A)

is defined as

d(XTA, yTA)(2) v-(A) sup
x,y>o;x)Y d(XT, yT)

This coefficient satisfies 0 <_ v-(A) <_ 1, and for any X, Y > 0 we have

(3) d(XTA, yTA) <_ d(XT, YT)V-(A)

and V-(A1A2) <_ v-(A)v-(A2) when A and A2 are column-allowable.
When A (aj) is column-allowable, its coefficient of ergodicity is [9, 2]

(4) v-(A)
1 (A).5
1 + (A).5’

where

(5) (A)= min
acajt

ajkaiO ajkail

This explicit expression for v(A) shows that v-(A) v-(AT)--a matrix and its
transpose have the same coefficient of ergodicity. Therefore, when putting AT instead
of A in (3), we get

d(XTAT, yTAT) <_ d(XT, YT)V-(AT) d(XT, YT)V-(A).

If, as a notational matter, the vectors appearing in (6) are written as columns
instead of rows, (6) is equivalent to

d(AX, AY) <_ d(X, Y)T(A).

Our starting point is a linear nonautonomous process in the positive quadrant
of IRn" Y(k) A(k)Y(k- 1)(k 1,2,...) with Y(O) _> 0 and A(k)(k 1,2,...) a
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sequence of nonnegative n x n matrices. We now define for p _> 0, r _> 1 the backward
product U(p, r) of matrices A(k) as

(8) U(p, r) A(p + r)A(p + r 1)... A(p + 1),
and therefore Y(k) A(k)Y(k- 1) U(0, k)Y(O).

We will assume that the products U(p, r) satisfy a set of conditions that are known
to be sufficient to ensure their weak ergodicity at a geometric rate (i.e., T(U(p,r))
approaches 0 geometrically for r - oo [9]). These conditions are as follows.

Assumption A1. 3m, M > 0 such that k 0 < m <_ minjA(k)i,j and
max,y A(k),y <_ M, where A(k),j is the entry in the ith row, jth column of A(k), and

defminy A(k)i,j denotes the smallest among the positive elements of A(k). If / m/M
then we have miny A(k),y/max,j A(k),j

_
/> 0 for all k.

Assumption A2. 3r* E N such that U(k, r*) > 0 Fk.
Under these assumptions it can be seen that (U(p,r*)) (defined in Eq. (5))

satisfies, for every p,

() (u(,.)) .=-.
If we define

m*1 nr. Mr.(10) C
m.*

1 + n,-. i’M*
then (4) and (9)show that (U(p,r*)) E C. Therefore,

(1) (u(;, )) c/*,
where denotes the integral part function. We note in prticular the following.

(a) For r < r* we know only tht (U(p, r)) 1.
(b) For r r* > 1 we hve

(12) T(V(p,r)) C[r/r*] Cr/r*-1.

(c) For r* 1 we hve (U(p, r)) C[r/*] C.
We will ssume that the mtrices A(k) are irreducible, each with Perron root

A(k) > 0 and probbility-normed Perron vector V(k) > 0. (We note that n irreducible
mtrix is necessarily Mlowable.) In the main theorem below we give a bound for the
projective distance d(Y(k), V(k)) between Y(k) and the Perron vector V(k) of A(k).
In essence, this bound will show that the slower the Perron vectors vry prior to the
ind , th co () n b to V() (or th pojcti ditnc).

THEOREM 2.. Le$ {A(i)}, i 1, 2,... be a sequence of irreducible matrices, each
wh probaby-normed Perron vector V(i) ad Perro oo (i). Cosider he near
o() A()Z(- ) (0 Z(O) # O) d h hdod
U(p, ) fAmpon A and A2. Cn C f E. (0) dn C C/*.
We then have

d(Z(), V()) S W(*)C-Cd(U(O, *)(0), U(0, *)V())

+ d(V( y), V( j + ))

()
k-1

+ w(,) Cd(Y(a j),( + 1)),
jr*

k 2r*,2r* + 1,...,
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where W(1) 1 and W(r*) C-1 for r* > 2; the sum to r* 1 is 0 if r* 1.

Proof. Under Assumption A2 the vector Y(k) will be positive for any k _> r*
since Y(k) V(O,k)Y(O) and Y(0) 0, U(O,k) > 0 for k :> r*. This implies that
the projective distances d(Y(k), V(k)) will be defined for k :> r*. We now recall that
d(Z, AY) d(Z, Y) for any A > 0 and observe that

(4) U(i, k- i)V(i + 1) A(i + 1)U(i + 1, k- i- 1)V(i + 1) /i,

(5) A(k)V(k) U(k- 1, 1)V(k)= A(k)V(k).

The triangle inequality, combined with Eqs. (7), (14), and (15), yields

d(Y(k), V(k)) <_ d(U(O, k)Y(O), U(O, k)V(1)) + d(U(O, k)V(1), U(1, k 1)V(2))

+ d(U(1, k- 1)V(2), U(2, k- 2)V(3))+... + d(U(k- 3, 3)V(k- 2), U(k- 2, 2)V(k- 1))

(16) + d(U(k 2, 2)V(k 1), V(k))

d(U(O,k)Y(O),U(O,k)V(1)) +d(U(1, k- 1)V(1),U(1, k- 1)V(2))

+ d(U(2, k 2)V(2), U(2, k 2)V(3)) +... -I- d(U(k 2, 2)V(k 2), U(k 2, 2)V(k 1))

+ d(U(k 1, 1)V(k 1), U(k 1, 1)V(k))

<_ T(U(r*,k r*))d(U(O,r*)Y(O),U(O,r*)V(1)) + ’(U(1, k 1))d(V(1), V(2))

(17) + ’(U(2, k 2))d(V(2), V(3)) +...-t- T(U(k 1, 1))d(V(k 1), V(k)).

By virtue of (11), -(U(r*,k- r*)) <_ C[(k-r*)/r*] and T(U(k- j,j)) N C[J/r*], and
therefore (17) yields

(8)

d(Y(k), V(k)) < C[(k-*)/*]d(U(O,r*)Y(O), U(O,r*)V(1))
k-1

+ C[J/*]d(V(k j), V(k j + 1)).
j--1

The result of (13) follows directly by a consideration of observations (a), (b) (Eq. (12)),
and (c) made earlier. This completes the proof.

The inequality of (13) shows that the projective distance between Y(k) and V(k)
is bounded by a sum of three terms.

1. The first term on the right-hand side of (13) approaches 0 geometrically as

2. The next two terms represent a weighted sum of the distances between all
consecutive Perron vectors prior to the index k with the r* 1 most recent distances
having weight 1 and the "older" distances having weights decreasing as powers of C1.

The result of (13), which is not based on any assumption concerning the V(i)’s,
is of particular interest when k is large and the V(i)’s have varied slowly (for the
projective distance) in the recent past preceding k. Indeed, in such a case (13) shows
that the projective distance d(Y(k), V(k)) is small, which means that Y(k) is close in
structure to V(k).



826 MARC ARTZROUNI

We note that the quantities C, C1, and r* appearing in (13) are known as soon
as the matrices A(k) are known, and it is therefore not difficult to assess the upper
bound obtained for d(Y(k), Y(k)).

We have the following results under stronger assumptions concerning the distances

5(k) de d(V(k), V(k + 1)) between consecutive Perron vectors.
COROLLARY 2.1. If the projective distances 5(k) d(Y(k), V(k + 1)) are bounded

by some d* > 0, then

(9)
d(Y(k), V(k)) <_ W(r*)C-ICd(U(O, r*)Y(O), U(0, r*)V(1))

+ d* ((r*- 1)+ C[*W(r*))1 C

If, in addition, (k) ---. 0 for k c, then

(20) d(Y(k), V(k)) 0 for k c.

In particular, if the Perron vectors V(k) converge to a limit V > 0, then
d(Y(k),V)---0.

Proof. These results follow directly from (13); (20) results from the fact that
k-1-j=r* cJ5(k -J) ’-* 0 when k --, x because 5(k) -- 0.
The result of (19) shows that the smaller d* is, the smaller d(Y(k), Y(k)) will be,

at least asymptotically as k --, c. Also, (20) shows that Y(k) will approach V(k) in
direction if the distances 5(k) tend to 0.

We note that in (16) we could not write

(21) d(U(0, k)Y(0), U(0, k)V(1)) <: T(U(0, k))d((Y(O), V(1))

because Y(0) is not necessarily positive, and therefore d(Y(O), V(1)) may not be de-
fined. This situation occurs when Y(0) is taken equal to the vector Yr having "1" in
its rth position and zeros elsewhere. The corresponding vector Y(k) is then the rth
column of the product U(0, k). Therefore, the slower the Perron vectors have varied
for recent indices preceding k, and the larger k is, the closer (for the projective dis-
tance) each column of U(0, k) will be to the Perron vector V(k) of A(k). This extends
an earlier result that hinged on stringent conditions on the matrices A(i), which were
assumed to be in some sense uniformly primitive and to vary slowly [1].

Finally, when r* 1 (i.e., the matrices A(k) are positive) we let H(k) denote the
right- hand side of (13), i.e., the upper bound for d(Y(k), V(k)). A straightforward
calculation shows that

(22) H(k + 1) CH(k) + 5(k), k 1,2,... ;H(1) d[Y(1),V(1)].

Equation (22) shows that when r* 1, the bounds H(k + 1) can be generated as a
particularly simple nonautonomous iterative process in I.

3. Results on the growth of each Y(k). The previous section provides in-
formation on the structure of the Y(k)’s but not on their growth. Now in the context
of Theorem 2.1 Y(k) is close to V(k) (for the projective distance). If Y(k) is also
close to Y(k + 1) for the projective distance, then Y(k) is close to Y(k + 1) (trian-
gle inequality), and therefore the vector Y(k + 1) A(k + 1)Y(k) will be close to
A(k + 1)Y(k) for the Euclidean norm. This observation will be made more precise in
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a result on the growth of the vectors Y(k). We begin with a lemma on the projective
distance between two vectors X, Y > 0.

LEMMA 3.1. For X (xi) > O,Y-- (yi) > 0,

d(X, Y) <_ , 3c > O, and there is a diagonal matrix M [m(i)] _> 0

with re(i) <_ e 1 such that X c(Y + MY).

Proof. We define d(i) xi/yi (i 1, 2,..., n). If d(X, Y) <_ , then Vi, j d(i)/
d(j) <_ e. We let c mini d(i). Then if we define re(i) (d(i) c)/c we have re(i) <_
e 1 and d(i) c(1 + re(i)), which is the desired result. Conversely, if Z c(Y+
MY) (with re(i) <_ e 1), then d(i) c(1 + re(i)), and d(i)/d(j) (1 + m(i))/(1 +
re(j)); therefore, ln(d(i)/d(j)) <_ ln(1 + re(i)) <_ e for any i,j, which proves that
d(X, Y) <_ .

Under the conditions of Theorem 2.1 the triangle inequality and (13) yield, for
k _> 2r*,

d(Y(k), V(k + 1)) <_ d(Y(k), V(k)) + d(V(k), V(k + 1))

<_ W(r*)C-1Ckld(U(O, r*)Y(0), U(0, r*)V(1))

(23)
?* --1

+ E d(V(k- j), V(k- j + 1))
j=o

k-1

+ w(,) Cd(V(- j), v(- j + )) ( + ).
j=r*

This right-hand side B(k + 1) of (23) is the right-hand side of (13), to which is added
d(V(k), V(k + 1)) (appearing in the first sum for j 0).

As in (19), if 5(k) de=f d(V(k), V(k + 1)) _< d* for every k we have
(4)

B(k+l) < W(r*)C-ICd(U(O,r*)Y(O) U(O,r*)V(1)) + d* (r* + C*W(r*))1 -Ci

We now define B* as the right-hand side of (24) for k 2r*; i.e.,

c*w(,))(25) B* W(r*)C-1Cr* d(U(O, r*)Z(O), U(O, r*)V(1)) + d* r* + 1 C

Because the right-hand side of (24) is a decreasing function of k we have

(26) B(k + 1) _< B*, k 2r*, 2r* + 1,

The results of (25)-(26) will be used in what follows. We will also make use
nof the row-sum normllAII maxi j=l laiJl of a matrix A (aij) and of the max

norm IV maxilvil of a vector V (v). These norms satisfy IIABII <_ IIA[[[[B[[ and

IAVI <_ IIAIIIVI. These remarks set the stage for the following result on the values of
Y(k + 1)i/Y(k)i, where a subscript denotes the ith component of a vector.

THEOREM 3.1. In the context of Theorem 2.1 and with the notation defined above
we assume the following.
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(i) The matrices A(i) are bounded: gl supllA(i)]] and A sup A(i).
(ii) The components V(k) (i 1, 2,..., n) of the probability-normed Perron vec-

tors Y(k) are uniformly bounded from below by some 5 > 0; i.e., Vk V(k)i > . We let
d* sup d(Y(i), Y(i + 1)) and A1 (KI/5 + A)(eB* 1)/eB*. We then have

Y(k + 1)i

<_AIB(k+I)

(27)
A [W(r*)C-1Ckld[U(O, r*)Y(0), U(0, r*)V(1)]

r* --I

+ E d(V(k j), V(k j + 1))
j=o

k_l ]+ W(r*) E Cd(V(k j), V(k j + 1))
j-r

k 2r*, 2r* + 1,

Proof. We have d(Y(k), V(k + 1)) < B(k + 1). By virtue of Lemma 3.1 there is
c > 0 and a diagonal matrix M (with diagonal entries re(i) satisfying 0 < re(i) <_
eB(k+) 1) such that

(28) V(k) c(V(k + 1) + MV(k + 1)).

Therefore,

(29) Y(k + 1) A(k + 1)Y(k) c(A(k + 1)V(k + 1) + A(k + 1)MV(k + 1)).

We note that IV( + 1)1 _< 1. If {X}i denotes the ith component of a vector X and I
is the identity matrix, then { (I + M)Y(k + 1) }{ _> {Y(k + 1) }. Therefore,

V(k + 1)i -A(k+l) {A(k + 1)MV(k + 1)}i- A(k + 1){MV(k + 1)}i

(3o)

{A(k + 1)MV(k + 1)}
{V(k + 1)} +

< IIA(] +  )11 x IIMII

(K1<_ -- + A (eB(k+l) l).

We now observe that if a positive number u is less than B*, then eu 1 < u(eB*
1)/eB* and therefore

eB* 1
(31) es(k+l) 1 < B(k + 1)eB.
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which completes the proof.
The result of (27) shows that the ratio Y(k + 1)/Y(k) is close to A(k + 1) when

k is large and the Perron vectors V(k) have varied slowly for recent indices preceding k.
If we take Y(0) Yr, say (Y is the vector having rth component "1" and zeros

elsewhere), then the ratio Y(k + 1)j/Y(k)j is U(0, k + 1)jr/U(O,k)j, which is the
entry in the jth row, rth column of U(0, k + 1) divided by the corresponding entry in

U(O,k).
We will now examine what information these results add concerning the struc-

ture of the product U(0, k), beyond that already implied by weak ergodicity. Weak
ergodicity of the backward product means that U(0, k) may be written as

(32)

U(O,k)

u(k)l[Zl + /(])111
tt(k)2[Zl - /(k)21]

U(k)n[Zl -5 ’(k)nl]

+
+ lt(g)2 [Zn --

u(k)n[Zn -5 /(/)nn]

where
(i) the v(k)y’s tend to 0 for k
(ii) Z-- (zl, z2,..., Zn) is a probability-normed vector,
(iii) the vectors U(k) (u(k)l,u(k)2,...,u(k)n) are positive and change with

each k.
In the present context, when the Perron vectors V(t) vary slowly for the projective

distance, each U(k) will be for large k close in structure to Y(k). Furthermore, for
each the ratio u(k + 1)/u(k) will be close to (k + 1).

4. Numerical illustrations. In order to illustrate the results we constructed a

sequence of 2 x 2 positive matrices A(k) with Perron vectors V(k) varying slowly for
the projective distance (i.e., the projective distance d(Y(k + 1), Y(k)) remains small
for all k). The goal is to see how close Y(k + 1)/Y(k) remains to (k + 1).

The first component V(k)l of the Perron vectors V(k) is chosen equal to 0.5 plus
a cosine function of k:

V(k)l 0.5 + 0.1 cos(kr/10)
and V(k)2 1 V(k). The idea is that the projective distance between consecutive
vectors V(k) will be small when the V(k)’s vary smoothly for the Euclidean distance
(and the Y(k)’s are bounded away from 0).

Next we will generate the Perron roots A(k) as arbitrary numbers between 0.8
and 1.2: each A(k) is a uniformly distributed random number between 0.8 and 1.2.
This range is chosen so that the product of matrices neither grows too fast nor goes
to zero. We will now determine the four entries of each matrix A(k) in such a way
that each V(k) and A(k) chosen above is the Perron vector and the Perron root of
each A(k). The entries A(k) and A(k)22 are chosen as arbitrary numbers in the
range 0.hA(k)-O.8A(k) for A(k) and 0.4(k)-0.8A(k) for A(k)22 (i.e., once A(k)is
chosen, these entries are uniformly distributed random numbers in these intervals).
The numbers 0.4, 0.5, and 0.8 are arbitrary. Their only purpose is to ensure that
A(k)l, A(k)- A(k)]],A(k)22, and A(k)- A(k)22 remain bounded away from 0; see

(33)-(34) below. Once these values are obtained, the remaining entries are

(33) A(k)2 [A(k)- A(k)]Y(k)/Y(k)2,
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.00 10.00 20.00 0.00 40.00

k
FIG. 1. Four entries of the matrices A(k); k 0, 1,..., 40.

.6"

.3-

.0-

k
FIG. 2. Ratio Y(k + 1)2/Y(k)2 [1]; A(k + 1) [2]; 5d(Y(k + 1), Y(k)) [3].

(34) A(k)21 [A(k)- A(k)22]V(k)e/V(k)i.

The ranges of possible values for V(k), A(k), and A(k)2 and the specifications
of (33)-(34) ensure that the four entries of A(k) are bounded and bounded away
from 0. The product of matrices A(k) is then weakly ergodic. Of course (33)-(34)
also guarantee that for every k V(k) and A(k) are the Perron vector and Perron root
of A(k).

Figure 1 depicts the four entries of the A(k)’s as defined above.
The elaborate construction of the matrices A(k) is to emphasize the only con-

straint we are imposing.-- the slowly varying Perron vectors V(k). Aside from this
constraint, the matrices may vary erratically, as illustrated in Figure 1.

In Figure 2 the values of Y(k + 1)2/Y(k)2 and /(k + 1) were plotted in order
to assess how close these two quantities are to each other (see (27)). (The initial
vector Y(0) was taken arbitrarily as (0.4 0.6)T, but there is nothing critical about this
specification.) The distances 5d(V(k + 1), Y(k)) were also plotted in order to see how
these values impacted the "closeness" between Y(k + 1)/Y(k) and A(k + 1). (The
factor "5" is to make the distances d(V(k + 1), V(k)) more visible on the same graph.)

First, it is apparent that Y(k + 1)2/Y(k) is close to A(k + 1), even for small k’s.
The same holds true for Y(k + 1)/Y(k)i. This is because r* 1 and the factor C of
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Eq. (10) is relatively small, i.e., well under 1 (C 0.87), and therefore Ck Ck and

C approaches 0 quite rapidly.
When C is closer to 1 and r* is larger than 1, then Ck Ck/r* and the conver-

gence of C to 0 will be slower; the right-hand side of (27) will be altogether larger,
and each Y(k + 1)2/Y(k)2 may not be as close to A(k + 1). It remains that here the
A(k + 1)’s vary erratically, and the Y(k + 1)2/Y(k)2’s follow closely.

Second, we clearly see how the agreement between curves [1] and [2] in Figure 2
improves when the distances d(V(k + 1), Y(k)) become closer to 0 (as predicted by
(27)). Indeed, the figure shows that when d(Y(k + 1), V(k)) becomes smaller (for
k 10, 20, and 30), the Perron root A(k + 1) becomes closer to Y(k + 1)2/Y(k)2.

Many other simulations illustrate the findings. For example, if the V(k)’s vary
more slowly, the agreement becomes better between each A(k + 1) and Y(k + 1)2/
Y(k)2 (and vice versa).

5. Discussion.

5.1. Forward products. The results proven for a backward product carry over
to a forward product since one is a transposition of the other. Given the forward
product T(0, k) A(1)A(2)... A(k) we may consider the linear process

(35) Y(k)T Y(O)TA(1)A(2) A(k) Y(O)TT(O, k).

Transposing the results requires the weak ergodicity of the forward product
T(0, k) at a geometric rate, which is then a transposition of Eq. (32):

T(0, k)

u(]) [Zl +
+

+
+

t(]g)n [Zl --+
u(k),[zn+,(k)n]

For every k we now define W(k) as the left probability-normed Perron vector of A(k).
A straightforward transposition of the results proven here shows that when the W(k)’s
vary slowly, the structure of Y(k) and of each row of T(0, k) is close to that of W(k)
(i.e., each vector U(k)= (u(k)l, u(k)2,..., u(k))will be close in structure to W(k)).
Also, for each the ratio u(k + 1)i/u(k)i will be close to A(k + 1), the Perron root of
A(k + 1).

5.2. Stochastic matrices. If the matrices A(k) are stochastic (i.e., their rows
sum to 1) then their product is stochastic. For every k the Perron root A(k) is 1 and
the probability-normed Perron vector Y(k) is V* (l/n, l/n,..., l/n), where n is the
order of the matrices. As in 5.1 we consider the left probability-normed Perron vector
W(k) of each A(k). We now distinguish between forward end backward products.

(a) Forward products of stochastic matrices. The process

(37) Y(k)T Y(O)TA(1)A(2) A(k) Y(O)TT(O, k)

gives at each time k the row vector Y(k)T of probabilities of being in the n different
states of an inhomogeneous Markov chain with matrices A(k). In order to apply the
results we assume that the product is weakly ergodic at a geometric rate. Given that
T(O,k) is stochastic, Eq. (36) implies that the zi’s are all equal to 1In and that



832 MARC ARTZROUNI

En U(]g)i --"> n for k -- c. If the W(k)’s now vary slowly, then the structure of eachi=1

Y(k) is close to that of W(k). The statistical interpretation of this is that for slowly
varying W(k)’s the system somewhat forgets its distant past (as if the A(k)’s were

constant), and as an approximation the probabilities of being in the different states
at time k are given by W(k). We note that W(k) is also the stationary distribution of
a Markov chain with a constant unchanging matrix of transition probabilities equal
to A(k), at least if A(k) is primitive. In the present inhomogeneous situation no
primitivity assumption is made--one could say that in the inhomogeneous context
primitivity is replaced by the weak ergodicity assumption.

(b) Backward products of stochastic matrices. When the backward product is
weakly ergodic at a geometric rate then Corollary 2.1 ensures that the structure
of Y(k) A(k)Y(k 1) and of each column of the stochastic matrix U(0, k)
A(k)A(k 1)... A(1) converges to V* (l/n, l/n,..., I/n) (since the Perron vectors
V(k) are all equal to V*). A direct inspection of (32) shows that the stochasticity of
V(0, k) in fact implies that for each the u(k)i’s converge to 1 for k - c and each
row converges to the same probability-normed vector (Zl, z2,..., z). This is a known
result: for a backward product of stochastic matrices strong and weak ergodicity are
equivalent with convergence of Y(k) to a vector having equal components [9, p. 154].

5.3. Periodic irreducible matrices. No primitivity assumption is made in the
theorems proven above, and one may wonder about the application of these theorems
to periodic irreducible matrices (i.e., matrices A that are irreducible but imprimitive,
which means that Ak has at least one zero entry for all k).

Although weak ergodicity at a geometric rate (obtained via Assumptions A1 and
A2) is in general a rather weak condition, it does not hold for powers of periodic
irreducible matrices. In fact, it is readily seen that the powers Ak of an irreducible
matrix are weakly (and strongly) ergodic at a geometric rate if and only if A is
primitive. Indeed, primitivity implies weak (and strong) ergodicity at a geometric
rate, and imprimitivity implies that -(Ak) 1 for all k (since each A has at least
one zero entry); -(A) 1 for all k precludes both weak and strong ergodicity (at any
rate). This shows that the results proven here will not be applicable to the powers of
a periodic irreducible matrix simply because such powers are not weakly ergodic.

However, an inhomogeneous backward product that includes periodic matrices
can be weakly ergodic at a geometric rate. For example, consider two sequences of
positive numbers v(k) and w(k) (with 1/2 <__ v(k) <_ 5, 1/2 _< w(k) _< 5, k 1,2,...)
and the backward product

( 0 v(k)) (1w(k) 0 1

(as)
1) ( 0 v(k-1))(1 1)1 w(k 1) 0 1 1

( 0 v(1)) (1 1) ( 0 v(0))w(1) 0 1 1 w(0) 0

of matrices that alternate between a matrix of ones and the periodic matrix having
v(k) and w(k) on the second diagonal and zeros on the main diagonal. Assumptions
A1 and A2 are clearly satisfied with m I/2, M 5, and r* 2, and the results
proven here become applicable. These results are of interest when the probability-
normed Perron vectors vary slowly for the projective distance, i.e., when v(k) is close
to w(k) for all k. In such a case the probability-normed Perron vector of each matrix
remains close to V (1/2, 1/2) (and equal to V for the matrix of ones). Hence for
large k the structure of the columns of the product remains close to that of V.
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6. Conclusion. The results proven here show that when the Perron vectors vary
slowly for the projective distance, these Perron vectors and the Perron roots drive the
structure and growth of the vectors Y(k) and of the columns of the product U(0, k).
No assumption is made concerning the rate of change of the matrices A(k). It can be
useful to know that in this context the past history of the process is not needed in
order to assess the structure and growth of a given vector Y(k)" its structure is close
to that of the Perron vector Y(k) and the ratios Y(k + 1)i/Y(k)i can be approxi-
mated by the Perron roots A(k + 1). This generalizes to inhomogeneous products of
matrices the situation in which the matrices A(k) are equal to the same primitive
matrix A with Perron root , since in such a case the ratios Y(k + 1)i/Y(k) tend to
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EXTENSIONS OF G-BASED MATRIX PARTIAL ORDERS*
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Abstract. We prove that a partial order ___6 on R n can always be extended to a G-based
matrix partial order ___6* such that G*(A) : 0 for all A E Rren, thus answering an open question
[Mitra, Linear Algebra Appl., 148 (1991), pp. 237-263]. It is further shown that this result does not
in general remain true if besides G, we also insist that G* be semicomplete. And even if in a special
situation this is possible and if card G(A)

_
1 for each A, this does not mean that there also need be

a semicomplete extension such that G* (A) is a singleton for all A. In addition, some other interesting
results on matrix partial orders are given. For instance, a useful characterization for a semicomplete
map to induce a partial order on the set of square matrices is derived.

Key words. G-based matrix partial order, star order, minus order, sharp order, semicomplete
map, property-p map

AMS subject classifications. 15A30, 15A09

1. Introduction. This paper continues a series of recent articles investigating
different types of matrix orders and discussing their properties and relations; see [6],
[7], [8], [18]. To facilitate reading, we first present the order concept, which is of
interest to us in this paper.

Let Rm denote the set of real rn n matrices, and let :P(S) denote the power
set of a set S. Moreover, let . Rmn .__+ )(Rnm)

be a map such that

(1.1) 6(A) c_ A(1},

where A{1} denotes the set of all g-inverses of A; see 2. The map is called semi-
complete if for every matrix A E R" one has GAG 6(A) whenever G
Define the relation !6 on Rmxn by saying

A6B if (B-A)X=O, X(B-A)=O for some XeG(A).

This relation is said to be a G-based relation, and if is semicomplete, then _6 is also
said to be semicomplete. Call the set

t6:={AeR" 6(A)=0}
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the support of or 6. The relation ___6 is automatically antisymmetric. Furthermore,
it is trivially reflexive on its support. Throughout this paper, a G-based relation is
therefore said to be a partial order (on Rren) if it is transitive. Since in the literature
the notion of a partial order is sometimes defined in a stronger manner, it is pertinent
to emphasize here that in our definition the condition of reflexivity is not required to
hold on the whole of R"n. That ___6 as defined by (1.2) need not always correspond
to a partial order, that is, that 6 need not necessarily be transitive, is illustrated
by Example 1 in [6, p. 242]. Sufficient conditions that make 6 a partial order are
studied in [6]. Observe that the above G-based relation concept, which is due to Mitra
[6], covers as special cases the various known matrix orders such as the star order
_* (set (A) {At}), the minus order-- (set (A)= A{1}), and the sharp order
# (set G(A) {A#} if A has index 1, and set G(A) 0 otherwise), to mention
only a few. Next, let ___6 correspond to a partial order. The sharp order provides us
with a typical G-based partial order that does not support the whole set of square
matrices. For such a case the following question was an interesting open problem (see
[6, p. 252])" Is it possible to modify G only on the complement of t6 so that the
modified map, say *, continues to induce a partial order? Let us call a map G* which
is defined like an extension of if *(A) (A) for each A E , and if * is an
extension of , then let us call the induced relation 6" a 6-based extension of the
relation ___6. Of particular interest to us is the question of whether a partial order ___6
with gt6 :fi R"n admits a G-based partial order extension !6" such that G*(A) : 0
for all A. This question was affirmatively answered in the special case of the sharp
order in [7].

The purpose of this paper is manifold. In 4 we prove that the above latter
question can, in general, be answered in the affirmative. Actually, we show that
there do exist many G-based extensions. When along with 6 its extension ___6" is
also required to be semicomplete, the answer becomes more complicated; this case is
discussed in 5. A typical example of a semicomplete G-based partial order ___6 not
allowing such an extension is given there. Of course, this does not mean that it is
always impossible. But even if for a certain 6 there is such a semicomplete partial
order extension, this does not mean that there also need be such an extension ___6* for
which G* (A) is a singleton set for all A Ft6. The sharp order (see Example 4.3 along
with Theorem 5.5) can serve as an example to illustrate this fact. In addition, some
further interesting results on matrix partial orders are given. Section 3, for instance,
contains a useful characterization for a semicomplete map 6, which is defined on the
set of square n n matrices, to induce a partial order ___6. The concept of a property-p
relation discussed in 5 arises from this characterization. It was implicitly studied
earlier by Mitra in [6], although its significance is brought out in the present paper.
It is shown in 5 that such a relation always possesses a (unique) maximal property-p
extension, and a method for getting this extension is given. Section 2 contains a few
background results from the theory of g-inversion which are used in the subsequent
sections and which might also be very useful in a future attempt to solve the open
problem stated in 5.

2. Generalized inversion and preliminaries. Let A/ and A/" be linear sub-
spaces in the n-dimensional real space R. Then A/ +/- will denote the orthogonal com-
plement of A//in Rn (with respect to the usual inner product), and if A/ A Af {0},
then AA (R) A/" will denote the direct sum of A/ and Af. Next, if Af is a direct comple-
ment of A// (i.e., R AA (R) A/’), then P, will denote the well-defined projector
on / along Af (see e.g., [10, pp. 106-113]). Notice that P, may be defined by
P,u u if u E // and P,u 0 if u Af. For a given matrix A in the space
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Rmn of all real m n matrices, denote by At, Af(A), T(A), Arc(A), and 7(A), re-.
spectively, the transpose of A, the null space of A, the range space of A, the set of all
direct complements of Af(A), and the set of all direct complements of 7(A). Let I be
the identity matrix and 0 the zero matrix of whatever size is appropriate for the con-
text. Further, we denote by AM the image of A/[ under A; i.e., A.tc[ {An u }.

Now let A R, let (A), nd let $ (A). Consider the matrix
equations

(2.1)
(G1) AXA A, (GM) XA P,(A),
(G2) XAX X, (G$) AX Pn(A),S.

Suppose that { 1, 2, M, S}. Then let A denote the set of M1 those matrices X
that stisfy equations (Gi) for M1 . Any X A is called an -inverse of A, and
is denoted by A. {1}-inverses are usually clled generalized inverses or g-inverses
and re also denoted by A-. {1,2}-inverses re cMled reflexive g-inverses and re
Mso denoted by Aj. For an extensive discussion of the theory of g-inversion, we refer,
e.g., to the books by Ben-Israel nd Greville [1], Hrtung and Warner [3], Pringle and
Rayner [9], and ao nd Mitr [10]; for geometric approach, to Warner [12, Chap. 1]
and Ro nd Yanai [11]; nd for projector theoreticM one to, e.g., the paper by
Langenhop [4].

Only for the sake of clarity and for eier reference do we mention the following
well-known results (cf. [12]; see also [15], [17]).

THEOREM 2.1. For given A Rmxn, we have the following.
(i) The {2,, S}-inverse of A exists uniquely.
(ii) Any {}-inverse of A and likewise any {S}-inverse of d is always a {1}-

inverse of A. Conversely, for any {1}-inverse ofA there uniquely exist an c(A)
and an S e nc(A) such that X e A{,S}. Moreover, if X e d{,$}, then
XAX A{U,,s}.

(iii) yX A{, $}, then n(XA) n(X), (X) 8, and XS (A).
Hence, in particular, rank(A) rank(AX) rank(XA). Moreover, X A{2,,8} iff
n(X) and (X) 8.

(iv) If rank(A) r < min{m, n} then, for each s with r s min{m, n}, there
exist g-inverses A- such that rank(A-) s. Moreover, rank(A) rank(A-) iff A-
is a reflexive g-inverse.

(v) The {2, n(At),(At)}-inverse of A coincides with the Moore-Penrose in-
verse of A and is henceforth denoted by A.

When A is square, ind(A), the index of A, denotes the smallest positive integer
k for which rank(Ak) rank(Ak+) or, equivalently, (Ak) (Aa+). Now, let A
be any square matrix of index 1. Then n(A) e (A) and (A) e c(A), so that
by Theorem 2.1(i) the {2, n(A),(A)}-inverse exists and is unique. This g-inverse is
called the group-inverse of A and is denoted by A#. It is the unique {1, 2}-inverse X
of A satisfying AX XA. Recall that a square matrix A h ind(A) k iff there
exist a nilpotent matrix NA of degree k (i.e., N 0 whereas N- 0) and a core
matrix CA (i.e., ind(CA)= 1) such that

(2.2) A CA "- NA, CANA 0, NACA 0;

see, for instance, [1, pp. 175-177] or [16, p. 246]. This decomposition is called the
core-nilpotent decomposition of A and is uniquely determined. In the literature, core
matrices are also often called group matrices or GP matrices.

From Chipman we have the following definition: Two matrices A and B of the
san:le column number, say n, are said to be complementary to one another if Rn
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(At) @ 7(Bt). In the literature, complementary matrices have been studied because
of their importance in statistics (see, for instance, Chipman [2], Pringle and Rayner
[9], Hartung and Werner [3], and Werner [14]). In [15] (see also [14], [13], [17]) the
following weaker or stronger versions of that notion are studied.

(a) B is said to be weakly complementary to A if (At) N (Bt) {0}.
(b) B is said to be (weakly) bicomplementary to A if B and B are (weakly)

complementary to A and At, respectively.
A pair of weakly bicomplementary matrices is also often said to be a pair of

disjoint matrices (also written A+B A@B); cf. Mitra [5]. The connections between
these concepts and the concept of generalized inversion are discussed in detail in [15]
and [5]. Below we cite only those results that are of interest to us in this paper.

THEOREM 2.2 (see [15, p. 369]). For n E Rnxn, let JPl Arc(A) and let S
Tc(A). Further, let H be a matrix of basis vectors for A4+/-, and let T be a matrix of
basis vectors for $. If we define

B THt,

then B satisfies Af(B) and (B) S, and so B is bicomplementary to A.
Theorem 2.3 is also well known (cf. [15, pp. 359-364] in combination with [6, p.

240]).
THEOREM 2.3. For given A, B Rren, the following conditions are equivalent:
(i) A+B=A@B;
(ii) 7(A + B) 7(A) @ 7(B);
(iii) rank(A + B) rank(A)+ rank(B);
(iv) A/’(A + B) A/’(A);q Af(B), A/I [A/I c Af(A)] [A4 c JV’(B)] for each

M e Afc(A + B);
(v) (A + B){1} C_ A{1};
(vi) (A + B){A/I, $} c_ A{I CAf(B), S @ TO(B)} for each .IV4 e Afc(A + B) and

8 e (A + B);
(vii) A_--<-A+B;
(viii) A + B A @ Bt.
THEOREM 2.4 (see [15, p. 362]). If A + B A B, then

(A + B){2,a,s} A{2,nAI’(B),8T(B)} q- B{2,A4nAf(A),8@(A)}

for every A/I Afc(A + B) and every S TC(A + B).
3. G-based partial order characterizations. In what follows, let G be a map

on Rm satisfying (1.1) for each m n matrix A, and let 6 be its support. For A,
B tg, it is convenient to put

(3.1) G(AIB) := {aAa a e G(B)},

(3.2) G(B) := {B- B- e G(B)},

and

(3.3) Gr(A B) "= {GAG IG e Gr(B)}.

Observe that {7 is semicomplete iff G(AIA) Gr(A) for each A
Mitra [6, p. 242] has shown that 6 as defined in (1.2) need not always correspond

to a partial order. It is therefore quite natural to ask for sufficient and/or necessary
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conditions under which (1.2) defines a partial order. In [6, p. 243], Mitra derived the
following sufficient condition for g to correspond to a partial order.

THEOREM 3.1. Let

(3.4) A - B, B not maximal (A B C_ (A).
Then _6 defines a partial order.

Note that a matrix B is called maximal relative to -<6 if there is no matrix
C B such that B 6 C. Since B g C implies B _-<- C, by Theorem 2.3(iii)
rank(B) < min{m, n} whenever B is not maximal. Further, note that if B
and/or B is of full rank (i.e., rank(B) min{m, n}) then B is maximal relative to

In context with Theorem 3.1 it is further pertinent to mention that the only time
when condition (3.4) is invoked by Mitra is in proving that the implication

A_6B, BC A6C
holds true, that is, in proving that the relation ___6 is transitive. But there B E Ft6 so
that, without loss of generality, B can be assumed not to be maximal, for otherwise
B C, in which case the implication is trivial. In the same paper, Mitra showed [6,
p. 243] that condition (3.4), although sufficient, is in general not necessary for ___6 to
define a partial order.

In this paper we are especially interested in semicomplete maps. Our next theorem
will show, in particular, that if G is a semicomplete map on the set of square n x n
matrices, then, for 6 to be a partial order, condition (3.4) is not only sufficient but
also necessary. The proof follows from [6, Thms. 2.3, 2.4, and 2.5]. In passing, we
mention that a different possibility for proving this theorem would be to make use of
Theorems 2.2, 2.3, and 2.4 in this paper.

THEOREM 3.2. Let be a semicomplete map on Rx. Then the following con-
ditions are equivalent:

(i) -e,6 is a partial order;
(ii) A B, B not maximal (A B c_ G(A);
(iii) A B, B not maximal G(A B C_ G(A).
Next we give Theorem 3.3.
THEOREM 3.3. Let as defined by (1.1) be a map on Rm and assume that

(3.5) (A) #- 0 6(A) N A{1, 2} =/= O.
Let the relation

_
be defined as in (1.2). If A then A is maximal if and only if

rank(A) min{m, n}.
Proof. Let A 6 and rank(A) - min{m, n}. Here we exactly follow the steps

in the proof of Theorem 2.5 in [6] to arrive at a matrix C = A which dominates A
under __; the modifications required to prove this are obvious.

Note that a semicomplete map trivially satisfies condition (3.5). Hence Theorem
3.3 holds for a semicomplete map.

That the characterizations in Theorem 3.2 are not necessarily true for a map
that is defined on the set of nonsquare m x n matrices (i.e., m :fi n) is shown by
our next numerical example. Although Example 5 in [6] might also be used for this
purpose, the example given below is easier to understand.

Example 3.4. Consider the matrices

A= 0 0 0 B= 0 1 0 G= 0 1 0 0
0 0 0 0 0 0

1 0 0 0
0 0 0 0 0 0
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and the set jt consisting of all those real matrices

1 0 a b)Ha,b:-- 0 0 0 0
1 0 a b

for which a = 0 and/or b = 0. By checking the corresponding defining equations (G1)
and (G2) of (2.1) it is seen that G E B{1, 2} and A C_ A{1, 2}. Define the map G on
a4x3 by

A if C-A,
(C)= {G} if C-B,

0 otherwise.

As is evident, G is semicomplete.
relation -6 is transitive iff

Check that A -6 B. Since 6 {A,B}, the

A___6B, B6CA6C

holds true. Notice that C satisfies B -6 C iff

for some real scalars c and d. Since A 6 Cc,d holds irrespective of c and d, it is now
clear that the relation ___6 defines a partial order. However, observe that GAG H0,o
fails to belong to A. [:]

In this context it should be mentioned that if the semicomplete map G is such
that for each A its image G(A) is a singleton or empty then, even in. the nonsquare
case (i.e., m = n), condition (3.4) turns out to be necessary and sufficient for ___6 to
define a partial order. The following result is only slightly more general than Theorem
2.6 in [6] insofar as it allows 6(A) to be empty; however, observe that the proof given
in [6, p. 250] actually includes our result.

THEOREM 3.5. Let 6 as defined by (1.1) be a semicomplete map with card 6(A) _<
1 for each A Rmxn. Then for -6 to correspond to a partial order, it is necessary
and sufficient that

(3.4) A -6 B, B not maximal G(AIB c_ (A).

4. -based partial order extensions. We begin this section with the following
result.

THEOREM 4.1. Let -6 as defined by (1.2) correspond to a partial order, and let

f6 be a proper subset of Rmxn. The relation -_6 can then be extended to a G-based
partial order -6" that supports the whole of amxn.

Proof. Define the map G* by

; G(A) if A f’t6,(4.1) 6*(A) {ATnx} otherwise,

where ATnx is an arbitrary but fixed full-rank g-inverse of A. Theorem 2.1(iv) tells
us that such a g-inverse of A with rank r := min{m, n} does always exist. We next
prove that each matrix A gt6 is maximal relative to 6". To that end let A t6.
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Moreover, let B be any matrix such that A 6" B. Clearly, A g* B iff (B-A)ATnax
0 and Anax(B- A) O. SinceA is a full-rank matrix, this, of course, happens iff
B A 0. So we arrive at B A, and it is now clear that A is maximal relative to
_-<6". With this observation in mind, it is evident that g* inherits the transitivity
property from __. As * supports each matrix, the proof is complete.

The proof of the preceding theorem has shown that there are many trivial ways
to extend a G-based partial order on the whole of R"n. We call an extension 6" a
trivial extension of -g if

A-* B == A-6B

for all pairs of matrices with A B. In fact, this means, in an obvious sense, that 6
and !6" are equivalent relations.

Now it seems quite natural to ask the following" Given a G-based partial order
that excludes from its support a chunk of Rren, does it always admit a nontrivial
G-based partial order extension that supports the whole of Rmn?

Concerning the sharp order #, Mitra [7, Thm. 2.1] has already given an affir-
mative answer to this question. In order to discuss that result we need some further
notation. Recall that if A is a square n n matrix, then

A:CA+NA

stands for the uniquely determined core-nilpotent decomposition of A; see (2.2) in 2.
Let us write A -t B if

A-B and CA-#CB.

Note that the relation __t is an extension of the sharp order # in the sense that

A-.<# B A-.<f B.

Since the minus order and the sharp order are partial orders, _* is also a partial
order. Moreover, observe that by Theorem 2.1 in [7] the relation * is equivalent to
the -based relation _6o, where the map G0 is defined by

{A#} if ind(A)= 1,(4.2) (A) {A- Ti(CA) c_ T(A-), Af(A-) c_ Af(CA)} otherwise.

It is pertinent to prove here that this map G0 fails to be semicomplete whenever
n >_ 3. For this purpose, let n :> 3 and let A E ann be a matrix theft is neither core
nor nilpotent. Then A CA + NA, CA O, NA = 0, 1 < rank(A) rank(CA)+
rank(NA) < n. So it is possible to choose an A/ E Arc(A) such that T(CA) A4
(see 2). In addition, choose ,S Tee(A). From Theorem 2.2 we then know that there
exists a matrix B such that TO(B) ,S, Af(B) AA, and B is bicomplementary to A.
Note that the matrix A + B is hence, in particular, nonsingular. From Theorem 2.3
along with Theorems 2.4 and 2.1 we get

(4.3) (A + B)-IA(A + B)- A{2,A;(B),7"c(B)}.

But although trivially (A + B)- e G(A), (A + B)-A(A + B)- does not belong to
G(A) because Ti(CA) Af(B) M. But now it is clear that G0 is not a semicomplete
map if n _> 3. The only exceptions are the cases n 1 and n 2. Every matrix of
order 1 1 is a core matrix. Here the map is clearly semicomplete. A matrix A of
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order 2 2 is either a core matrix or is nilpotent. If A is nilpotent then 6(A) A{1},
so that the map G0 is also trivially seen to be semicomplete in that case.

For A, let PA denote the well-defined projector onto 7(CA) along Af(CA); that
is, let PA CAC#A Since

C#A + (I- PA)A-(I- PA) e (A) if ind(A) > 1

(see [7, Lem. 2.3]), clearly (A) =/= 0 for each A. Combining observations now shows
that _6o is indeed a G-based partial order extension of the sharp order that supports
the whole of Rn. This is shown in Mitra [7].

The theorem that follows is somewhat different; it gives a G-based extension 6,
of _# and various equivalent descriptions of the underlying map G,.

THEOREM 4.2. For square n n matrices, let o and , be defined by (4.2) and

(4.4) G,(A) "= { {A#} if ind(A) 1,
{A- A-CAA- C#A } otherwise,

respectively. Then we have the following.
(i) A, 6,(A) aZZo  th d-

scriptions

(4.5)

(4.7)

G,(A) {A- A-CA CAA-},
6,(A) {A- T(CA) G ?Z(A-A), A/’(AA-) c_ Af(CA)},
G,(A) {C#A + (I- PA)Z(I- PA) Z e A{1}}, where PA CAC#A

(ii) The relation _, is a semicomplete partial order extension of the sharp order
-# and supports the whole ofR. Moreover, if n >_ 3 then , is properly finer than
o. Precisely, ,(A) c_ GO(A) for each matrix A, and G,(A) G(A) whenever A is
neither core nor nilpotent.

Proof. (i): Let A be a noncore square matrix. It is easily checked that (4.7) is
asubset of A{1}. We now show that A- E the set (4.7) A- E the set (4.4)
A- the set (4.5) A- e the set (4.6) A- e the set (4.7), thus establishing
equivalence. Let A- C#A + (I- PA)Z(I- PA). Then A-CAA- [C#A + (I-
PA)Z(I- PA)]CAC#ACA[C#A + (I- PA)Z(I- PA)] C#ACAC#ACAC#A C#A This

implies A-CA A-CAA-CA C#ACA CAC#A CAA-CAA- CAA- using
Theorem 2.3(v) since

A CA (R) NA,

which in turn shows that

CA CAA-CA A-C A-ACA.

This is equivalent to 7Z(CA) C_ (A-A). Similarly,

CA CAA-CA CA- CAAA-

or, equivalently, Af(AA-) c_ A/’(CA). From the pair of equivalences just established
it is seen that A- the set (4.6) implies that the matrix X A- satisfies the
simultaneous system of equations

(4.s) xcl clx.
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The matrix X CA# is a particular solution of (4.8). Using Lemma 2.3.1 in [10], we
thus have X C#A + (I- PA)Z(I- PA), Z arbitrary as the expression for the general
solution of (4.8). But then it is immediate that in order that X E A{1} we must have
Z E NA{1}. Since (I-PA)X(I--PA) (I--PA)Z(I-PA), it is now clear that (4.6)
implies (4.7).

(ii)" From part (i) it is clear that __6, is a G-based extension of _# that supports
the whole of Rnn. Semicompleteness of G, follows from (4.6) by observing-that
T(A-AA-A) T(A-A) and Af(AA-AA-) A/’(AA-). Next note that the proof
of Theorem 2.1 in [7] can be used word for word to establish that * is equivalent
to 6,. The relation _6, therefore corresponds to a G-based partial order extension
of the sharp order and is equivalent to the G-based relation 6o. Comparing (4.2)
with (4.6) shows that G,(A)

_
G(A) holds for each matrix A. That G, is properly

finer than G0 whenever n >_ 3 is an easy consequence of the lines directly following
(4.2). To see this, let A be neither core nor nilpotent and consider the matrix A + B
constructed there. As seen above, (n + B)- G0 (n). That (n + B)- fails to belong
to *(A) follows from (4.3) since ’.,(CA) .lf(B). Note that G,(A) G(A) if A is
core or nilpotent. This completes the proof.

Notice that G, as defined by (4.4) is semicomplete and that card G,(A) > 1
whenever ind(A) > 1. It is therefore interesting to mention that the following example
will show that for n _> 3 there does not exist any G-based semicomplete partial order
extension ! of the sharp order # such that (A) is a singleton set for all A.

Example 4.3. First, let n 3. Consider the nilpotent matrix

0 0 0 /0 0 0
1 0 0

By virtue of Theorem 3.2 it is sufficient to show that for each reflexive g-inverse Aj
of A we can always find a matrix B of rank 2 and index 1 such that B#AB# = Aj,
although AAj BAj and AjA AjB.

Observe that

A{1,2}= c (a b 1) a,b,c, deR
d

is an efficient parametrization of the set of all reflexive g-inverses of the nilpotent
matrix A. This can be easily seen, for instance, by means of (G1) and (G2) in (2.1).
Consider an arbitrary but fixed reflexive g-inverse

(1)Aj= c (a b 1)
d

of A and put

( 1 I (-fd-ca d+a+fb 1x := f and yt :--
-(a + fb) f- c f- c

where f "= 1- cc. Set
B := A + xyt.
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Since

(4.9) f=0 >==> c0 and f-1 ==> c-0,

fc 0 and f2 f. This in turn implies ytx 0. As Ajx 0 and ytAj 0, clearly
AjA AjB and AAj BAj. Next notice that B3 AxytA+xytAxy A+xy
B. Therefore, ind(B) 1 and B# B (note 2). Recalling (4.9), the desired result
now follows from

B#AB# BAB
xy

f
-(c + fb) f c

(1)d
A-.

d+a+
_c 1)

If n > 3, then the proof follows along similar lines and is thus omitted.

5. Semicomplete G-based partial order extensions. In this final section,
let G as defined by (1.1) be a semicomplete map on R"n and let this map induce a

partial order ___6.
Recall that each full-rank matrix A (i.e., rank(A) min(rn, n}) is maximal rel-

ative to ___6. It is pertinent to mention that modifying (.) for one or more full-rank
matrices will lead to a new map but that this modified map continues to induce ex-
actly the same relation 6 as G (at least concerning all pairs (A, B) of matrices with
A - B). Without loss of generality, let us henceforth assume that G(A) A(1) for
each full-rank matrix A.

Let us further assume that Ft6 - Rmn. Then A Ft6 for some matrix A with
rank(A) < min{rn, n. For each matrix B E Rr, let/AT)6(B) :- (AIA

_
B}

denote the set of all those matrices that are upstream of B. Moreover, whenever
B t is such that b/7(B) :/: 0, put

6o(B) {B- B-AB- e 6(A) for each A e b/P6(B)}.

Finally, define a new map * (in respect to G) by

G(B) if B f6;
G*(B) := G0(B) if B f6,

B{1} otherwise.

For square matrices (i.e., rn n), Theorem 3.2 could now tend to make one believe
that G* as defined by (5.2) does induce, in any case, a (nontrivial) semicomplete partial
order extension ___6" of _6 which, unlike __6, supports the whole of Rn. That this,
however, is erroneous is seen by the following example.

Example 5.1. Consider the matrices

0 1 0 0
A2 :=A1 :=

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
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and
1 0 0 0

/0 1 0 0
0 0 1 0
0 0 0 0

By checking the corresponding defining equations (G1) and (G2) of (2.1) it is seen
that

0 1 0 1
and G2"=

0 1 0 0G:= 0 0 0 0 0 0 1 0
1 0 0 1 0 1 -1 0

are reflexive g-inverses of A1 and A2, respectively. Define the map

6" R4x4 --* (R4x4)

by
{G1} if A A1,

6(A)= {G2} ifA=A2,
otherwise.

It is obvious that G is semicomplete and that the induced order _--<g defines a partial
order with support f/ _{A1, A2}. Now let { be a semicomplete extension of G such
that the induced order _--<g corresponds to a partial order.

Suppose that _-< supports R4x4; that is, fO R4x4. Then B E t2O or, equiv-
alently, Gr(B) # . On the one hand, by Theorem 3.3, B cannot be maximal with
respect to _---<g because B is singular. Hence, by Theorem 3.2, Or(A B G 0r(A) for
each A -4 B. For 1,2, clearly O(Ai) {;(Ai) _{Gi}. Since BG AIG and
GIB GA1, A1 <_ B. Likewise, it is seen that A2 --_<_g B. Consequently,

B-AcB- Gi for 1, 2 and for each BV E Gr(B).

On the other hand, recall that Gr(B) G B{1, 2}. It is easy to check that

B{1}= 0 1 0 x2
xi,yi, zeR (i=l 2 3)0 0 1 x3

y y2 y3 z

Therefore,

B{1 2}= 0 1 0 x20 0 1
0 0 1 x3

Yl y2 Y3

xi,yiR (i=1,2,3)

because B{ 1, 2} B{ 1 }{B}B{1 } (recall Theorem 2.1). From this we get

(5.3) {B;-AIB;- B- e B{1,2}}

0 1 1
0 0 0

Yl Y2

0 0 Xl ixi, y ePt. (i-- 1 2)1 0 x2 /
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(5.4) {BjA2Bj IBm- e B{1,2}}

1 0 0 1 0 x2 ix,yER (i=2,3)0 1 0 0 1 X3

Y2 Y3

Invoking (5.3) and (5.4), respectively, now yields

BjA1Bj =GI iffy 1,y2-- 0, Xl 1, x2-- 1

and
BjA2Bj G2 iff y2 1, y3 -1, x2 0, x3 0.

Since it is impossible to simultaneously set y2 equal to 0 and equal to 1, there does
not exist any reflexive g-inverse Bj of B simultaneously satisfying

BjAIBj G and BjA2Bj G2.

But, in fact, r(B) C_ B{1, 2}. Consequently, r(B) 0, which is a contradiction to

Ft R44. As desired, the relation 6 thus fails to possess a G-based semicomplete
partial order extension ___0 that supports the whole of R44. El

Example 5.1 thus exhibits that we cannot always expect G* to support the whole
set of m n matrices. Nevertheless, we will next show that G* is semicomplete
whenever G is semicomplete.

THEOREM 5.2. Let as defined by (1.1) be a semicomplete map, and let * be
defined according to (5.2). Then * is also semicomplete.

Proof. Let B E Ftg.. Then G* (B) 0. We must show that B-BB- G* (B)
whenever B- G* (B). If B t6, then G* (B) G(B), and the desired result
follows from the semicompleteness of G. Next, assume that B t6. Then either
b/Pg (B) 0 or b/7)6 (B) - 0. In the former case G* (B) B{ 1}, so that B-BB-
G*(B) holds trivially for each B- E G*(B) (note Theorem 2.1(ii)). In the latter case
G*(B) G0(B). But then, by the definition of G0(B), B- G*(B) iff B-AB- G(A)
for each A blP(B). Since A LtT)g(B) iffA 6 B, then A - B and so, in
view of Theorem 2.3(ii) and (v), 7(A) c_ T(B) and Af(B) c_ Af(A) or, equivalently,
BB-A A AB-B. Consequently, B-BB-AB-BB- B-AB- G(A). Since
Bj "= B-BB- is a reflexive g-inverse of B and BjABj G(A) is satisfied, the proof
is done. El

For the -based sharp order # (set (A) {A# } if ind(A) 1 and (A) 0 if
ind(A) > 1), Theorem 5.5 will even show that the associated relation 6" corresponds
to a partial order. In order to prove this, we need the following result.

THEOREM 5.3. For square matrices, let the semicomplete G-based relations

_
and

_
both correspond to partial orders. Further, let * be defined in respect to

according to (5.2). If

_
is a -based extension of _, then

(5.5) 0(A) c_ *(A)

for each A. Thus is finer than g*; that is,

(5.6) A __0 B A __6" B.



846 S.K. JAIN, S. K. MITRA, AND H. J. WERNER

Note that (5.5) and (5.6) are not equivalent conditions. In general (5.5) = (5.6). The
reverse.implication, however, need not always be true.

Proof. By the definition of a G-based extension, clearly O(B) (B) whenever
(B) - . Since in that case also G*(B) (B), we trivially arrive at O(B) C_ G*(B).

Let us next consider the case when _(B) = but G(B) . Note that, by
Theorem 3.3, B is maximal relative to _6 iff B is nonsingular. First, let B be not
maximal and suppose that there does exist some proper predecessor of B relative to, say A. Then A B and A

___
B. Since is semicomplete and corresponds

to a partial order, we know from Theorem 3.2 that O(d B) c_ (A) for each A

___
B.

Therefore, in particular, O(A B) C_ (A) for each A with A 6 B, thus showing
that (B) C_ 0(B) *(B) when HT)(B) # O. When HT)(B) 0, then trivially
(B) c_ B{1} G* (B). Second, let B be not maximal and suppose 5/7) (B) {B}.

Then b/P6(B) 0, so that G*(B) B{1}. Since O(B) c_ B{1}, again O(B)
G*(B). Third, let B be maximal relative to __. Since G(B) # 0, B is nonsingular.
Consequently, O(B) {B-1 }. Recall that in the beginning of this section we saw that
modifying G(C) in case of a nonsingular matrix C has no effect on the induced relation;
to avoid unnecessary considerations we thus agreed to assume that G(C) {C- } for
each nonsingular matrix C. Hence * (B) {B- }, so that trivially (B) * (B).

To complete the proof we finally must consider the case when G(B) 0. Needless
to say, the inclusion (B) C_ * (B) holds trivially in this case.

This theorem admits the following interesting corollary; its proof is straight-
forward and thus is omitted. Observe that Example 5.1 is in accordance with this
corollary.

COROLLARY 5.4. For square n x n matrices, let

_
denote a G-based semicom-

plete partial order excluding from its support at least one singular matrix. Let * be
defined by (5.2). For a G-based semicomplete partial order extension of

_
which sup-

ports all n n matrices to exist it is then necessary that G*(A) 0 for each singular
matrix A.

Theorem 5.3 now enables us to prove the following preannounced result regarding
the sharp order.

THEOREM 5.5. Let * be defined according to (5.2) in respect to the usual semi-
complete map which belongs to the G-based sharp order _#. Then * induces a

semicomplete partial order extension of # that supports the set of all square matri-
ces. Moreover, * is equal to the map , which was introduced in Theorem 4.2.

Proof. Let G, denote the map introduced in Theorem 4.2 by (4.4). Let A be
any square matrix, and let A CA + NA again be its core-nilpotent decomposition.
Then CA -<# A since C#ANA NAC#A 0. Consequently, CA E blT)g(A), which in
turn implies 6*(A) _c G,(A). To prove the converse inclusion, note that, by Theorem
4.2, ___* is semicomplete. Hence, in view of Theorem 5.3, 6,(A) c_ 6*(A). Combining
observations results in G* (A) G, (A), and our claims follow from Theorem 4.2.

In context with Theorems 5.5, 5.3, and 4.2 it is pertinent to mention.the following.
Consider the maps 6o and {, defined by (4.2) and (4.4), respectively. From Theorem
4.2 it is known that if n >_ 3 then , is properly finer than 0. Theorem 5.5 now tells
us that G, *. Since o is equivalent to the partial order ___l (see 4), this seems to
contradict Theorem 5.3. Fortunately, however, from the lines directly following (4.2)
we already know that G0 fails to be a semicomplete map whenever n _> 3.

For what follows it is convenient to call g as defined by (1.1) a property-p map if
g is semicomplete and condition (3.4) of 3 is satisfied. If is a property-p map, the
induced relation as defined by (1.2) is called a property-p relation. Since a name
should give some aid in visualizing the notion, it is natural to ask the following: Where
does the name "property-p" come from? The answer is (at least implicitly) already
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given by Theorem 3.1. For notice that, according to this theorem, each property-p
relation is a partial order. In other words, to possess this property "p" is a sufficient
condition for relation

___
to define a partial order. In the case of square matrices (i.e.,

when m n), we even know from Theorem 3.2 that a semicomplete G-based relation
--<_6 corresponds to a partial order iff it is a property-p relation.

Motivated by Theorem 5.5 one might conjecture that, even in the nonsquare
case (i.e., when m : n), the relation * does always correspond to a partial order,
provided is a property-p map. The next part of this paper is devoted to establishing
that this is indeed the case. For that purpose we need the following lemma.

LEMMA 5.6. Let be a property-p map, and let * be deed i 8c o
according to (5.2). If A -< B and B <_* C, then A -< C.

Proof. If A B and/or B C, then trivially A --<_g C. Henceforth, let A B
and let B = C. Then A E HPg(B) and 6*(B) = . Since 6 is a property-p map, by
Theorem 3.1 clearly A !6 C whenever B E ft6. Now let B ftg. Then G*(B)
G0(B). Since B * C, (C-B)B- 0 and B-(C-B) 0 for some suitable
B- 0(B). This in turn implies

(C- B)B-AB- 0,

B-AB-(C-B) =0.

By the definition of G0(B), B-AB- e G(A). That B{1} C_ A{1}, 7(A) C_ 7(B), and
Af(B) c_ Af(A) follows from A _-:<g B by means of Theorem 2.3. But then BB-AB-
AB- because BB- is a projector onto T(B). Moreover, AB-AB- AB-. So
BB-AB- AB-AB- or, equivalently,

(B-A)B-AB- =0.

Since B-B is a projector along Af(B), we likewise get B-AB-B B-AB-A or,
equivalently,

(5.8b) B-AB-(B-A) =0.

Combining (5.7) with (5.8)yields

(C A)B-AB- 0, B-AB-(C-A) =0.

Since B-AB- 6(A), A

___
C, as claimed. D

THEOREM 5.7. Let be a property-p map, and let * be defined in respect to
according to (5.2). Then * is also a property-p map. Although the relation -’4* thus
defines a partial order it need not necessarily support each matrix.

Proof. That _--<* does not necessarily support each matrix follows from Example
5.1. That G* is semicomplete is the result of Theorem 5.2. In view of Theorem 3.1 we
therefore only have to prove that the implication

A _--<6" B, B not maximal G*(AIB C_ G*(A)

holds true. So let us assume that A -<g* B and that B is not maximal relative to
Recall that B is not maximal iff B fg. and rank(B) < min{m, n}. We consider the
following four exhaustive cases.

Case 1: A E f6, B ft. This case is trivial because G is a property-p map.
Case 2: A f, B 9 f. Then A HT’(B), so that *(B) o(B). Since

B is not maximal, Go (B) # 0. Now let B- Go (B). By the definition of Go (B),
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B-AB- E (A). Since A E fg, *(A) (A). Combining these observations results
in *(A B C_ *(A).

Case 3: A fg, b/TO(A) 0. Then *(A) A{1}. Since A _-A<* B, B{1} c_
A{1} by Theorem 2.3(v). Then, in view of Theorem 2.1, B-AB- A{1,2} c_ A{1}
for each B-. Observing that *(B) c_ B{1} thus yields *(AIB c_ *(A).

Case 4: A

_
2, blTa(A) O. Then *(A) 0(A) 7 0 because A ftg.. So

by Lemma 5.6, IAP(A) c_ 1AT)(B). Therefore,

o(B)
 0(B)

if B
otherwise.

Since B is not maximal, necessarily *(B) O. By the definition of o and since is
a property-p map,

(5.9) (*(C B) C g(C) for each

Recall that

Go(A) "= {A-[A-CA- e G(C) for each C e b/Pg(A)}.

Now let C /gT)6(A). Then, by (5.9), B-CB- g(C). Observe that C

___
A 6" B

implies, by Theorem 2.3, B{1} g A{1}, TO(C) C_ 7(A), and Af(A) c_ N’(C). Therefore,
B-AB- e A{1} and B-AB-CB-AB- B-CB-. So (B-AB-)C(B-AB-)
(C) G*(C), which implies B-AB- G*(A), by the definition of g*(d). Hence
again *(AIB) C_ * (A), and the proof is complete.

Theorem 5.3 also admits a version that includes the possibly nonsquare case.
Since the proof is nearly identical, it is omitted.

THEOREM 5.8. Let and be property-p maps on the set of rn n matrices.

Further, let * be defined in ’respect to according to (5.2). If _0 is a -based
extension of _, then -’ is finer than -4*.

In other words, if G is a property-p map then __6" as defined via (5.2) represents
the maximal possible -based extension of 6 in the set of all property-p relations.
This shows, in particular, that if g* does not support each matrix, then it is impos-
sible to find a property-p relation that is an extension of _6 and supports the whole
set of matrices (recall the convention regarding the full-rank matrices). Example 3.4
has shown that in the nonsquare case there are semicomplete G-based partial orders
which fail to be property-p relations. The question of how to obtain
based partial order extension in such a case remains unanswered in this paper. It
is expected, however, that the geometry of g-inversion (see 2) might be helpful in
finding an answer.

Our next theorem will provide us with a sufficient condition on 6 under which
its maximal possible G-based extension -_-4_6" supports each matrix. Let us call D
maximal element of b/7)6 (A) (in respect to --4_6) if D IAT)6(A) and there is no matrix
C lgT)(A) such that C -J: D and D

___
C. If IATag(A) possesses a unique maximal

element C, C is called the greatest element of blTa6(A).
THEOREM 5.9. Let be a property-p map such that, for each matrix A, lgP6(A)

possesses a greatest element whenever blT)6(A) O. Again, let * be defined in respect
to according to (5.2). The property-p relation _* then supports each matrix and is
the maximal possible (partial order) extension of

_
in the class ofproperty-p relations.

Proof. Recalling Theorem 5.7, we have only to show that, in the framework of
our theorem, G* supports each matrix. By the definition of *, clearly G*(A) 0 only
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if A t6 is such that blP6(A) = O. Let A Ft6, and let b/796(A) 0. Notice that
b/P6(A) has a greatest element, say D. So

(5.10) C _-36 D

___
A

for each C E ld’P6(A). In particular, D 6 A. Hence D - A which, in view of
Theorem 2.3, also implies (A-D) - A. But then Dj (A-D) 0 and (A-D)D 0
for some Dj e G(D) as well as (A D)jD 0 and D(A D)j 0 for some {1, 2}-
inverse (A- D)j of (A- D). With these observations in mind it is easy to check that
G := Dj + (A- D)j is a {1, 2}-inverse of A and that GDG Dj. Put

6(A) {A- A-DA- e 6(D)}.

Since G e (A), (A) : 0. In order to complete the proof it thus suffices to show
that (A) G*(A). Trivially, (A) _D G*(A). So let A- (A) and let C __6 A.
Notice that (5.10) implies A{1) C_ D{1}, T(C) C_ T(D), and Af(D) c_ Af(C) (recall
Theorem 2.3). But then A-CA- A-DA-CA-DA-. By observing A-DA-
(D), and since (C D) c_ (C), we now obtain A-CA- (C), yielding that A-
(;* (A). El

At this point it is interesting to mention that Theorem 5.5 is in accordance with
Theorem 5.9. For observe that, according to Lemma 2.1 in [7], B _# A implies
B # CA, so that the core part CA of A is the greatest predecessor of A in respect
to the sharp order. Theorem 5.5 tells us that G*(A) can be defined, equivalently,
by G.(A) from (4.4), that is, in terms of the greatest (and so uniquely determined
maximal) predecessor of A. Since this might be advantageous computationally it is
pertinent to mention that for each property-p map G the crucial part G0(B) in the
definition of G*(B) (see (5.1)) can always be redefined in a similar manner as

go(B) {B- B-CB- e g(C) for each maximal

element C from 5/P (B) }.

The equivalence of these definitions can be seen basically as the last part in the proof
of Theorem 5.9.

In context with the previous theorem it is further natural to ask the following:
Is the phenomenon observed in Example 5.1 universally true whenever there is multi-
plicity of maximal elements for at least one set NPg(A)? In other words, does failure
of uniqueness always correspond to a situation where along with !g all its G-based
property-p extensions also have poor support? That this is not the case is illustrated
in our final example.

Example 5.10. Consider the matrices

A1 "= 0 0 0 and A2 :-- 0 1 0
0 0 0 0 0 0

Put B A1 4- A2. Observe that these matrices are all of index 1. Check A1#
and A A.. Define the map (.) on the set of 3 x 3 matrices according to

{A1} if A A,
(;(A)= {A2} ifA=A2,

0 otherwise.
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Notice that a defines a partial ordering. Checking A 6 B (i 1,2) yields
b/7)a(B) {A1,A2}. The sharp order __# is obviously a possible partial order ex-
tension of __6. It thus follows from Theorem 4.2 that there is a partial order exten-
sion of - that supports each matrix, although 5/7)6(B) does not possess a greatest
element.
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SOME NONINTERIOR CONTINUATION METHODS FOR LINEAR
COMPLEMENTARITY PROBLEMS*

CHRISTIAN KANZOWt

Abstract. We introduce some new path-following methods for the solution of the linear com-
plementarity problem. We call these methods noninterior continuation methods since, in contrast
to interior-point methods, not all iterates have to stay in the positive orthant. This is possible
since we reformulate certain perturbed complementarity problems as a nonlinear system of equa-
tions. However, similar to interior-point methods, we also try to follow the central path. We present
some conditions which guarantee the existence of this central path, prove a global convergence re-
sult for some implementable noninterior continuation methods, and report some numerical results
obtained with these methods. We also prove global error bound results for the perturbed linear
complementarity problems.

Key words, linear complementarity problems, path-following methods, interior-point methods,
global error bounds, P0-matrix, R0-matrix

AMS subject classification. 90C33

1. Introduction. The linear complementarity problem, denoted by LCP(q, M),
is to find a vector z- (x, y) E 2n such that

x >_ 0, y _> 0, xTy 0, y Mx + q,

where M E Nnxn is a given matrix and q Nn is a given vector. This problem serves
as a unified formulation of linear and quadratic programming problems as well as of
two-person (noncooperative) matrix-games and has several important applications in
economics and engineering sciences; see Cottle, Pang, and Stone [3], Harker [15], and
Isac [17] for some examples.

There exist several methods for solving LCP(q, M); the interested reader is re-
ferred to the excellent books of Murty [31] and Cottle, Pang, and Stone [3]. Here we
focus on the interior-point approach. This approach solves (approximately) a sequence
of certain perturbed linear complementarity problems, PLCP(q, M, #) for short; these
perturbed problems depend on a positive parameter # > 0 and consist of finding a
vector z(#) (x(#), y(#)) 2n satisfying the conditions

x > O,y > O, xiyi # (i I),y- Mx + q.

Here and throughout the paper, the index set I is an abbreviation for the set { 1,..., n}.
Under certain conditions, the PLCP(q, M, #) are uniquely solvable for all # > 0, and
the pair (#, z(#)) forms a smooth trajectory, usually called the central path. By trac-
ing this trajectory as tt tends to zero, one hopes to find a solution of the original
LCP(q, M). Actually, this can be shown under suitable assumptions; see, e.g., Meg-
gido [30], Kojima, Meggido, and Noma [23, 25, 26], and Kojima et al. [24].

The aim of this paper is to introduce some new tools to allow us to reformulate
the PLCP(q, M, #) as a nonlinear system of equations and to show that these tools
can be used both for the theoretical analysis of a continuation method and for the

Received by the editors August 22, 1994; accepted for publication (in revised form) by R. Cottle
November 13, 1995. This paper combines results of the two earlier reports [20, 21] by the author. A
few results from [20, 21] have been removed; on the other hand, some new results have been included,
mainly in 5 and 6 of this paper.

Institute of Applied Mathematics, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg,
Germany (kanzowmath.uni-hamburg.de).
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numerical solution of LCP(q, M). These tools are defined in 2. In 3, we prove some
results concerning the existence and uniqueness of the solution z(#) of PLCP(q, M,
We also compare our approach with a recent method of Chen and Harker [2], which is
very similar to our approach; actually, we show in 4 that their method can be viewed
as a scaled variant of one of our methods. Some global error bound results are given
in 5. In 6 we describe in detail the implemented algorithm and present a global
convergence result for this method. The suggested algorithm differs from interior-
point methods in at least two points: on the one hand, the iterates do not necessarily
have to stay in the positive orthant, and on the other hand we can start with an
arbitrary vector (x,y) }2n and an arbitrary initial parameter /to > 0. Some
promising numerical results are given in 7. We conclude with some final remarks in

8.
Notation. For a vector x = (x,... ,xn)T n, the inequalities x >_ 0 and x > 0

are defined componentwise. If x, y n, the vector z := (xT, yT)T 2n is usually
abbreviated by z (x, y). Given two vectors x, y n, the symbol rain{x, y} denotes
the n-vector having min{x, y} as its ith component. All norms are Euclidean norms.
By dist(x, ) we denote the (Euclidean) distance of a vector x n to a set C_ n;

llx
2. Main tools. The noninterior continuation methods to be presented in the

following section are based on reformulations of the PLCP as nonlinear systems of
equations. The main tools used in these reformulations are functions 9% 2 _.
having the property; cf. [20].

(1) (a, b) 0 a > 0, b > O, ab It,

where, unless otherwise stated, It is any fixed positive parameter. In this section, we
introduce some functions , having this property; cf. [20].

LEMMA 2.1. The function

(a, b) "= a + b v/(a b) 2 + 4It

has the property (1).
Proof. First assume that a > 0, b > 0, and ab It. Then, we obtain

,(a, b) a + b V/a 2ab + b2 + 4ab

a + b- v/(a + b)2

a + b-]a + b]
--0.

To prove the converse result, assume that (a, b) 0; i.e.,

a + b v/(a- b) 2 + 4It > 0.

Squaring both sides of the equation in (2), we get ab It. Therefore sign(a) sign(b).
Consequently it follows from the inequality in (2) that a > 0 and b > 0. El

LEMMA 2.2. The function

,(a, b)’= a + b- v/a2 + b2 + 2#

has the property (1).
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Proof. If a > 0, b > 0, ab #, we get

99,(a, b) a + b- v/(a + b) 2

a + b -la + b

-’0.

On the other hand, the condition (a, b) 0 can be rewritten as

a + b v/a+ b2 2b 2# > o,
from which a > 0, b > 0, and ab # follow in a similar way as in the proof of Lemma.
2.1.

Remark. For the special case # 0, the function introduced in Lemma 2.1
reduces to the min function used, e.g., by Pang [32, 33] and Harker and Pang [16],
in order to characterize the complementarity problem itself as a (nonsmooth) system
of equations. On the other hand, the function defined in Lemma 2.2 coincides for
p 0 with a recently introduced function of Fischer [8] which h subsequently been
used by several authors, including Fischer [9, 10, 11], Qi and Jiang [36], Facchinei and
Soares [5, 6], Tseng [40], and Kanzow [19, 21].

Remark. Let denote the function defined in Lemma 2.1 or 2.2, Then is
continuously differentiable for all (a, b) 2, and it is not difficult to see that the
partial derivatives have the property

0. (a, b) 0. (a b) e (0, 2)

for all a, b N. This property turns out to be important in the following section; see
Theorem 3.5.

Remark. We have found two other functions having the property (1); namely,

1
(3) ,(a, b) "= min2{0, a + b} ab +
(4) ,(a, b) (a b) 2 alal b[b + 2.
It is straightforward to see that these functions satisfy condition (1). However, they
have at least two main disadvantages when comparing them with the functions of
Lemmas 2.1 and 2.2. On the one hand, the functions (3) and (4) are more nonlinear
than their counterparts of Lemmas 2.1 and 2.2; on the other hand, they do not have
the property mentioned in the previous remark. We note that the functions (3) and
(4) also reduce to some known functions for 0; see, e.g., Mangasarian [28], Kanzow
[18, 19], and Kanzow and Kleinmichel [22].

There might exist several other functions , having the property (1). It is our
feeling, however, that the two functions given in Lemmas 2.1 and 2.2 are the most
interesting ones, both from a theoretical and a numerical point of view.

3. Continuation methods. Let
N denote the function given in Lemma 2.1 or 2.2. If we introduce the nonlinear
operator F, N2 N2 defined by.(z) . (x, ) .(x, )

where

.(x, ).= (.(,),..., .(x,)) e ,
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we obtain as a direct consequence of Lemmas 2.1 and 2.2 the following characterization
of PLCP(q, M, #).

THEOREM 3.1. A vector z(#) := (x(#), y(#)) E R2n is a solution of PLCP(q, M, tt)
if and only if z(#) satisfies the nonlinear equation F, (z)= O.

We now investigate the following (theoretical) continuation method. A variant of
this algorithm that can be implemented is described in 6.

ALGORITHM 3.2.
(S.0): Choose z := (x,y) R2n, set k := 0, and let {#k} c_ R be a strictly

decreasing sequence with limk_o #k 0.
(S.1): Terminate if zk (xk, y) solves LCP(q, M).
(S.2): Find a solution z+1 := z(ttk+l) of the nonlinear system of equations

F/k+l (Z) 0

(or, equivalently, of PLCP(q, M, #+1)).
(S.3)" Set k := k + 1 and go to (S.1).

In order for Algorithm 3.2 to be well defined, one has to guarantee that the per-
turbed problems have a (unique) solution zk+l A well-known condition which guaran-
tees the existence and uniqueness of such a solution is that M is positive semidefinite
and that there exists a strictly feasible vector (i.e., > 0 and M + q > 0); see,
e.g., Meggido [30] and Kojima, Mizuno, and Noma [26]. These assumptions have
been weakened by Kojima et al. [24, Condition 2.1], where the following conditions
are assumed to hold:

CONDITION KMNY.
(a) M is a P0-matrix (see below).
(b) There exists a strictly feasible vector for LCP(q, M).
(c) The level sets t(q,M):= {(x,y) n[x >_ 0, y >_ 0, y Mx + q, xTy <_ t}

are bounded for all t > 0.
Here we show that Algorithm 3.2 is well defined if M is a P0- and R0-matrix. (At

the end of this section, we show how this assumption is related to Condition KMNY.)
We first restate the definitions of these matrix classes as well as the definition of
P-matrices.

DEFINITION 3.3. A matrix M is said to be a

(a) Po-matrix "== x , x 0, i I xi O, and xi[Mx] >_ 0;
(b) P-matrix "== Vx n,x O, i I x O, and x[Mx] > 0;
(c) Ro-matrix :=== LCP(O, M) has z* (0, 0) 2n as its unique solution.
It is not difficult to see that every P-matrix is both a P0-matrix and an R0-matrix.

Moreover, it is well known that positive definite matrices are P-matrices and positive
semidefinite matrices are P0-matrices; see, e.g., Murty [31].

Our analysis of Algorithm 3.2 is similar to the one of Chen and Harker [2]. We
stress, however, that we do not have to assume that all diagonal elements of M are
positive. This contrasts favourably with Chen and Harker’s method and is, in fact,
the main advantage of our approach. We note that this positiveness assumption is
often not satisfied; e.g., if we formulate a (linear or) quadratic programming problem
as an LCP, the corresponding matrix M has zero entries on its diagonal (in case of a
linear programming problem, all diagonal entries are zero).

Now we come to the convergence analysis of Algorithm 3.2. Consider the set of
paths

7)(#) {(#, z(p))l 0 < # <_ #, z(#) solves PLCP(q,M, #)},



NONINTERIOR CONTINUATION METHODS FOR LCP 855

where # > 0 is some given constant. The following theorem is due to Chen and Harker
[2, Thm. 3.2] and follows from the implicit function theorem and simple continuity
arguments.

THEOREM 3.4. If the Jacobian matrix VF, (z(#)) is nonsingular for all z(#), 0 <
# <_ fit, then 7)(#) consists solely of continuously differentiable paths. If, in addition,
P(ft) is bounded, then every limit point of z(#) as # approaches zero is a solution of
LOP(q, M).

We next show that the Jacobian matrices VF. (z) are nonsingular for P0-matrix
LCPs.

TttEOREM 3.5. Assume that M nn i8 a Po-matrix. Then the Jacobian
matrix VF (z) is nonsingular for all z 2n and all # > O.

Proof. Let z (x, y) 2 and # > 0 be fixed. Then, using the notation

D= "-D(z)"= diag (. Ou )Oa (xi, yi),

Db "=Db(z):= diag (. 0 )Ob
(x,y),...

the Jacobian matrix is given by

(5) VF. (z) VF, (x, y) D Db

Let VF,(z)p 0 with p (p(1),p(2)),p(i) E Nn,i 1,2. Then

(6) Mp(1) p(2) 0,
(7) Dap() + Dbp(2) O.

From the second remark in 2, we have that the diagonal matrices Da and Db are
positive definite. Thus, (7) can be rewritten as

(8) p(2) -D[ Dap(1),

where D[D is also a positive definite diagonal matrix. Inserting (8) into (6) yields

(9) (M + D[Da)p() O.

Since M is a P0-matrix and D[IDa is positive definite, we directly obtain from
Definition 3.3 that the matrix M + D[1DR is a P-matrix. In particular, this matrix
is nonsingular. Consequently, we have

p() 0.

Thus, we get

p(2) --0

from (8), which proves the theorem. [:]

The following theorem can be shown in a similar way as the corresponding theorem
of Chen and Harker [2, Thm. 3.7].

THEOREM 3.6. Let M nn be a Po-matrix, let z 2n, and assume that the
level sets
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are uniformly bounded for all 0 < # <_ fit for some fit > O. Then the PLCP(q, M,
have a unique solution z(#) for all 0 < # <_ #.

The following is a (necessary and) sufficient condition for the above level sets to
be bounded.

THEOREM 3.7. Assume that M E n, is an Ro-matrix, z 2n, and fit > O.
Then the level sets (#) as defined in Theorem 3.6 are uniformly bounded for all
0<_<_#.

Proof. Assume there exists an unbounded sequence {zk} {(x
such that zk (#k) where {#k} is a sequence with 0 < #k _< # for all k. Since the
mapping # -- F, (z) is continuous and [0, #] is a compact interval, the maximum
a max,e[0,p] IIF, (z)ll exists. We therefore have

(x,y) }Let z* := (x*,y*) be an accumulation point of the bounded sequence ii(xk,y)ll
Then we obtain

i.e., z* (x*, y*) satisfies the equation

(10) Mx* =y*.

Similarly, if , denotes one of the functions defined in Lemma 2.1 or 2.2, we get from
the definition of these functions and the boundedness of the sequence {#k} that

and, on the other hand,

so that

< II  ]i 0,

0

holds for all I. This is equivalent to x* >_ 0, y* _> 0, and (x*)Ty O. In view
of (10) this means that z* is a solution of LCP(0, M). However, since IIz*ll 1 and
therefore z* = 0, we have a contradiction to the assumed R0-property of the matrix
M.

Using similar arguments as in Fischer [9] and Tseng [40], one can show that even
the single level set (#) for # 0 is bounded for all q n if and only if M is an

Ro-matrix. Hence, the assumption of M being an R0-matrix is also necessary for
Theorem 3.7 to be true.

We can summarize the above results as follows: If M n is a P0- and Ro-
matrix, then all PLCP(q, M, #) have a unique solution, the sequence {zk } generated
by Algorithm 3.2 is bounded, and every limit point of this sequence is a solution of
LCP(q, M). In particular, we obtain again by our constructive approach the result of
Aganagic and Cottle [1] that the LCP has a nonempty solution set if M is a P0- and
R0-matrix.
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We now turn back to the condition KMNY. Of course, the assumption of M being
a P0- and R0-matrix is not directly related to condition KMNY since the former is
independent of the specific vector q, whereas the latter depends on this vector. How-
ever, based on the previous results, we are now able to prove the following equivalence
theorem.

THEOREM 3.8. M is a P0- and Ro-matrix if and only if condition KMNY is

satisfied for all q E

Proof. First assume that M is a P0- and R0-matrix. Then condition KMNY (a)
is obviously satisfied. Let # > 0. Since M is a P0- and R0-matrix, there exists a

(unique) solution z(it) (x(#), y(it)) E 2n of the PLCP(q,M, it). Obviously, x(it)
is then a strictly feasible vector for LCP(q,M); i.e., condition KMNY (b) is also
satisfied. Finally, the validity of condition KMNY (c) follows from Proposition 3.9.23
in [3]. Conversely, assume that condition KMNY is satisfied for all q . We only
have to show that M is an R0-matrix. Assume this is not true. Then there exists a
nonzero solution z (x, y) n of LCP(0, M). Then the vector z is also a solution
of LCP(0, M) for all r >_ 0. In particular, the level set t(0, M) is not bounded for
any t _> 0, which contradicts condition KMNY (c).

We note that the main results of this section are now a simple consequence of
Theorem 3.8 and of Theorem 4.4 in [24]. However, the proof of Theorem 3.8 (namely
the existence of a strictly feasible vector) is based on the previous results of this section
which will also play a central role in the following sections. On the other hand, Kojima
et al. [24] were able to prove, under their condition KMNY, that the entire sequence
z(it) converges to a solution of LCP(q, M) as it approaches zero. Hence we get the
following corollary from Theorem 3.8 which improves on our Theorem 3.4.

COROLLARY 3.9. If M is a P0- and Ro-matrix, then the PLCP(q, M, it) have a

unique solution z(it) for all it > O, and the entire sequence z(it) converges to a solution

of LCP(q, M) as it tends to zero.
A similar result holds for Chen and Harker’s method [2] which also improves on

their Theorem 3.2.

4. The method of Chen and Harker. First note that it would also have been
possible to use the tools of 2 to characterize the problem

(11) x > O, Mx + q > O, xi[Mx + q]i it (i e I),

which is obviously equivalent to PLCP(q, M, it). Using the functions , of Lemmas
2.1 and 2.2, respectively, we obtain the following characterizations of (11):

xi + [Mx + q]i V/(xi [Mx + q]i) + 4it 0 (i e I) and

+ [Mx + + [Mx + + o e

On the other hand, Chen and Harker [2] give the following reformulation of (11)"

(14) mux + [Mx + q]i v/(mxi [Mx + q]) + 4mit 0 (i e I).

This formulation is very similar to our characterization (12), but it has the disadvan-
tage that all diagonal entries of M must be positive (otherwise (14) is not equivalent
to (11)). If this is the case, however, it is also possible to reformulate problem (11)
as follows:

(15) miixi + [Mx -+- qli (miixi) 2 + [Mx + q]i + 2miiit 0 (i e I).



858 CHRISTIAN KANZOW

This formulation can be regarded as the counterpart to (13). Note that the character-
izations (12) and (14) coincide if all diagonal elements of M are equal to one. Under
this assumption, the reformulations (13) and (15) are also equivalent.

Now let S E nn be any positive definite diagonal matrix. Then

(16) Sy >_ 0 == y >_ 0

holds for any vector y E n. Hence the LCP(q, M) is equivalent to

(17) x >_ O,S(Mx + q) >_ O, xT(Mx + q) 0,

and interior-point-like methods for problem (17) try to solve the corresponding per-
turbed problem

(8) x > 0, S(Mx + q) > O, xi[Mx + q]i it (i e I).

If M has positive diagonal entries and if we define S :- diag(..., 1/m,...), then the
matrix Ms :- SM has unit entries on its diagonal. Consequently, Chen and Harker’s
characterization for this scaled problem is exactly our characterization (12) for this
problem; i.e., Chen and Harker’s method can be regarded as a scaled variant of one
of our methods. Therefore, it is quite natural to apply our tools of 2 to the scaled
problem (17)/(18). In 7, we consider three scaling matrices:

So In (no scaling),
1/miiS "= diag(s,...,Sn),S :=

1

$2 "-- diag(al,..., an), ai 1/[[Mi.

where Mi. denotes the ith row of the matrix M. (Numerically the conditions mii 0
and mii = 0 should, of course, be replaced by something like lmi] < - and ]mii] k -for a small constant T > 0.)

We note, however, that the above scaling is somewhat strange and has its dis-
advantages; for example, we solve LCP(qs, Ms) instead of LCP(q,M), where qs :=
Sq, Ms SM, and S is the scaling matrix, but some matrix-classes are not invariant
under this (one-sided) scaling; see, e.g., Todd [37] for a brief discussion. Neverthe-
less, this scaling seems to be natural in view of the correspondence of our methods
to Chen and Harker’s characterization of PLCP(q, M, it) and leads to a substantial
improvement of the numerical results presented in 7.

5. Global error bounds for PLCP(qM tt). Consider the LCP in the fol-
lowing formulation: find a vector x Nn satisfying the conditions

x >_ O, Mx + q >_ O,xT(Mx + q) O.

The corresponding perturbed problem is exactly problem (11). Obviously, these prob-
lems are equivalent to LCP(q,M) and PLCP(q,M, it), respectively, as defined in

1 (just take y Mx + q), so we denote these problems also by LCP(q,M) and
PLCP(q, M, it), and the solution set of PLCP(q, M, it) will again be denoted by S(it).

Although there are several existing error bound results for LCP(q, M)(see, e.g.,
[27, 29]), there is, to our knowledge, no error bound result for the PLCP(q, M, it).
Such a result, however, will play an important role in the algorithm to be described in
the following section, namely in the termination rule of the inner iteration. We first
give the relevant definitions.

DEFINITION 5.1. Let it > O, let r n
__ , and assume that PLCP(q, M, it) has

a nonempty solution set S(it).
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(a) The continuous function r is called a residual of PLCP(q, M, #) if r(x) >_ 0
for all x E ’ and r(x) 0 if and only if x solves PLOP(q, M, it).

(b) A residual r is a lower local error bound for PLOP(q, M, #) if there exist
constants -1 > 0 and cl > 0 such that

-lr(x) <_ dist(x,

for all x with r(x) < cl.
(c) A residual r is a lower global error bound for PLCP(q, M, #) if there exists

a constant ’1 > 0 such that

<_ d  t(x,

for all x n.
(d) A residual r is an upper local error bound for PLCP(q, M, #) if there exist

constants -2 > 0 and c2 > 0 such that

dist(x,S(#)) <_ -2r(x)

for all x n with r(x) <_ c..
(e) A residual r is an upper global error bound for PLCP(q, M, it) if there exists

a constant - > 0 such that

dist(x, $(#)) <_ ’r(x)

for all x n.
Let denote one of the functions defined in Lemma 2.1 or 2.2. For x n,

let y Mx + q and define r, (x) := II,(x, Y)II IIF, (x, Y)II, where ,(x, y) :=
((xl,y),...,,(x,y)) e and where F, denotes the operator as introduced
at the beginning of 3. In view of Lemmas 2.1 and 2.2, the two possible functions
r, are residuals for PLCP(q, M, tt). In this section we prove that these two functions
provide both lower and upper global error bounds for PLCP(q, M, #) if the matrix M
is a P0- and R0-matrix.

We first show that r, provide lower global error bounds for PLCP(q, M, #). Note
that this result holds for an arbitrary matrix M n.

LEMMA 5.2. Let it > 0 and assume that PLCP(q, M, #) has a nonempty solution
set $(#). Then there exists a constant > 0 such that -r (x) <_ dist(x,S(tt)) for
all x n.

Proof. We first note that r, are globally Lipschitz-continuous functions; this fol-
lows immediately from the second remark in 2 and the integral mean value theorem.
Let a denote the Lipschitz constant of r,. Let x n be arbitrary, and let x(tt) be
the closest solution of PLCP(q, M, #) to x. Then we have

r, (x) Ir, (x) r, (x(#)) <_ allx x(#)l tcdist(x,S(#)).

The assertion therefore follows by taking - 1/.
Next we note that the two possible functions r, provide upper local error bounds.
LEMMA 5.3. Let # > 0, M x be a Po-matrix, and S(#) be.nonempty. Then

there exist constants 2 > 0 and c2 > 0 such that dist(x,S(#)) < -2r,(x) for all
x .n with r, (x) <_ c2.

Proof. Since M is a P0-matrix, the Jacobian VF,(z) is nonsingular for all
z (x, y) e 2,, y Mx + q. In particular, VF, (z(#)) is nonsingular for z(#)
(x(#),y(#)), where x(#) e $(#) and y(#) Mx(#) + q. Using Lemma 4.1.16 from
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[4] and the continuity of r., we therefore obtain the existence of 2 > 0 and c2 > 0
such that

 2dist(x,

for all x E n such that r, (x) _< c2, where x(#) denotes the closest solution of x in
8(#). From this the assertion follows by taking T2 := 1/t2. [’l

We are now in a position to prove the main result of this section.
THEOREM 5.4. Let # > 0 and let M nn be a Po- and Ro-matrix. Then there

exists a constant - > 0 such that dist(x,,(#)) <_ T2r, (x) for all x e n; i.e.,
provide upper global error bounds for PLCP(q, M, #).

Proof. Based on Lemma 5.3, the proof is similar to the one of Theorem 2.1 by
Mangasarian and Ren [29]. For simplicity, we assume that is the function from
Lemma 2.2. (The proof is analogous for the function of Lemma 2.1.) By Theorems
3.6 and 3.7, PLCP(q, M, #) has a unique solution x(#). Assume the theorem is false.
Then there exists a vector xk n such that

(9)

for all k. Since r. is an upper local error bound by Lemma 5.3, one can prove as in
[29] that there exist k0 > 0 and > 0 such that r, (xk) > for all k >_ k0. From
this and (19) we get Ilxkll cx. Let x* be an accumulation point of the bounded

xk

sequence {}. Note that IIx*ll 1 and therefore x* - 0. Dividing both sides of

(19) by IIxkll, we obtain

(20) 1= lim
Ilxk-x(#)ll > lim k

r ’"’xkj(
IIx ll

From the definition of , the unboundedness of the sequence {xk } and the fact that
xk X* on a subsequence, we get

(2) V/(X + e,(x, y)/llxll - x / [Mx*] ) [Mx*] (i )

on this subsequence, where yk :- Mxk -q. In view of (20), we see that the right-hand
side of (21) is equal to 0 for all e I. This, however, means that 0(x, [Mx*]) 0
for all I; i.e., x* solves LCP(0, M) (cf. the first remark in 2). Since x* : 0, this
contradicts the assumption that M is an R0-matrix. [:I

We note that the constants - and ’2 in Lemmas 5.2 and 5.3 and Theorem 5.4
depend on the matrix M and the value of the perturbation parameter # :> 0 but not
on the particular choice of the vector q.

6. Implemented algorithm and its convergence. The following algorithm is
an implementable version of Algorithm 3.2. Instead of solving the nonlinear systems
F, (z) 0 of step (S.2) of Algorithm 3.2 exactly, we try to solve them inexactly
using just one step of Newton’s method for a fixed value of #. If this step is successful
(in a certain sense as defined below, cf. step (S.5) of Algorithm 6.1), we reduce the
perturbation parameter #; otherwise, we perform another Newton step for the same
value of #. Note that Newton’s method is globalized by a line search for the merit
function 1/2 F. 2

ALGORITHM 6. I.
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(S.0): (Initial Data)
Let 2

_
be any of the functions defined in 2. Choose x E n, set

y0 := Mxo +q,zo .= (x0, y0), let #0 > 0,/ E (0, 1), a (0, 1/2),e _> 0,7 > 0, r (0, 1),
and set k := 0.

(S.1): (Termination Criterion)
If err(zk) := II min{xk,Yk}ll--< e, stop: zk is an (approximate)solution of LCP(q, M).

(S.2): (Computation of a Search Direction)
Compute Azk 2n as the solution of the linear system

(S.3): (Computation of a Steplength)
Let tk m, where mk is the smallest nonnegative integer m satisfying the Armijo
condition

(S.4): (New Iterate)
Set z+ := z + tAz.

(S.5): (Updating Rule for
Define the vector xk+l, Y+1) (,k (x+, yk+)," flt (Xkn+1 ,Ynk+l))T n.
If II,k xk+l, Yk+)ll -- /#k, then #k+ := #k, else #k+ := #.

(S.6): (Loop)
Set k := k + 1, and go to (S.1).

Remark. From our specific choice of the starting vector z (x, y0) and a simple
induction argument, it follows that the relation yk Mxk + q holds for all iterations
k. Note that such a relation does not hold in commonly used (infeasible) interior-point
methods. Moreover, this motivates our termination criterion in step (S.1) and, in view
of the global error bound results of the previous section, also the updating rule for
in step (S.5).

Remark. There is now a strong theoretical foundation of the termination criterion
used in step (S.1) of the above algorithm. From error bound results of Mangasarian
and Ren [29] and Luo and Tseng [27] it follows that err(z) is a global error bound of
LCP(q, M) for all q e n if and only if M nn is an R0-matrix.

Remark. The linear system in step (S.2) of our algorithm has been solved as
follows: Let ,(xC,y) := (..., ,(xk,zk),...)T e n, and let D and Db denote

the diagonal matrices diag(, o, (x/k yk) and diag(, o., (x y) re-Oa
spectively. Then, compute Axk from the n n system

(D + DM)Axk -(xk, yk) D(Mxk + q ya)

and set

Ayk M(xk + Ax) + q yk.

We now show, using the theory developed in 3 for the theoretical Algorithm 3.2,
that Algorithm 6.1 is also globally convergent under the same assumptions.

THEOREM 6.2. Let denote one of the functions defined in Lemma
2.1 or 2.2. Assume that M nn is a Po- and Ro-matrix, and let 0 ( being the
constant from the termination criterion). Let {zk} be any infinite sequence generated
by Algorithm 6.1. Then

(a) the sequence {zk} is well defined;
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(b) the sequence {zk} has at least one accumulation point;
(c) any accumulation point of {zk} is a solution of LCP(q,M).
Proof. (a) Since M is a P0-matrix, the linear systems in step (S.2) are uniquely

solvable for all k by Theorem 3.5. Moreover, it is well known that the search direction
Azk E 2 obtained in this step is always a descent direction for the merit function

2IIF genc steplength tk > 0 cn lwys b computed in step (S.3). Therefore
Algorithm 6.1 is well defined.

(b) Since p [0,0] for all k and since our algorithm is a descent method
for any fixed , the entire sequence {zk} remains bounded in view of Theorem 3.7
and the assumed R0-mtrix property of M. Thus the sequence {zk } has at least one
accumulation point.

(c) We first show that the sequence {k} generated by Algorithm 6.1 converges
to zero. Assume the contrary; i.e., ssume there exists an iteration index such that
p p+t for all 1, 2, 3, This means that Algorithm 6.1 eventually reduces to
a damped Newton method for the (single) system of nonlinear equations F, (z) 0.
In view of Theorems 3.5-3.7, however, it is well known that this method converges to
the unique solution z(p) of this system. In particular, the condition in step (S.5),
i.e.,

is satisfied for a finite vMue k , so that the prmeter Pk will be reduced in this
step. Hence {p} converges to zero.

Now let 2 (2, ) be one of the accumulation points of {z}. (Because of (b),
such an accumulation point exists.) Let {zk+ }keK denote a subsequence converging
to 2. For each sufficiently large k K, let l(k) denote the largest index for which the
condition ,(x+,y+) 7P(k) is stisfied; i.e.,

l(k) max{j e {1,...,k}] ]],(xa+,ya+)]] 7,y}.

We note that this index l(k) is well defined for all k suciently lrge and that
limkeK Pl(k) 0 since Pk is reduced infinitely many times according to the first
part of this proof. (Note that the index l(k) is not necessarily in the index set K.)
Taking into account the definition of l(k) as well as the continuity of the two possible
functions in their arguments and in the perturbation prameter p, we have

lim () 0;0(, 9)11 im ]l(x+,+) _< Z

i.e., 0(2, 9) 0. This, however, is equivalent to 2 0, 9 h 0, and 29 0 (i I).
According to the first remark after Algorithm 6.1, we also have 9 M2 + q. Hence
2 (2, ) is a solution of LCP(q, M).

The implemented version of Algorithm 6.1 differs in two points from the above
description, namely in steps (S.3) and (S.5). Instead of step (S.3), we employ the
following nonmonotone Armijo rule (see Grippo, Lampariello, and Lucidi [13])"

(S.3’) Define pk min{k,p} and let tk m, where m is the smallest nonneg-
ative integer m satisfying the nonmonotone Armijo condition

IE. (z + Zz)l < m ll. (z)ll Z].(z)ll.
j=k-pk+l,...,k

Here, p is any fixed nonnegative integer. In our numericM experiments, this nonmono-
tone line search gives better results than the standard (monotone) Armijo rule. This,
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we think, is an interesting aspect since usually the nonmonotone line search is only
preferred for highly nonlinear objective functions, whereas our merit function is not
too nonlinear.

The second modification is in the updating rule for the perturbation parameter
#k. The updating rule used is the following one. It is very similar to the one presented
by Chen and Harker [2] and works very well in our numerical experiments.

UPDATING RULE FOR #k"
(a) Let uk+ err(zk+)2/n. If uk+ >_ 1, then #k+ := v/uk+i, else #k+l :--"

Uk+l.
(b) If #k+ > #k, set #k+ #k.
(C) If II(Xa+,yk+)ll < 10-4, set #k+ := 10-#k+.
(d) If #k+ < 10-16 then #a+ 10-6

The main part of this (heuristic) updating rule is part (a). Part (b) guarantees
that the sequence {#k} is nonincreasing; part (c) means that the parameter #a is
reduced very fast if we are already close to a solution of LCP(q, M). Part (d), of
course, is just a safeguard.

7. Numerical results. In this section, we present numerical results for the fol-
lowing methods:

1" This is the algorithm described in 6 with , being the function defined-in
Lemma 2.1.

2: This is the corresponding algorithm with taken from Lemma 2.2.
3: Similar to methods 1 and 2 but with from (3).
4: The same as method 3, but with as defined in (4).

Furthermore, we will consider the three scaling strategies as suggested at the end of
4. We compare our results with the following two algorithms"

CH 1" This is Chen and Harker’s method; cf. (14).
CH 2: This is the modification of Chen and Harker’s method as suggested in

(15). (The body for the algorithms CH 1 and CH 2 is, of course, the same as for
the methods 1-4; the main difference is only in step (S.2) of Algorithm 6.1, where
different linear systerns are to be solved.) The algorithms have been implemented in
MATLAB and tested on a 486 PC-type computer. The parameters used are as follows:

/ 0.5, ( 10-4 10-6,,= p=10,=10-8.

The initial barrier parameter #0 is Ilqll/n.
The first two test examples are well scaled, and we therefore present numerical

results only for the choice S S0 of the scaling matrix.
EXAMPLE 7.1 (see Murty [31]). n variable,

1 2 2 2
0 1 2 2
0 0 1 2 ,q=(_l,...,_l)T.M=

0 0 0 1

This example of an LCP is a standard test problem for which both Lemke’s com-
plementary pivot algorithm and Cottle and Danzig’s principal pivoting method are
known to run in exponential time; see Murty [31, Chap. 6]. Its solution is x*
(0,..., 0, I)T, y. (I,..., I, 0)T. Obviously, the matrix M in this example is a P-
matrix and therefore a P0- and R0-matrix. Consequently, methods 1 and 2 satisfy
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TABLE 1
Number of iterations for Example 7.1.

Method n=8 n= 16 In= 32 n= 64 n= 128

1 7 7 7 5 5
2 7 7 7 6 5
3 10 10 10 11 12
4 10 10 10 11 2

n 256

5
5
12

TABLE 2
Number of iterations for Example 7.2.

Method n=8 I.n=16 n=32 1’n=’,64’ n=128

1 8 8 8 8 8
2 8 8 195 9 9
3 11 14 17 18
4 11 13 14 16 18

CH1 8 11 11 I 11 11
CH 2 9 10 10 10 10

n 256

10
20
"20
11
10

the assumptions of the global convergence Theorem 6.2. The starting vector chosen
is x (1,..., 1)T. The number of iterations needed by our algorithm is indicated in
Table 1 for several values of the dimension n. The methods CH 1 and CH 2 need the
same number of iterations as the methods 1 and 2, respectively, since the diagonal
entries of M are all equal to one, so that the corresponding characterizations of the
complementarity problem coincide.

EXAMPLE 7.2 (see Fathi [7]). n variable,

1 2 2 2
2 5 6 6

M= 2 6 9 10

2 6 9 4(n-1)+l

,q=(-1,...,-1)T.

This LCP(q,M) is a standard test problem too. Again, the complementary pivot
algorithm and the principal pivoting method are known to run in exponential time.
Moreover, some Newton-type algorithms are also known to have some difficulties
with this example; see, e.g., Harker and Pang [16] and Kanzow [19]. Its solution is
z* (1, 0,..., 0)T, y* (0, 1,..., 1)T. The matrix M of this example is positive
definite and therefore a P-matrix. Our numerical results obtained with the methods
1-4, CH 1, and CH 2 are summarized in Table 2. The starting vector chosen is the
same as in Example 7.1.

From Tables 1 and 2, we see that methods 1 and 2 as well as methods CH 1 and
CH 2 lead to better results than methods 3 and 4. This is not an unexpected behaviour
since methods 3 and 4 are based on the more nonlinear functions , from (3) and
(4), hence Newton’s method leads to more difficulties in solving the corresponding
nonlinear systems of equations F, (z) 0. In the following randomly generated
examples, we will therefore concentrate on these four methods.

EXAMPLE 7.3 (see Harker and Pang [16]). The matrix M is computed as follows:
let A, B E Rnx, and q, r E " be randomly generated such that aij, bij (-5, 5), qi

(-500,500), and (0.0, 0.3) and that B is skew-symmetric. Define M ATA +
B + diag(rl). Then, M is a P-matrix. For several values of n, 10 examples have been
generated in this way. The maximum, average, and minimum numbers of iterations
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Method

50

100

Max.
Avg.
Min.
Maxl
Avg.
Min.

150

200

Max.
Avg.
Min.
Max.
Avg,
Min.

TABLE 3
Number of iterations for Example 7.3.

1 2 CH 2
So s s So s
19.0 12.0 12.0 20.0 12.0 12.0 16.0 16.0
15.0 10.4 10.3 16.8 10.8 10.7 14.7 14.8
12.0 9.0 9.0 13.0 10.0 9.0 13.0 13.0
20.0 13.0 13.0 20.0 12.0 13.0 16.0 18.0
17.3 11.2 11.4 18.2 11.2 11.4 15.2 16.3
16.0 9.0 10.0 17.0 9.0 10.0 14.0 15.0
22.0 13.0 14.0 2210 13.0 14.0 18.0 21.0
18.6 11.4 11.6 19.6 11.4 11.6 16.4 18.2
17.0 11.0 11.0 18.0 11.0 11.0 16.0 16.0
22.0 14.0 15.0 21.0 14.0 15.0 18.0 19.0
18.9 11.7 11.8 19.6 12.0 12.1 16.5 18.1
17.0 11.0 11.0 19.0 11.0 11.0 14.0 16.0

Method
n

n=50

n 100

Max.
Avg.
Min.
Max.
Avg.
Min.

n= 150 Max.
Avg.
Min.

n 200 Max.
Avg.
Min.

TABLE 4
Number of iterations for Example 7.4.

So So
19.0 13.0 13.0 21.0 13.0 13.0 17.0 18.0
16.0 11.1 11.1 17.6 11.3 11.6 14.3 14.9
13.0 9.0 10.0 15.0 10.0 10.0 13.0 13.0
20.0 12.0 12.0 24.0 12.0 12.0 17.0 18.0
19.0 10.8 11.0 20.9 10.3 10.5 15.6 16.7
16.0 9.0 10.0 18.0 9.0 10.0 13.0 15.0
23.0 12.0 13.0 26.0 13.0 14.0 18.0 19.0
20.6 11.3 11.2 23.1 11.3 11.5 16.9 18.3
19.0 10.0 10.0 21.0 10.0 10.0 15.0 17.0
24.0 13.0 12.0 25.0 i3.0 13.0 19.0 20.0
21.1 11.4 11.2 23.0 11.6 11.9 17.2 18.4
18.0 10.0 10.0 21.0 10.0 10.0 17.0 18.0

needed by the algorithms are summarized in Table 3. In all test runs, x (0,..., 0)T
has been chosen as starting vector.

EXAMPLE 7.4 (see Harker and Pang [16] "hard examples"). In this example, M
is computed in the same way as in the previous example, and q E Nn is randomly
generated with entries qi E (-500, 0). Table 4 contains our numerical results, which
we have obtained using the starting vector x (0,..., 0)T.

EXAMPLE 7.5 (see Pardalos et al. [34]). This example is a P0-matrix LCP. The
matrix M, the vector q, as well as the starting point x are randomly generated. A
detailed description is given in Pardalos et al. [34]. We note that at least half of the
diagonal entries of M are zero, so that neither Chen and Harker’s method nor the
suggested modification are applicable to this example. Moreover, there are substantial
difficulties in solving this example for the potential reduction algorithm of Pardalos et
al. [34]. (Their algorithm needs hundreds of iterations in order to solve this problem.)
On the other hand, as is shown in Table 5, our algorithms do not have any problems
with this example.

We can summarize the above results as follows" All problems have been solved
using only a small number of iterations. The number of iterations needed is almost
independent of the problem dimension. Methods 1 and 2 lead to better results than
do methods 3 and 4, and it is difficult to decide which of these two methods is best,
although for most examples method 1 has a slightly better behaviour. In their un-
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TABLE 5
Number of iterations for Example 7.5.

n o , go :1
n 100 Max. 17.0 17.0 17.0 17.0 16.0

Avg. 14.8 10.7 8.3 16.5 13.7
Min. 14.0 9.0 6.0 15.0 12.0

n 200 Max. 19.0 12.0 13.0 19.0 15.0
Avg. 16.4 10.7 9.2 17.5 13.8
Min. 14.0 9.0 6.0 16.0 12.0

$2

20.0
14.2
12.0
21.0
16.1
13.0

scaled versions, these two algorithms, however, are inferior to both Chen and Harker’s
method CH 1 and its modification CH 2. On the other hand, simple diagonal scalings
of the original data lead to substantial improvement of the results obtained with the
methods 1 and 2; these methods are by far the most successful ones. Both scaling
techniques, $1 and $2, lead to similar results, so the slightly cheaper scaling $1 might
be preferable. We emphasize that we have not introduced the diagonal scaling in or-
der to improve our results. (In fact, there might be better scaling techniques, though
this is not a simple problem.) Instead the considerations of 4 show that it is more
natural to compare our algorithms with the one of Chen and Harker after rescaling
the original problem.

Finally, we note that in almost all iterations the full stepsize tk 1 has been
accepted. (In just 10 of the 820 test runs made for our numerical results we observed
a steplength less than 1; this happened 6 times in Example 7.2, 1 time in Example
7.3, and 3 times in Example 7.4.) This is not the case if the nonmonotone line search
rule is replaced by a monotone one. Moreover, it is very unlikely that a. practical
interior-point method for LCP(q, M) will almost always take a full step, since the
condition that all iterates have to stay in the positive orthant will usually truncate
the steplength. Taking the stepsize tk 1 very often (in a controlled way), however, is
now known to be very successful in combination with Newton-type methods; see, e.g.,
the highly promising and extensive numerical results reported by Grippo, Lampariello,
and Lucidi [13, 14] and Toint [38, 39]. Another advantage of our noninterior contin-
uation methods is the fact that we can start at an arbitrary vector (x, y0) E 2, in
particular, the very natural choice y0 Mxo + q is allowed even if y0 has nonpositive
or negative components. This contrasts favourably with interior-point methods.

8. Final remarks. In this paper, we have introduced some new continuation
methods for the solution of LCPs. As with interior-point methods, we try to follow
the central path; however, we also allow negative iterates. One of our methods is
closely related to a recently proposed method of Chen and Harker [2], but here we do
not need their assumption that all diagonal entries of M are positive.

There are several questions which remain to be answered: a theoretical justifica-
tion of the updating rule for the perturbation parameter # is missing. We also have
not given a local or global rate of convergence result. Moreover, it is currently not
known to the author whether or not the noninterior continuation methods have a
polynomial complexity bound. The numerical results of the previous section seem to
indicate that such a complexity bound exists since the number of iterations is almost
independent of the problem dimensions.

Of course, the main tools introduced in 2 are also applicable to (convex) con-
strained optimization problems and could lead to noninterior continuation methods
for, e.g., linear and quadratic programming problems. It would be interesting to com-
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pare these methods with standard interior-point methods as well as with the shifted
barrier method of Freund [12] and the modified barrier method of Polyak [35]. The
methods of Freund and Polyak also allow negative components of the iteration vectors
and are, in this respect, related to our algorithms.

For the LCP, we plan to compare the numerical behaviour of the noninterior
continuation methods suggested in this paper with some interior-point methods.
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Abstract. We describe a divide-and-conquer tridiagonalization approach for matrices with re-
peated eigenvalues. Our algorithm hinges on the fact that, under easily constructively verifiable
conditions, a symmetric matrix with band width b and k distinct eigenvalues must be block diagonal
with diagonal blocks of size at most bk. A slight modification of the usual orthogonal band-reduction
algorithm allows us to reveal this structure, which then leads to potential parallelism in the form
of independent diagonal blocks. Compared to the usual Householder reduction algorithm, the new
approach exhibits improved data locality, significantly more scope for parallelism, and the poten-
tial to reduce arithmetic complexity by close to 50% for matrices that have only two numerically
distinct eigenvalues. The actual improvement depends to a large extent on the number of distinct
eigenvalues and a good estimate thereof. However, at worst the algorithms behave like a succes-
sive band-reduction approach to tridiagonalization. Moreover, we provide a numerically reliable and
effective algorithm for computing the eigenvalue decomposition of a symmetric matrix with two nu-
merically distinct eigenvalues. Such matrices arise, for example, in invariant subspace decomposition
approaches to the symmetric eigenvalue problem.

Key words, tridiagonalization, eigenvalue decomposition, repeated eigenvalues
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1. Introduction. Let A be an n n symmetric matrix. Our goal is to compute
an orthogonal-tridiagonal decomposition of A, AQ QT, where Q is orthogonal and
T is tridiagonal. Reduction to tridiagonal form is a standard preprocessing step in
dense eigensolvers based on QR iteration, bisection, or Cuppen’s method [16]. The
conventional tridiagonalization procedure [16, p. 419] reduces A one column at a time
through Householder transformation at a cost of 0(4n3/3) flops for the reduction
of A, and an additional 0(4n3/3) flops if the orthogonal matrix is accumulated at
the same time. This algorithm mainly employs matrix-vector multiplications and
symmetric rank-one updates, which require more memory references than matrix-
matrix operations [9, 8, 14].

The block tridiagonalization algorithm in [5, 15] combines sets of p successive
symmetric rank-one updates into one symmetric rank-p update at the cost of O(2pn2)
extra flops. As a result, this algorithm exhibits improved data locality and hence is
likely to be preferable on cache-based architectures. This block algorithm has been
incorporated into the LAPACK library of portable linear algebra codes for high-
performance architectures [i, 2]. Parallel versions for distributed memory machines
of the standard algorithm and the block algorithm are described in [12] and [13],
respectively. A different approach to tridiagonalization is the so-called successive
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band-reduction (SBR) method, which completes the tridiagonal reduction through a
sequence of band reductions [10, 7]. This approach leads to algorithms that exhibit
an even greater degree of memory locality, among other desirable features.

In this paper we show that if the number k (say) of distinct eigenvalues of
symmetric matrix A is small, then there is considerable scope for filrther savings in
tridiagonalization algorithms. As will be demonstrated, A can be cheaply reduced
to a block diagonal banded form through a slightly modified SBR approach. The
final tridiagonal form is then achieved by applying the algorithm recursively on the
subblocks on the diagonal. Compared to the conventional approach, this approach
has the following advantages.

Improved data locality. The tridiagonalization process can employ mainly matrix-
matrix operations both in the reduction of A and in the update of the transformation
matrix Q (see also [10, 7]).

Enhanced scope for parallelism. In the traditional algorithm, the scope for the
exploitation of parallelism in the reduction of A is limited to the application of the
rank-one update (for the unblocked algorithm) or the rank-p update (for the blocked
algorithm), and the scope for parallelism decreases as subproblems become smaller. In
contrast, our algorithm generates independent subproblems during the reduction of A,
which can be worked on independently, and the number of independent subproblems
increases as the iteration proceeds. Thus, there is a shift from data parallelism (up-
dates of large matrices) to functional parallelism (several independent subproblems),
but at any stage, there is plenty of parallelism to exploit.

Reduced complexity. Depending on the number of distinct eigenvalues, we may
almost halve the number of floating-point operations. In addition, the need for data
movement is reduced.

One particular situation where repeated eigenvalues arise is in the context of in-
variant subspace methods for eigenvalue problems [3, 19, 6, 4], where a matrix with
only two distinct predetermined eigenvalues is generated either by repeated appli-
cation of incomplete beta functions [19] or the matrix sign function [4]. In exact
arithmetic, our tridiagonalization procedure would result in a block diagonal matrix
with diagonal blocks of order no larger than 2. Hence the eigenvalue decomposition
could be computed easily by independently diagonalizing the 2 2 blocks on the di-
agonal. In the presence of roundoff errors, the computed tridiagonal matrix may not
have this desirable structure. However, we can prove that such a tridiagonal matrix
can be diagonalized as reliably as with any other method by two "clean up sweeps,"
where each sweep solves at most n/2 independent 2 2 eigenvalue problems.

The paper is organized as follows. We show in 2 that, under certain easily
constructively verifiable conditions, a banded symmetric matrix with band width b
and k distinct eigenvalues is block diagonal with diagonal blocks of order at most bk.
In 3, we present a reduction algorithm to achieve the desired banded block diagonal
structure through a slight modification of the conventional band-reduction procedure.
This approach is then employed to develop a divide-and-conquer tridiagonalization
algorithm. An inexpensive algorithm for decoupling invariant subspaces of matrices
with eigenvalue clusters at 0 and 1 is given and verified in 4. Numerical experiments
with a Matlab implementation are reported in 5. Lastly, we summarize our results.

2. The structure of band matrices with repeated eigenvalues. A tridi-
agonal matrix whose off diagonal entries are all nonzero is called unreduced. It is
well known [18, p. 66] that an unreduced tridiagonal matrix does not have multiple
eigenvalues. Consequently, if an n n tridiagonal matrix has only k n distinct
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eigenvalues, it must be block diagonal, and the largest block cannot be larger than
k k. The generalization of this fact to banded matrices underpins the algorithm we
propose, yet it is not as straightforward as it might seem.

Assuming that A is an n n symmetric matrix, we define the th row-band-width
of A, denoted by band_row(i), as

(1) band_row(i) dem.x{i--jlj=iorj<iandaij =0}, l<_i_<n.

That is, band_row(i) is the distance of the first nonzero element in row i from the ith
diagonal element. Further, we say that A is nonincreasing in row-band-width from b
if

a(b, 1) 0 and band_row(i) _< band_row(/- 1), b + 1 < _< n.

In particular, a banded matrix that is all zero below the bth subdiagonal and all
nonzero on the bth subdiagonal is nonincreasing in row-band-width from b.

With these definitions, we can now prove the following theorem.
THEOREM 2.1. Let T be a symmetric matrix with k distinct eigenvalues. If T is

block diagonal, with each diagonal block nonincreasing in band width from at most b,
then the size of the largest block cannot exceed kb.

Proof. Assume that T has a diagonal block D of size p > kb. By assumption, D is
nonincreasing in band width from b; that is, D has p-b rows with their first nonzero
elements in different columns to the left of the diagonal. Thus, for any ,, rank(D-A/)
is not less than p-b.

On the other hand, since p > kb and D has at most k distinct eigenvalues, D has
an eigenvalue # with multiplicity greater than b. Hence, rank(D-p/) is less than p-b.
The contradiction verifies the result of the theorem.

The following example shows the necessity of the "nonincreasing band-width"
restriction in Theorem 2.1.. Let

# -u 0 0 00
QT= 0 0 0 0 )0 0 # 0 c 0 0

where u2 +#2 +c2 1, 2 +72 c2, and f12 +/2 +62 1. Then Q has orthonormal
columns and A-QQ3 is symmetric with only 0 and 1 as eigenvalues. In fact,

(3) A

x x x x 0 0 0 0
x x x x 0 0 0 0
x x x 0 0 x 0 0
x x 0 x 0 x 0 0
0 0 0 0 x 0 x x
0 0 x x 0 x 0 0
0 0 0 0 x 0 x
0 0 0 0 x 0 x x

We see that A is banded with semi-band-width b= 3, but it is not block diagonal with
blocks of size at most 2b x 2b 6 x 6 since the "nonincreasing band-width condition"
is violated by a(5, 2)=a(7, 4)-0.
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3. A divide-and-conquer tridiagonalization approach. The example in the
previous section showed that the standard Householder band-reduction algorithm will
not necessarily reveal the block diagonal structure. For example, if we had applied
the standard algorithm for reduction to band width 3 to the matrix of example (3),
the matrix would have remained unchanged. Fortunately, a minor modification of the
standard algorithm enforces nonincreasing row-band-width, and hence the prerequi-
sites of Theorem 2.1.

Let us consider the conventional reduction approach, where the matrix is reduced
one column at a time to semi-band-width b. In each reduction, the pivot row is always
b rows below the diagonal, no matter whether the reduction of the previous column
was skipped (i.e., the transformation was an identity) or not. For example, reducing
the matrix A in (3) to semi-band-width 3, row number 4 is the pivot row for the
reduction of the second column and, since a(4 8, 2)= 0, this reduction is skipped.
We then proceed to column 3, using row 5 as pivot row, and the row-band-width
increases. If instead we employ a Householder transformation acting on a(4:8, 3) to
eliminate a(5:8, 3), keeping row 4 as pivot row, we obtain

x
x
x___
x

0
O

x x x 0 0 0 O]
/x x x 0 0 0 0

x 0 x 0 0 0
x 0 x x 0 0 0
0 x x 0 0 0
0 0 0 0 x x x
0 0 0 0 x x x
0 0 0 0 x x x

Now A is decoupled into two diagonal blocks of size at most 6 6.
This example shows that nonincreasing band width can easily be obtained if we do

not increase the pivot row when the previous reduction is skipped. For computational
purposes, we define the row-band-width with respect to a threshold -"

(4) band_row(i, -) de__f m.ax{i- J lJ or j < and [[a(i’n, J)ll > }, 1 _< < n.
3

That is, given a tolerance threshold -, a column a(i’n) is considered numerically
zero if its 2-norm is at most -. The Matlab function bred in Figure 1 shows the
conventional band-reduction algorithm augmented with

(1) a threshold criterion for the generation of a Householder vector, and
(2) a modified pivot row selection strategy, which does not change the pivot row

if a transformation is skipped.
The subroutines gen_hh, pre_hh, post_hh, and sym_hh generate a Householder

vector and apply it from the left, right, and symmetrically, respectively. Note that for
simplicity the algorithm presented here does not exploit the symmetry of A. However,
if we wish to do so, we can have sym_hh work only with a triangular part of A and omit
the post_hh (prenhh) call when working only with the lower (upper) triangle. We also
note that all the algorithms presented in this paper are available via anonymous ftp
from the pub/prism directory at ftp. super, org.

If no transformations are skipped, the procedure is identical to the conventional
band-reduction procedure; otherwise, it may terminate earlier when the reduction
reaches the last column of the first diagonal block, and the problem is decoupled.
Since we drop pivot columns whose norm is O0-), the decomposition will be accurate
up to a residual of order -.
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function [A, blockl, O] bred( A, b, tau, Q );

Given a symmetric matrix A, a bandwidth b, and a threshold tau, bred

computes an orthogonal-banded matrix decomposition,
A_input * W W * A_output + O(tau)

where O(tau) denotes a matrix with a two-norm of order tau, and

W is an orthogonal matrix.
The output matrix A_output will be a 2x2 block diagonal matrix,
where the first diagonal block A_output (1:block1,1:block1)
is banded with bandwidth nonincreasing from b, and the second block

may be empty.

m, n size(A); if (m~=n) error(’nonsquare A’); end

piv_row min(b+1,n); current pivot row

if (piv_row n) block1 n; return; end;
for j l:n-b

15 Y. matrix is decoupled, stop
if (piv_row j), break, end

% row and column sets involved in current transformation

rows (piv_row n); cole (j+l:piv_row-l);
generate HH matrix to annihilate A(piv_row+l:n,j)

20 v, beta, gamma gen_hh( A( rows, j), tau

% update jth row and column of A
A( rows, j) zeros(size(rows’)); A(piv_row, j) gamma;
A( j, rows) zeros(size(rows)) A(j, piv_row) gamma;

if the reduction is not "skipped", perform symmetric
25 update of A, update Q if required, and shift the pivot row

if beta ~= O)
if( cole~= []

A(rows, cole)= pre_hh( beta, v, A(rows, cole) );
A(cols, rows) post_hh( beta, v, A(cols, rows) );

30 end
A( rows, rows symm_hh( beta, v, A(rows, rows) );
if( Q ~= [] ), Q(:, rows) post_hh( beta, v, Q(:, rows ); end

end Y. beta

Y. increase pivot row if A(piv_row,j) is not negligible
35 if (abs(A(j,piv_row)) > tau), piv_row piv_row + I; end

end % j-loop
if (j n b)

if (ply_row j+1), block1 ply_row I; else, block1 n; end
else

40 block1 piv_row-1;
end

return; end

FIG. 1. Nonincreasing row-band-width preserving band-reduction algorithm.



874 CHRISTIAN H. BISCHOF AND XIAOBAI SUN

For simplicity we omitted an optimization in Figure 1--if the reduction of the
first column of A results in a band width b, say, where b < b, due to the small size
of entries a(b + 1 n, 1), we can directly pursue a reduction of the trailing block to
nonincreasing band width/ in the same fashion as shown above.

If the parameter b is chosen such that kb < n, where k is the number of distinct
eigenvalues of A, Theorem 2.1 predicts a decoupling of the problem with the leading
block being of size no larger than kb. In particular, if b is chosen such that kb=n/2,
we can expect bred to generate two decoupled subproblems of about the same size.
We can then recursively divide the problem until the transformed matrix becomes
tridiagonal (i.e., b-1). Figure 2 is a serial implementation of tridiagonalization based
on this approach. Note that the various subproblems can be dealt with independently
and simultaneously. The subroutine blk_diag, which is called in tri_sbr, is shown
in Figure 3 and reduces a matrix to block diagonal form with a given band width.

For example, if we reduce a 12 12 matrix A with only two eigenvalues to band
width 3, then no diagonal block can be larger than 6 6. So, if a(4, 1), a(5,2),
and a(6, 3) are all nonzero after the reductions in the first three columns have been
completed, then the next three columns must already be reduced, and the (partially
reduced) matrix A is of the form

x x x x 0 0 0 0 0 0 0 0
x x x x x 0 0 0 0 0 0 0
x x x x x x 0 0 0 0 0 0
x x x x x x 0 0 0 0 0 0
0 x x x x x 0 0 0 0 0 0
0 0 x x x x 0 0 0 0 0 0
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x
0 0 0 0 0 0 x x x x x x

As a result, we do not need to perform the reductions that would otherwise
have occurred in columns 4 through 6. Compared to the conventional approach, the
complexity of the algorithm for the case k 2 is 0(0.55 n3) for the reduction of A and
O(1.25n3) for the update of Q, as compared to O(4n3/3) for both these operations
in the usual approach. The savings for Q are minor since updates at later stages
still involve vectors of length n, whereas only diagonal subblocks are affected in A.
In addition, we can work in parallel on independent problems. If the estimate k of
the number of distinct eigenvalues is inaccurate, the algorithm becomes either the
standard eigenvalue algorithm (for k > n/2) or the SBR tridiagonalization procedure
suggested in [10], but in either case, it will return numerically accurate results.

4. Invariant subspace splitting. The computational cost and the degree of
parallelism in the algorithm depend on k, the number of distinct eigenvalues. One
particularly intriguing case is matrices that have only two eigenvalues. It is intriguing
because they arise in eigensolvers based on variant subspace decompositions [3, 19, 4].
We may assume without loss of generality that the eigenvalues are at 1 and 0 (any
other two eigenvalues can be mapped to 0 and 1 by shifting and scaling). The following
corollary is a special case of Theorem 2.1.
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function [A, Q] tri_sbr( A, k, tau, Q

produces an orthogonal-tridiagonal decomposition of
a symmetric matrix A such that

5 A_old, *A_new + 0(tau)
where A_new is tridiagonal and is orthogonal.

The number k is a guess at the number of numerically distinct

eigenvalues of A.
I0

Matrices are successively reduced to smaller bandwidth in an

attempt to exploit the divide-and-conquer nature becoming
apparent in the successive bandreduction algorithm when the number
k chosen is a good guess at the actual number of numerically distinct

15 eigenvalues.

[m, n] size(A); if( m ~= n error(’non-square A’); end

b max(floor(n/(2*k)), 1 );

[A, block1, Q] bred( A, b, tau, Q );

if (blockl n) , If problem didn’t decouple, just reduce to
20 Y, tridiagonal form

[A,blkvec,Q] blk_diag(A,l,tau,Q); return;
else
if( b > I first subproblem is not tridiagonal yet

sub l:blockl; V eye(blockl);
25 A(sub,sub), V tri_sbr( A( sub, sub), k, tau, V

O(:,sub) =O(:,sub) * V;
end;
if( n-blockl > 9. Y, second subproblem is nontrivial

sub (blocki+l) :n; V eye(n-blockl)
30 A(sub, sub), V tri_sbr( A(sub, sub), k, tau, V );

Q(:,sub) (:,sub) * V;
end

end

return;
35 end

FIG. 2. Divide-and-conquer tridiagonalization.

COROLLARY 4.1. Let A be a matrix with two distinct eigenvalues, and let A
QTTQ be a tridiagonalization of A. Then T is block diagonal with diagonal blocks of
size at most 2 2.

Corollary 4.1 implies that one can determine the range space, T4(A), and the null
space, Af(A), in essence via a tridiagonalizing of A. Let AQ=QT be the orthogonal-
tridiagonal decomposition of A. For a 1 1 diagonal block T(j,j),

Q(:,j) en(A) if T(j, j) l, and Q(:,j)Af(A) if T(j, j) 0.
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function A, blkvec, 0 blk_diag( A, b, tau, 0

, Given a symmetric matrix A, a desired bandwidth b, and a threshold tau,
A, bvec, Q blk_diag( A, b, tau, {

5 produces an orthogonal-block-diagonal decomposition
A_input * W W * A_output + O(tau)

where O(tau) denotes a matrix whose norm is of order ray, and, W is an orthogonal matrix.

I0 A_output will be a block diagonal matrix with each block banded with

@ nonincreasing bandwidth b. The i-th diagonal block starts, at (blkvec (i), blkvec (i)).

If Q is not the empty matrix on input, Q is postmultiplied by W,
15 i.e.,, O_output _input W.

[m, n] size(A); if( m ~= n error( ’non-square A’); end

2O

j I; blkvec [];
while( j < n

blkvec [ blkvec j ]; rows j:n; cols j:n;
[A(rows, cols), dj, Q(:,cols) bred(A(rows,cols), b, tau, (:,cols)
j =j +dj;

end

return; end

FIG. 3. Reduction to block diagonal form.

Since the eigenvalues of A and T are the same, a 22 diagonal block T(j:j+I,j:j+I)
must have eigenvalues 0 and 1. Because the trace is the sum of the eigenvalues and
the off diagonal entry is nonzero, we have

T(j:j+I,j:j+I)= ( 1
-# 7

where # 0 and 0 < 7 < 1. Since

we conclude that

Q(" j:j+l)(# ETi(A) and

0 # 7
0 7 -#

One can see that the separation of the range and null subspaces of A, and in fact
its eigenvalue decomposition, can be effected by diagonMizing (potentially in parallel)
the 2 2 subproblems still occurring in the block tridiagonM decomposition.

In the presence of rounding errors, a computed tridiagonM matrix may not, how-
ever, exhibit the block structure we could expect from Corollary 4.1 due to pertur-
bations in the eigenvMues. That is, A(T) C {I-v, v] U [1 u, 1 + v]}, and a repeated
eigenvMue numerically manifests itself as an eigenvalue cluster.
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Example 4.2. The matrix

/ 1
el

el
e2
1 e3
e3 0

e4

e4

1 (n--1

where ej O(vf), has eigenvalues A(T) C {[-/],/]] U [1 -/], 1 +/]]} with/] O(e).
Hence, it seems as if for numerically relevant computations, we now would be

faced with computing the eigenvalue decomposition of a tridiagonal matrix. This is
not the case, however. By exploiting the special structure of the tridiagonal matrix,
we can diagonalize it in two "sweeps" which compute the eigendecomposition of all
"even" or "odd" 2 x 2 blocks on the diagonal (simultaneously), respectively. As we
show in what follows, the fill-ins generated by these sweeps are of the same order as
the perturbation in the eigenvMues and hence can be considered negligible.

LEMMA 4.3. Let T be a symmetric tridiagonal matrix with

A(T) C [-/],/]] U [1 -/], 1 +/]1,
defwhere/] max.x(T){min(l--ll, IAI)} << 1. Then IIT2-TII2

_ , where

(5) def /]2

Proof. Let Q be orthogonal and E diag(E1, E0) be diagonal, respectively, such
that

Then IlElle , and

T=Q( I+E1 )QTEo

The next lemma gives bounds on the elements of the Givens rotation we will
choose to diagonalize a 2 2 block and minimize the size of fill-ins.

LEMMA 4.4. Let G c s) be a Givens rotation that diagonalizes a 2 2
--8 C

symmetric matrix (1 Assume that without loss of generality > 0 and define02
a>_Oby

(6) (7
2 def 01 O2 /2

2 +

Then s and c can be chosen such that

and < c < 1o <_ I1 _<
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Proof. Let c cos(0) and s sin(). Since we want to eliminate the off diagonal
elements in G( al GTf .) we obtain

O (c2 s’)/3 + 2cs ( a2
If we choose

=/3cs(20)-(a2-al)sin(20)’2

(7) cos(20)
20-

with 0- as defined in (6), then

82 1 cos(20) /32
20"(0" %. [0 --0/21/2

and

1 + cos(20) 0- + la a2[/2
c2

2 20

as claimed.
In the following theorem we now show that, employing these Givens rotations,

we can limit the size of the fill-in entries generated when applying these rotations to
a tridiagonal matrix with eigenvalue clusters around 0 and 1.

THEOREM 4.5. Let T and be as in Lemma 4.3. Let G diag(I, c s) I) be
--8 c

the Givens rotation that diagonalizes one 2 2 diagonal block of T; i.e.,

where we assume that > 0 without loss of generality. If > x/ff and c and s are
chosen as suggested in Lemma 4.4, then

Proof. Comparing corresponding entries in T2 and T and invoking Lemma 4.3,
we know that there exist 5, _e, and eo, Il, I_el, leo[ < p, such that

Using these identities, we have

2 OZ10/2
2

(1 -(o1%-o2))%-
(_ + ) (/ +)
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and hence we can express a2 defined as in (6) as

2 + (/2 0/10/2

1(e2o) +_

Thus,

Now let " _> 1 be chosen such that/ > 7. Then

+ (Z_Z)

a2> 1 5(1)
2

Equations (11) together with s < Z imply that--;

Using (12) it is now easy to show that T > V implies < T and hence the result
of the theorem.

As a consequence of Theorem 4.5, we are then able to compute the eigenvalue
decomposition of a 2 x 2 diagonal block in a tridiagonal matrix T with eigenvalue
clusters at 0 and 1 such that the generated fill-in is negligible compared to the eigen-
value perturbation. Thus, the diagonMization of T can be done by two sweeps of
(potentially concurrent) 2 x 2 eigenvalue problems, as shown in Figure 4. In the first
sweep, we diagonalize an "odd-even" 2 x 2 problem if the off diagonal entry is not
too small, and set the fill entries to zero, or otherwise just zero the off diagonal entry.
In the second sweep, we diagonMize the "even-odd" blocks. Since no more rotations
follow, there is no need to zero out fill-in entries.

Theorem 4.5 shows that the Frobenius norm of the fill-in matrix introduced by the
algorithm rr_d+/-ag shown in Figure 4 is bounded by 3v/, which is of the same order
as the perturbation in eigenvalues. The subroutine d+/-ag2, which is not shown here,
computes the diagonalizing rotations as outlined in Lemma 4.4. Hence, Algorithm
rr_d+/-ag is as numerically reliable as any other approach for diagonalizing T, albeit
much cheaper due to its exploitation of the special structure of T.

5. Numerical experiments. In this section we report on some numerical ex-
periments with the algorithms presented in this paper. All experiments were per-
forned with Matlab Version 4.2a on a Sun Sparcstation iPX. For the reader wishing
to experiment on his or her own, the Matlab files employed to generate these results
can be retrieved via anonymous ftp from the pub/prism directory at ftp. super, org.

First, we apply the band-reduction algorithm bred of Figure 1 recursively to the
trailing subblock of a 200 200 matrix with two eigenvalue clusters of size 50, each
at A {-1,-2, 0, 1}. The radius of each cluster is e 1.0e3, where e is the machine
precision. The drop threshold tau in bred is set to x/ e 1.0e3, and at each step the
band width is chosen so as to decouple the problem in the middle. The succession
of matrices generated is shown in Figure 5. The caption of each picture shows the
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function [Q, D] rr_diag( A, Q, tau. Given a tridiagonal matrix A with eigenvalues 1 and O, with

lambda(A) contained in [1-tau, l+tau] or [-tau,tau]
5 . rr_diag computes an approximate eigendecomposition

D=Q’ *A*Q. where
@ D Q’. A * _Frobenius = sqrt(T*n),tau.(l+tau)

[m,n] size(A) if( m~=n error( ’non-square A’) end
I0 drop_threshold sqrt (7)*tau*(l+tau)

15

2O

for j l:2:floor(n/2),2 % diagonalize all (odd-even)
k j:j+1; % diagonal 2x2 matrices

if (abs(A(j+l,j)) > drop_threshold)
[G A(k,k)] diag2(A(k,k) );
if( j+2 <= n
A(j+2,k) A(j+2,k)*G; A(k,j+2) G’,A(k,j+2);
A(j+2,j) O; A(j,j+2) O; % zero out negligible fill-ins

end
if( j-I >= i

A(j-l,k) A(j-i,k),G; A(k,j-i) G’,A(k,j-i);
A(j-I,j+I) O; A(j+I,j-I) O;

end
Q(:,k) (:, k),G;

end
25 end

for j 2:2:floor((n-1)/2)*2
k j:j+l;

% diagonalize all (even-odd)
% diagonal 2x2 matrices

if (abs(A(j+l,j)) > drop_threshold)
[G A(k,k)] diag2(A(k,k) );

30 if( j+2 <= n
A(j+2,k) A(j+2,k)*G; A(k,j+2) G’,A(k,j+2);

% no more need to zero fill-ins

end
if( j-1 >= i

35 A(j-l,k) A(j-I,k)*G; A(k,j-l) G’,A(k,j-I);
end
Q(:,k) Q(:, k),G;

end
end

40 D diag(diag(A))
return; end

FIG. 4. Diagonalization of a tridiagonal matrix with eigenvalue clusters at 0 and 1.

current matrix size being worked on and the band width to which it is to be reduced.
At each step, we compute the residual

We observe that 5 7.2e-13, which, given a machine precision e 2.2e-16, is consis-
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Fc. 5. Band .reduction applied to trailing subblock of a 200 200 matrix with four distinct
eigenvalue clusters.

tent with our theory.
The same experiment, employing a ,natrix with 100 eigenvalues at 0 and 1 each

and using the same eigenvalue perturbation and drop threshold, is shown in Figure 6.
Note that it is suftEcient to reduce the matrix to half th.e band width chosen in Figure 5
to achieve decoupling. We observe that (5 2.7e-ta. We also note that in both cases,
the first, third, and fourth splits occurred at row (and column) 100, 176, and 1.88,
respectively. The second split occurred at row 152 for Figure 5 and at row 150 for
Figure 6.

T_o test the behavior of our rank-revealing tridiagonalization (RRDG), we compare
it with the standard eigenvalue decomposition (EIG) and the QR factorization with
cohlmn pivoting (QR); the results are presented in Table 1 and Table 2. Our test
matrices are

1. tridiagonal matrices with eigenvalue clusters of radius p generated by insert-
ing random off diagonal perturbations of the order x/ in the matrix shown
in Example 4.2, and
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First Divide: 200, 50 Second Divide: 100, 25
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FIG. 6. Band reduction applied to trailing szbblock of a 200 200 matrix with two distinct
eigenvalue clusters.

2. matrices generated by symmetrically multiplying the matrices from
Example 4.2 with orthogonal matrices generated via the QR factorization
of a random matrix.

In the first case, we call rr_diag, listed in Figure 4. In the second case, we precede
the call to rr_diag by a call to tri_sbr, as shown in Figure 2. The drop threshold for
the divide-and-conquer tridiagonalization is set to x/p e, which is the same threshold
as that employed in the two final diagonalization sweeps..For each of p 1, 10,100,
we run 50 test cases each with matrix sizes 125, 250, and 375. RRDG and EIG both
compute an eigenvalue deco.mposition QrAQ D with D diagonal. We compute
/) d__f round(D), i.e., round, each diagonal entry to the nearest integer, and we report
both the relative eigenvalue residual IIQA [/)QII/x/ (in Table 1) as well as the
relative orthogonality residual IIQQ- IIl/x/ (in Table 2). Note th.at /2 is an
estimate of IIAII. In the case of the QR factorization with pivoting, which, computes
AP QR for a permutation matrix P and an upper triangular matrix R, we compute
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TABLE 1
Relative residual in subspace splitting.

Tridiagonal Matrices

RRDGmax EIGmax QRmax

5.3e--16
5.0e--16
4.9e--16

1.6e--15
1.6e--15
1.5e--15

1.7e--15
3.8e--15
5.6e--15

p=10
3.5e--15
3.3e--15
3.4e--15

4.2e--15
4.9e--15
4.5e--15

p= 100

2.2e--15
5.1e--15
4.3e-15

3.3e--14
3.2e--14
3.2e--14

p--
3.3e-13
3.2e--13
3.2e--13

3.3e--14 2.7e--15
32e--14 6.8e--15
4.4e--14 6.6e--15

1500
’3.3e--13
3.2e--13
3.2e-13

2.5e--15
4.1e--15
6.2e--15

Full Matrices

n RRDGmax EIGmax’ QRmax
p=l

125 5.3e--14 1.7e’--’14 1.4e’14
250 1.5e--13 3.3e--14 3.7e--14
375 2.4e--14 3.8e--14 5.5e--14

’p i0
1.25 5.0e--15 6.0e--15 1.6e--14
250 5.5e--15 3.0e--14 4.0e--14
375 6.1e--15 4.1e--14 4.8e--14

p-- 100
125 4.6e--14 3.5e’-- 14 ii4e--’ii
250 4.5e--14 5.2e--14 3.9e--14
375 4.2e--14 3.2e--14 4.9e--14

p i000
125 4.6e--13 3.5e--13 1.6e--14
250 4.4e--13 3.4e--13 3.6e--14
375 4.2e--13 3.2e--13 4.2e--14

TABLE 2
Relative residual in orthogonality.

Tridiagonal Matrices Full Matrices

RRDGmax EIGmax QRmax
p=l

2.3e--16’ 1.2e--15
2.2e--16 1.3e--15
2.1e--16 1.2e--15

p=10
3.oe 16 2.8e-15
2.8e-16 3.0e-15
2.8e-16 2.8e-15

p= 100
3.4e-16 1.1e-14
3.2e-16 2.0e-14
3.1e-16 1.9e-14

p ’-- iooo

l.le--15
1.3e--15
1.3e--15

l.le--15
1.4e--15
1.6e--15

1.3e--15
1.4e--15
1.7e--15

3.2e--16 1.0e--14 1.2e’i5
3.1e--16 2.3e--14 1.4e--15
3.2e--16 3.3e--14 1.6e--15

n

125
250
375

125
250
375

125
250
375

25O
375

aRDGmax EIGmax QRmax

2.1e--15
3.0e--15
3.6e--15

p
1.2e--14
2.4e--14
2.7e--14

p--10

1.7ei5
2.4e--15
2.8e--15

1.4e-- 15
1.9e--15
3.4e--15

l.le--14
2.1e--14
2.9e--14

1.7e--15
2.3e--15
2.9e--15

p= i00
1.4e-15 1.1e-14 1.7e--15
1.9e-15 2.2e-14 2.4e-15
2.3e-15 2.6e-14 2.9e-15

p 1000
1.4e-15 1.3e’-14
1.9e-15 2.4e-14
2.3e-15 3.3e-14

1.8e--15
2.4e--15
2.9e--15

the rank

def
r max Ir.[ > -VYp e

and de2 (T , A * Q. We then report

IlIA(l , 1" ’)IIF -IIAIIFIIx/I2,

which should be small since Q(1 r, :) is a basis for the range space of A. For each
case, we report the worst residual.

We see that the divide-and-conquer tridiagonalization, followed by the two clean
up sweeps over the resulting tridiagonal matrix, performs just as well as a full-fledged
eigenvalue decomposition. In both cases, the residual in the subspace splitting is of
O(pe), as expected. The residual for QR factorization does not include the perturba-
tion at the eigenvalue 1 as the other two approaches do and therefore is smaller in all
cases. In any case, the computed orthogonal matrices are orthogonal up to machine
precision. The Q computed by the e+/-g function in Matlab is slightly less orthogonal
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since eig involves more transformations and as a result accumulates more rounding
errors. Note that all three approaches are worse for a full matrix in the case p I.
This is due to the fact that the roundoff errors in the orthogonal reductions are of the
same order of machine precision. When p is bigger, the roundoff errors are dominated
by the perturbation in the eigenvalues, and hence RRDG and EIG behave about the
same for tridiagonal and full matrices.

6. Conclusions. This paper introduced an algorithm for reducing a symmet-
ric matrix with repeated eigenvalues to tridiagonal form. The algorithm progresses
through a series of band reductions, each band-reduction stage forcing a decoupling
of the band matrix into independent subblocks. Compared to the usual Householder
tridiagonalization procedure, this approach can save up to 50% of the floating-point
operations. We also developed a robust and inexpensive numerical procedure for di-
agonalizing the resulting tridiagonal matrix in the case where the matrix has only two
eigenvalue clusters around 0 and 1. This case arises in eigenvalue decomposition algo-
rithms based on invariant subspace approaches. Taken together, these two algorithms
allow for a very efficient diagonalization of such matrices.

The algorithm can be generalized immediately to the reduction of unsymmetric
matrices to Hessenberg form. The same irreducibility argument underlying Theo-
rem 2.1 goes through for Hessenberg matrices. We also note that in exact arithmetic,
conjugate transposed eigenvalue pairs would end up in the same block. However,
since one triangle of a Hessenberg matrix is still full, the potential for computational
savings is greatly reduced.

We mention that, apart from its divide-and-conquer nature and the resulting po-
tential for parallelism, as well as its reduced operation count, our divide-and-conquer
algorithm has another attractive feature. Since our algorithm, at least in the early
stages, reduces matrices to banded form with a relatively wide band, it is easy to
block the Householder transformations using the WY representation [11] or the com-
pact W representation [20], as has been described, for example, in [17]. In this
fashion, one can easily capitalize on the favorable memory transfer characteristics of
block algorithms.
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AN APPROXIMATE MINIMUM DEGREE ORDERING ALGORITHM*
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Abstract. An approximate minimum degree (AMD) ordering algorithm for preordering a sym-
metric sparse matrix prior to numerical factorization is presented. We use techniques based on the
quotient graph for matrix factorization that allow us to obtain computationally cheap bounds for
the minimum degree. We show that these bounds are often equal to the actual degree. The re-
sulting algorithm is typically much faster than previous minimum degree ordering algorithms and
produces results that are comparable in quality with the best orderings from other minimum degree
algorithms.

Key words, approximate minimum degree ordering algorithm, quotient graph, sparse matrices,
graph algorithms, ordering algorithms
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1. Introduction. When solving large sparse symmetric linear systems of the
form Ax b, it is common to precede the numerical factorization by a symmetric
reordering. This reordering is chosen so that pivoting down the diagonal in order on
the resulting permuted matrix PAPT LLT produces much less fill-in and work than
computing the factors of A by pivoting down the diagonal in the original order. This
reordering is computed using only information on the matrix structure without taking
account of numerical values and so may not be stable for general matrices. However,
if the matrix A is positive definite [21], a Cholesky factorization can safely be used.
This technique of preceding the numerical factorization with a symbolic analysis can
also be extended to unsymmetric systems, although the numerical factorization phase
must allow for subsequent numerical pivoting [1, 2, 16]. The goal of the preordering
is to find a permutation matrix P so that the subsequent factorization has the least
fill-in. Unfortunately, this problem is NP-complete [31], so heuristics are used.

The minimum degree ordering algorithm is one of the most widely used heuristics,
since it produces factors with relatively low fill-in on a wide range of matrices. Because
of this, the algorithm has received much attention over the past three decades. The
algorithm is a symmetric analogue of Markowitz’s method [26] and was first proposed
by Tinney and Walker [30] as algorithm $2. Rose [27, 28] developed a graph theo-
retical model of Tinney and Walker’s algorithm and renamed it the minimum degree
algorithm, since it performs its pivot selection by choosing from a graph a node of
minimum degree. Later implementations have dramatically improved the time and
memory requirements of Tinney and Walker’s method, while maintaining the basic
idea of selecting a node or set of nodes of minimum degree. These improvements have
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reduced the memory complexity so that the algorithm can operate within the storage
of the original matrix, and have reduced the .amount of work needed to keep track of
the degrees of nodes in tile graph (which is the most computationally intensive part
of the algorithm). This work includes that of Duff, Erisman, and Reid [10]; Duff and
Reid [13, 14, 15]; George and McIntyre [23]; Eisenstat, et al. [17]; Eisenstat, Schultz,
and Shernan [18]; George and Liu [19]-[22]; and Liu [25]. More recently, several
researchers have relaxed this heuristic by computing upper bounds on the degrees,
rather than the exact degrees, and selecting a node of minimum upper bound on the
degree. This work includes that of Gilbert, Moler, and Schreiber [24] and Davis and
Duff [8, 7]. Davis and Duff use degree bounds in the unsymmetric-pattern multifrontal
method (UMFPACK), an unsymmetric Markowitz-style algorithm. In this paper, we
describe an approxim.ate minimum degree ordering algorithm based on the symmetric
analogue of the degree bounds used in UMFPACK.

Section 2 presents the original minimum degree algorithm of Tinney and Walker
in the context of the graph model of Rose. Section 3 discusses the quotient graph
(or element graph) model and the use of this model to reduce the time taken by
the algorithm. In this context, we present our notation for the quotient graph and
present a small example matrix and its graphs. We then use the notation to describe
our approximate degree bounds in 4. The approximate minimum degree (AMD)
algorithm and its time complexity are presented in 5. In 6, we first analyse the
perforInance and accuracy of our approximate degree bounds on a set of test matrices
from a wide range of disciplines. The AMD algorithm is then compared with other
established codes that compute minimum degree orderings.

Throughout this paper, we will use the superscript k to denote a graph, set, or
other structure obtained after the first k pivots have been chosen and eliminated. For
simplicity, we will drop the superscript when the context is clear.

2. Elimination graphs. Tile nonzero pattern of a symmetric n-by-n matrix A
can be represented by a graph GO (V, E), with nodes V {1,..., n} and edges
E. An edge (i, j)is in E if and only if ay 0 and - j. Since A is symmetric, GO

is undirected.
The elimination graph G (V, Ek) describes the nonzero pattern of the sub-

matrix still to be factorized after the first k pivots have been chosen and eliminated.
It is undirected, since the matrix remains symmetric as it is factorized. At step k, the
graph G depends on G- and the selection of the kth pivot. To find G, the kth
pivot node p is selected from V- Edges are added to Ek- to make the nodes adja-
cent to p in G- a clique (a fully connected subgraph). This addition of edges (fill-in)
means that we cannot know the storage requirements in advance. The edges added
correspond to fill-in caused by the kth step of factorization. A fill-in is a nonzero
entry Lij, where (pApT)ia is zero. The pivot node p and its incident edges are then
removed from the graph G-* to yield the graph G. Let Adja (i) denote the set of
nodes adjacent to in the graph G. When the kth pivot is eliminated, the graph G
is given by

and

E (E-1 U (Adj- (p) x AdjG_I (p))) ffl (Vk Vk).
The minimum degree algorithm selects node p as the kth pivot such that the

degree of p, tp -= IAdja_ (P)I, is minimum (where [... denotes tile size of a set or
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the number of nonzeros in a matrix, depending on the context). The minimum degree
algorithm is a nonoptimal greedy heuristic for reducing the number of new edges
(fill-ins) introduced during the factorization. We have already noted that the optimal
solution is NP-complete [31]. By minimizing the degree, the algorithm minimizes the
upper bound on the fill-in caused by the kth pivot. Selecting p as pivot creates at
most (tp tp)/2 new edges in G.

3. Quotient graphs. In contrast to the elimination graph, the quotient graph
models the factorization of A using an amount of storage that never exceeds the
storage for the original graph Go [21]. The quotient graph is also referred to as the
generalized element model [13, 14, 15, 29]. An important component of a quotient
graph is a clique. It is a particularly economic structure since a clique is represented
by a list of its members rather than by a list of all the edges in the clique. Following
the generalized element model, we refer to nodes removed from the elimination graph
as elements (George and Lit refer to them as eliminated nodes). We use the term
variable to refer to uneliminated nodes.

The quotient graph G (V,, E,) implicitly represents the elimination

graph Gk, where 0_ Go, V0_ V, =, E0_ E, andS- . For clarity, we
drop the superscript k in the following. The nodes in G consist of variables (the set
V) and elements (the set V). The edges are divided into two sets" edges between
variables E C_ V x V and between variables and elements E C_ V x V. Edges between
elements are not required since we could generate the elimination graph from the

quotient graph without them. The sets 0 and 0 are empty.
We use the following set notation (,4, g, and/2) to describe the quotient graph

model and our approximate degree bounds. Let Ai be the set of variables adjacent to
variable in 6, and let gi be the set of elements adjacent to variable in 6 (we refer
to gi as element list i). That is, if is a variable in V, then

Ai {j (i,j) E} c_ V,

Adj (i) 4 U g c_ V U V.

The set 4i refers to a subset of the nonzero entries in row of the original matrix A
(thus the notation 4). That is, 4 {j" aij -- 0}, and 4 C_ al-1 for 1 _< k <_ n.
Let e denote the set of variables adjacent to element e in . That is, if e is an
element in V, then we define

e =_ Adj (e) {i (i, e) E} c_ V.

The edges E and E in the quotient graph are represented using the sets 4i and gi for
each variable in and the sets L; for each element in . We will use 4, g, and to
denote three sets containing all 4i, $i, and Z;, respectively, for all variables and all
elements e. George and Lit [21.] show that the quotient graph takes no more storage
than the original graph (1 4 1 + / Ic l <_ I 1 for all k).

The quotient graph and the elimination graph G are closely related. If i is a
variable in G, it is also a variable in , and

(3.1) Adja(i)-(4.it2 U ) \{i},
eEg
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where the "\" is the standard set subtraction operator.
When variable p is selected as the kth pivot, element p is formed (variable p is

removed from V and added to V). The set p Adjc (p) is found using equation (3.1).
The set/:p represents a permuted nonzero pattern of the kth column of L (thus the
notation :). If E :p, where p is the kth pivot, and variable will become the ruth
pivot (for some m > k), then the entry Link will be nonzero.

Equation (3.1) implies that :e \ {P} C_/:p for all elements e adjacent to variable
p. This means that all variables adjacent to an element e E Sp are adjacent to the
element p and these elements e Sp are no longer needed. They are absorbed into the
new element p and deleted [15], and reference to them is replaced by reference to the
new element p. The new element p is added to the element lists $ for all variables i
adjacent to element p. Absorbed elements e Sp are removed from all element lists.

The sets 4p and Sp, and :e for all e in Sp, are deleted. Finally, any entry j in 4,
where both i and j are in :p, is redundant and is deleted. The set Jti is thus disjoint
with any set :e for e $i. In other words, jtk is the pattern of those entries in row
of A that are not modified by steps 1 through k of the Cholesky factorization of
PAPT. The net result is that the new graph takes the same, or less, storage than
before the kth pivot was selected.

The following equations summarize how the sets :, $, and 4 change when pivot
p is chosen and eliminated. The new element p is added, old elements are absorbed,
and redundant entries are deleted:

3.1. Quotient graph example. We illustrate the sequence of elimination
graphs and quotient graphs of a 10-by-10 sparse matrix in Figures 3.1 and 3.2. The
example is ordered so that a minimum degree algorithm recommends pivoting down
the diagonal in the natural order (that is, the permutation matrix is the identity). In
Figures 3.1 and 3.2, variables and elements are shown as thin-lined and heavy-lined
circles, respectively. In the matrices in these figures, diagonal entries are numbered
and unmodified original nonzero entries (entries in A) are shown as solid squares.
The solid squares in row form the set jt. The variables in current unabsorbed
elements (sets ) are indicated by solid circles in the columns of L corresponding to
the unabsorbed elements. The solid circles in row i form the set $. Entries that do
not correspond to edges in the quotient graph are shown as an . Figure 3.1 shows
the elimination graph, quotient graph, and the matrix prior to elimination (in the left
column) and after the first three steps (from left to right). Figure 3.2 continues the
example for the next four steps.

Consider the transformation of the graph 2 to the graph G3. Variable 3 is
selected as pivot. We have 3 .43 {5, 6, 7} (a simple case of equation (3.1)). The
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2 3

(a) Elimination graph

(b) Quotient graph

(c) Factors and active submatrix

FI(. 3.1. Elimination graph, quotient graph, and matrix for the first three steps.

new element 3 represents the pairwise adjacency of variables 5, 6, and 7. The explicit
edge (5, 7) is now redundant and is deleted from A5 and

Also consider the transformation of the graph 4 to the graph 5. Variable 5 is
selected as pivot. The set .45 is empty and E5 {2, 3}. Following equation (3.1),

(O v {5, , 9} v {5, 6, 7}) \ {5}
{6, 7, 9},

which is the pattern of column 5 of L (excluding the diagonal). Since the new element
5 implies that variables 6, 7, and 9 are pairwise adjacent, elements 2 and 3 do not
add any information to the graph. They are removed, having been "absorbed" into
element 5. Additionally, the edge (7, 9) is redundant and is removed from A7 nd
Ag. In 64 we have

A6 =0, 6 {2,3,4},
,47 {9, 10}, E7 {3, 4},
A {7, s, 0}, {e}.
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G4 G 6 G7

(a) Elimination graph

5 6

(b) Quotient graph

(c) Factors and active submatrix

FIG. 3.2. Elimination graph, quotient graph, and matrix for steps 4 to 7.

After these transformations, we have in 5,

O, & {4, 5},
{10}, vet {4, 5},
{8, 10}, $9 {5},

and the new element in 5,

5 {6, 7, 9}.

3.2. Indistinguishable variables and external degree. Two variables i and
j are indistinguishable in G if Adja(i to {i} AdjG(j to {j}. They will have the
same degree until one is selected as pivot. If is selected, then j can be selected
next without causing any additional fill-in. Selecting and j together is called mass
elimination [23]. Variables and j are replaced in by a supervariable containing
both and j, labeled by its principal variable (i, say) [13, 14, 15]. Variables that
are not supervariables are called simple variables. In practice, new supervariables are
constructed at step k only if both i and j are in p (where p is the pivot selected at
step k). In addition, rather than checking the graph G for indistinguishability, we use
the quotient graph G so that two variables and j are found to be indistinguishable
if Adj6(i)U {i} Adj6(j)tO {j}. This comparison is faster than determining if
two variables are indistinguishable in G, but may miss some identifications because,
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although indistinguishability in implies indistinguishability in G, the reverse is not
true.

We denote the set of simple variables in the supervariable with principal variable
as and define {i} if is a simple variable. When p is selected as pivot at

the kth step, all variables in p are eliminated. The use of supervariables greatly
reduces the number of degree computations performed, which is the most costly part
of the algorithm. Nonprincipal variables and their incident edges are removed from the
quotient graph data structure when they are detected. The set notation ,4 and/: refers
either to a set of supervariables or to the variables represented by the supervariables,
depending on the context. In degree computations and when used in representing
elimination graphs, the sets refer to variables; otherwise they refer to supervariables.

In Figure 3.2, detected supervariables are circled by dashed lines. Nonprincipal
variables are left inside the dashed supervariables. These are, however, removed from
the quotient graph. The last quotient graph in Figure 3.2 represents the selection of
pivots 7, 8, and 9, and thus the right column of the figure depicts G7, G9, and the
matrix after the ninth pivot step.

The external degree d t -Ill + 1 of a principal variable is

(3.2) d --IAdj(i) \ il I.A \ i[ +

since the set 4i is disjoint from any set for e e gi. At most, (d2- di)/2 fill-ins
occur if all variables in are selected as pivots. We refer to ti as the true degree
of variable i. Selecting the pivot with minimum external degree tends to produce a
better ordering than selecting the pivot with minimum true degree [25] (also see 6.2).

3.3. Quotient-graph-based minimum degree algorithm. A minimum de-
gree algorithm based on the quotient graph is shown in Algorithm 1. It includes
element absorption, mass elimination, supervariables, and external degrees. Super-
variable detection is simplified by computing a hash function on each variable, so that
not all pairs of variables need be compared [3]. Algorithm 1 does not include two
important features of Liu’s multiple minimum degree (MMD) algorithm: incomplete
update [17, 18] and multiple elimination [25]. With multiple elimination, an indepen-
dent set of pivots with minimum degree is selected before any degrees are updated. If
a variable is adjacent to two or more pivot elements, its degree is computed only once.
A variable j is outmatched if Adjc(i C_ Adjc(j). With incomplete degree update,
the degree update of the outmatched variable j is avoided until variable i is selected
as pivot. These two features further reduce the amount of work needed for the degree
computation in MMD. We will discuss their relationship to the AMD algorithm in
the next section.

The time taken to compute d using equation (3.2) by a quotient-graph-based
minimum degree algorithm is

(3.3)
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ALGORITHM 1 (minimum degree algorithm, based on quotient graph).
V- {1...n}

for i 1 to n do
A {j aO O and j}
&=O

i-
end for
k-1
while k < n do

mass elimination:
select variable p E V that minimizes dp

for each E p do
remove redundant entries:

element absorption:
& (& \ )u D}
compute external degree:, I \ 1 + I(Uo z:) \ i

end for
supervariable detection, pairs found via hash function:
for each pair and j p do

if and j are indistinguishable then
remove the supervariable j:
i=iUj
d d- IJl
V=V\{j}

end if
end for
convert variable p to element p"

v (v u (p}) \ s
v v \ D}
A=k k +

end while

which is (IAdja(i)l) if 11 variables are simple. This degree computation is the
most costly part of the minimum degree algorithm. When supervariables are present,
in the best case the time taken is proportional to the degree of the variable in the

Asymptotic complexity notation is defined in [6]. We write f(n) O(g(n)) if there exist
positive constants cl, c2, and no such that 0 _< clg(n) <_ f(n)

_
c2g(n) for all n > n0. Similarly,

f(n) f(g(n)) if there exist positive constants c and no such that 0 _< cg(n) _< f(n) for all n ) no,
and f(n) O(g(n)) if there exist positive constants c and no" such that 0

_
f(n) <_ cg(n) for all

n)no.
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ALGORITHM 2 (computation of Ie \ pl for all e E V).
assume w(k) < 0 for k 1,...,n
for each supervariable E p do

for each element e $i do
if (w(e) < 0) then w(e) I1
w(e) w(e) -lil

end for
end for

"compressed" elimination graph, where all nonprincipal variables and their incident
edges are removed.

4. Approximate degree. Having now discussed the data structures and the
standard minimum degree implementations, we now consider our approximation for
the minimum degree and indicate its lower complexity.

We assume that p is the kth pivot and that we compute the bounds only for
supervariables p. Rather than computing the exact external degree d, our AMD
algorithm computes an upper bound [8, 7],

--k-I

d min di + Ip \ i]

--k-1
The first two terms (n- k, the size of the active submatrix, and d + [p \ il,
the worst case fill-in) are usually not as tight as the third term in equation (4.1).
Algorithm 2 computes I \ pl for all elements e in the entire quotient graph. The
set splits into two disjoint subsets: the external subset \ p and the internal
subset N p. If Algorithm 2 scans element e, the term w(e) is initialized to I1
and then decremented once for each variable in the internal subset p, and, at
the end of Algorithm 2, we have w(e) Iel I N1 I \ 1. If Algorithm 2
does not scan element e, the term w(e) is less than zero. Combining these two cases,
we obtain

w(e) ifw(e) } for allCe .(4.2) I/:e \ :pl- i:e otherwise

Algorithm 2 is followed by a second loop to compute our upper bound degree d
for each supervariable p, using equations (4.1) and (4.2). The total time for
Algorithm 2 is

The second loop to compute the upper bound degree takes time

The total asymptotic time is thus given by expression (4.3).
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Multiple elimination [25] improves the minimum degree algorithm by updating the
degree of a variable only once for each set of independent pivots. Incomplete degree
update [17, 18] skips the degree update of outmatched variables. We cannot take full
advantage of the incomplete degree update since it avoids the degree update for some
supervariables adjacent to the pivot element. With our technique (Algorithm 2), we
must scan the element lists for all supervariables in p. If the degree update of one
of the supervariables is to be skipped, its element list must still be scanned so that the
external subset terms can be computed for the degree update of other supervariables
in p. The only advantage of multiple elimination or incomplete degree update would
be to skip the second loop that computes the upper bound degree for outmatched
variables or supervariables for which the degree has already been computed.

If the total time in expression (4.3) is amortized across the computation of all
supervariables E p, then the time taken to compute di is

which is O([Adj(i)l) if all variables are simple. Computing our bound takes time
proportional to the degree of the variable in the quotient graph . This is much faster
than the time taken to compute the exact external degree (see expression (3.3)).

4.1. Accuracy of our approximate degrees. Gilbert, Moler, and Schreiber
[24] also use approximate external degrees that they can compute in the same time

as our degree bound di. In our notation, their bound di is

eEg

Since many pivotal variables are adjacen o wo or fewer elements when selected,
Ashcraff, Eisensat, and Lucas [4] have suggested a combination of d and d,

{ 2,
oherwise.

Computing d akes he same ime as d or d, except when [g[ 2. In this case, i
+ IC [) compu  whereas computing d or d akes O(M])

ime. In he Yale sparse matrix package [17] the ]C Cv] erm for he g {e,p}
case is computed by scanning once. I is then used o compute d for all v
for which {e,p}. This echnique can also be used o compute d, and hus he

compu  is + IC I) and no + IC l),
TheorEM .1. The relationship between external dgree nd he three @proxi-

mate degree bounds now follows. The equality d d d d holds when ]g 1.

The inequality d d d d holds when ]] 2. Finally, the inequality
d d d d holds when g[ > 2. Consequently, the inequality d d d d
holds for all values of Ig[.

Proof. The bound d is equal o he exac degr when variable is adjacen o a
mos one elemen The accuracy of he d bound is unaffected by he size
of M, since entries that fall within the paern of an elemen are removed from M.
Thus, if here is jus one elemen (he curren elemen p, say), the bound d is igh.

is wo (he curren elemen p and a prior elemen e, say), we have
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The bound di counts entries in the set (, fq ,p) \ twice, and so di will be an
overestimate in the possible (even likely) case that a variable j - exists that is

adjacent to both e and p;, Combined with the definition,^f d, we have di di d
when I$1 <_ 1, d d < di when I1 2, and d <_ di d when I$! > 2.

If I$1 _< 1 our bound d is exact for the same reason that d is exact. If I$1 is two
we have

di IAi \ il + IZ:p \ il + I/: \ Z:pl di.

No entry is in both A and any element , since these redundant entries are removed
from A. Any entry in ,p does not appear in the external subset ( \ p). Thus, no

entry is counted twice, and d d when I$il < 2. Finally, consider both d and d
when Ig’l > 2. We have

d- 14 \ il + Ip \ il +

and

d--IA \ il + IZ:p \ il +

Since these degree bounds are used on.n.ly when computing the degree of a supervariable
E /p, we have C_ p. Thus, di <_ di when Ii[ > 2. Cl

Note that if a variable is adjacent to two elements or less then our bound is
equal to the exact external degree. This is very important, since most variables of
minimum degree are adjacent to two elements or less.

4.2. Degree computation example. We illustrate the computation of our ap-
proximate external degree bound in Figures 3.1 and 3.2. Variable 6 is adjacent to three
elements in G3 and G4. All other variables are adjacent to two or less elements. In
3, the bound 6 is tight, since the two sets I1 \/31 and 12 \/31 are disjoint.

In graph G4, the current pivot element is p 4. We compute

-I0 \ {6}1 + 1{6, 7, 8} \ {6}1 + (ICe \ C4t + It3 C41)
1{7, 8}1 + (I{5, 6, 9} {6, 7, 8}1 + [{5, 6, 7} {6, 7, 8}1)
1{7, s}l + 9}1 +

5.

The exact external degree of variable 6 is d6 4, as can be seen in the elimination
graph G4 on the left of Figure 3.2(a). Our bound is one rnore than the exact external
degree, since the variable 5 appears in both 2 \ 4 and 3 \ 4, but is one less than
the bound di, which is equal to 6 in this case. Our bound on the degree of variable
6 is again tight after the next pivot step, since elements 2 and 3 are absorbed into
element 5.

5. The AMD algorithm. The AMD algorithm is identical to Algorithm 1,
except that the external degree d is replaced with di throughout. The bound on



AN APPROXIMATE MINIMUM DEGREE ORDERING ALGORITHM 897

the external degree di is computed using Algorithm 2 and equations (4.1) and (4.2).
In addition to the natural absorption of elements in Sp, any element with an empty
external subset (le \pl 0) is also absorbed into element p, even if e is not adjacent
to p. This aggressive element absorption improves the degree bounds by reducing I$1.
For many matrices, aggressive absorption rarely occurs. In some cases, however, up
to half of the elements are aggressively absorbed. Consider the matrix

a 0 a3 a4
0 a22 a23 a24

a31 a32 a33 0
a4 a42 0 a44

where we assume the pivots are chosen down the diagonal in order. The external
subset I1 \/221 is zero (1 2 {3, 4}). Element 2 aggressively absorbs element
1, even though element 1 is not adjacent to variable 2 (a12 is zero).

As in many other minimum degree algorithms, we use a set of n linked lists to
assist the search for a variable of minimum degree. A single linked list holds all
supervariables with the same degree bound. Maintaining this data structure takes
time proportional to the total number of degree computations, or O(ILI) in the worst
case.

Computing the pattern of each pivot element /:p takes a total of O(ILI) time

overall, since each element is used in the computation of at most one other element,
and the total size of all elements constructed is

The AMD algorithm is based on the quotient graph data structure used in the
MA27 minimum degree algorithm [13, 14, 15]. Initially, the sets A are stored, followed
by a small amount of elbow room. When the set/2p is formed, it is placed in the elbow
room (or in place of ,4p if lgpl- 0). Garbage collection occurs if the elbow room is
exhausted. During garbage collection, the space taken by .Ai and gi is reduced to
exactly I,4iI + lNil for each supervariable (which is less than or equal to I4/I) and
the extra space is reclaimed. The space for 4e and ge for all elements e E V is fully
reclaimed, as is the space for/2e of any absorbed elements e. Each garbage collection
takes time that is proportional to the size of the workspace (normally (IAI)). In
practice, elbow room of size n is sufficient.

During the computation of our degree bounds, we compute the following hash
function for supervariable detection [3],

which increases the degree computation time by a small constant factor. We place
each supervariable in a hash bucket according to Hash(i), taking time O(ILI) overall.
If two or more supervariables are placed in the same hash bucket, then each pair of
supervariables and j in the hash bucket are tested for indistinguishability. If the
hash function results in no collisions then the total time taken by the comparison is

O(IAI).
Ashcraft [3] uses this hash function as a preprocessing step on the entire matrix

(without the mod(n- 1) term and with an O(IV log Igl) sort instead of IVI hash
buckets). In contrast, we use this function during the ordering and hash only those
variables adjacent to the current pivot element.
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For example, variables 7, 8, and 9 are indistinguishable in C5 in Figure 3.2(a).
The AMD algorithm would not consider variable 8 at step 5, since it is not adjacent
to the pivot element 5 (refer to quotient graph 65 in Figure 3.2(b)). AMD would
not construct 7 {7, 9} at step 5, since 7 and 9 are distinguishable in 5. It would
construct 7 {7, 8, 9} at step 6, however.

The total number of times the approximate degree di of variable i is computed
during elimination is no more than the number of nonzero entries in row k of L, where
variable i is the kth pivot. The total time taken to compute di using Algorithm 2 and
equations (4.1) and (4.2)is O(141) or, equivalently, O([(pApT).I), the number of
nonzero entries in row k of the permuted matrix. The total time taken by the entire
AMD algorithm is thus bounded by the degree computation,

(5.1) O(ILk*I’I(pApT)k*I)"k=l
This bound assumes no (or few) supervariable hash collisions and a constant number of
garbage collections. In practice these assumptions seem to hold, but the asymptotic
time would be higher if they did not. In many problem domains, the number of
nonzeros per row of A is a constant, independent of n. For matrices in these domains,
our AMD algorithm takes time O(ILI) (with the same assumptions).

6. Performance results. In the following sections, we present the results of
our experiments with AMD on a wide range of test matrices. We first compare the
degree computations discussed above (t, d, d, d, and d), as well as an upper bound
on the true degree d + Ill 1. We then compare the AMD algorithm with other
established minimum degree codes (MMD and MA27).

6.1. Test matrices. We tested all degree bounds and codes on all matrices
in the Harwell/Boeing collection of type PUA, RUA, PSA, and RSA [11, 12] (at
orion.cerfacs.fr or numerical.cc.rl.ac.uk), all nonsingular matrices in Saad’s
SPARSKIT2 collection (at Itp. cs. umn. edu), all matrices in the University of Florida
collection (available from ftp. cis. ufl. edu in the directory pub/umfpack/matrices),
and several other matrices from NASA and Boeing. Of those 378 matrices, we present
results below on those matrices requiring 500 million or more floating-point operations
for the Cholesky factorization, as well as the ORANI678 matrix in the Harwell/Boeing
collection and the EX19 in Saad’s collection (a total of 26 matrices). The latter two
are best-case and worst-case examples from the set of smaller matrices.

For the unsymmetric matrices in the test set, we first used the maximum transver-
sal algorithm MC21 from the Harwell Subroutine Library [9] to reorder the matrix so
that the permuted matrix has a zero-free diagonal. We then formed the symmetric
pattern of the permuted matrix plus its transpose. This is how a minimum degree
ordering algorithm is used in MUPS [1, 2]. For these matrices, Table 6.1 lists the
statistics for the symmetrized pattern.

Table 6.1 lists the matrix name, the order, the number of nonzeros in lower
triangular part, two statistics obtained with an exact minimum degree ordering (using
d), and a description. In column 4, we report the percentage of pivots p such that
Igpl > 2. Column 4 shows that there is only a small percentage of pivots selected
using an exact minimum degree ordering that have more than two elements in their
adjacency list. Therefore, we can expect a good quality ordering with an algorithm
based on our approximate degree bound. In column 5, we indicate how often a
degree d is computed when Igl > 2 (as a percentage of the total number of degree
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TABLE 6.1
Selected matrices in test set.

Matrix

RAEFSKY’3
VENKAT01
BCSSTK32
EX19
BCSSTK30
CT20STIF
NASASRB

n nz

21,200 733,784
62,424 827,684
44,609 985,046
12,005 123,937
28,924 1,007,284
52,329 1,323,067
54,870 1,311,227

OLAF
RAEFSKY1
CRYSTK03
RAEFSKY4
CRYSTK02
BCSSTK33
BCSSTK31
EX11
FINANS12
RIM
BBMAT
EX40
WANG4
LHR34
WANG3
LHR71
ORANI678
PSMIGR1
APPU

16,146 499,505
3,242 145,517

24,696 863,241
19,779 654,416
13,965 477,309
8,738 291,583

35,588 572,914
16,614 540,167
74,752 261,120
22,560 862,411
38,744 1,274,141
7,740 225,136

26,068 75,564
35,152 608,830
26,064 75,552
70,304 1,199,704
2,529 85,426
3,140 410,781

14,000 1,789,392

Percentage of
Ipl > 2 Iil > 2

0.00 13.4
0.71 15.7
0.20 27.3
1.57 29.4
0.66 31.8
0.77 33.2
0.06 35.0
0.41 35.2
0.00 38.9
0.00 40.9
0.00 41.4
0.00 42.0
0.00 42.6
0.60 43.1
0.04 43.3
1.32 46.6
2.34 63.2
5.81 64.4

17.45 64.7
15.32 78.3
7.69 78.7

15.29 79.2
8.47 81.1
6.68 86.9
6.65 91.0

15.64 94.4

Description

fluid/structure interaction, turbulence
unstructured 2D Euler solver
structural eng., automobile chassis
2D developing pipe flow (turbulent)
structural eng., off-shore platform
structural eng., CT20 engine block
shuttle rocket booster
NASA test problem
incompressible flow, pressure-driven pipe
structural eng., crystal vibration
buckling problem for container model
structural eng., crystal vibration
structural eng., auto steering mech.
structural eng., automobile component
CFD, 3D cylinder & flat plate heat exch.
economics, portfolio optimization
chemical eng., fluid mechanics problem
CFD, 2D airfoil with turbulence
CFD, 3D die swell problem on square die
3D MOSFET semicond. (30x30x30 grid)
chemical eng., light hydrocarbon recovery
3D diode semiconductor (30x30x30 grid)
chemical eng., light hydrocarbon recovery
Australian economic model
US county-by-county migration
NASA test problem (random matrix)

updates). Table 6.1 is sorted according to this degree update percentage. Column 5
thus reports the percentage of "costly" degree updates performed by a minimum
degree algorithm based on the exact degree. For matrices with relatively large values
in column 5, significant time reductions can be expected with an approximate degree-
based algorithm.

Since any minimum degree algorithm is sensitive to tie breaking issues, we ran-
domly permuted all matrices and their adjacency lists 21 times (except for the random
APPU matrix, which we ran only once). All methods were given the same set of 21
randomized matrices. We also ran each method on the original matrix. On some ma-
trices, the original matrix gives better ordering time and fill-in results for all methods
than the best result obtained with the randomized matrices. The overall comparisons
are not, however, dependent on whether original or randomized matrices are used.
We thus report only the median ordering time and fill-in obtained for the randomized
matrices.

The APPU matrix is a random matrix used in a NASA benchmark, and is thus
not representative of sparse matrices from real problems. We include it in our test
set as a pathological case that demonstrates how well AMD handles a very irregular
problem. Its factors are about 90% dense. It was not practical to run the APPU
matrix 21 times because the exact degree update algorithms took too much time.

6.2. Comparing the exact and approximate degrees. To make a valid com-
parison between degree update methods, we modified our code for the AMD aorithm
so that we could compute the exact external degree (d), our bound (d), the d bound,
the d bound, the exact true degree (t), and our upper bound on the true degree ().
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TABLE 6.2
Median fill-in results of the degree update methods.

Matrix Number of nonzeros below diagonal in L, in thousands
d d d d

RAEFSKY3 4709 4709 4709 5114
VENKAT01 5771 5789 5798 6399
BCSSTK32 5081 5079 5083 5721
EX19 319 319 318 366
BCSSTK30 3751 3753 3759 4332
CT20STIF 10758 10801 11057 13367
NASASRB 12306 12284 12676 14909
OLAF 2858 2860 2860 3271
RAEFSKY1 1151 1151 1151 1318
CRYSTK03 13836 13836 13836 17550
RAEFSKY4 7685 7685 7685 9294
CRYSTK02 6007 6007 6007 7366
BCSSTK33 2624 2624 2640 3236
BCSSTK31 5096 5132 5225 6194
EXll 6016 6014 6014 7619
FINAN512 4036 6042 11418 11505
RIM 3898 3952 3955 4645
BBMAT 19880 19673 21422 37820
EX40 1386 1417 1687 1966
WANG4 6808 6548 6566 7871
LHR34 3743 3879 11909 27125
WANG3 6697 6545 6497 7896
LHR71 8127 8499 28241 60175
ORANI678 147 146 150 150
PSMIGR1 3025 3011 3031 3176
APPU 87613 87648 87566 87562

4992
6245
5693
343

4483
12877
14348
3089
1262

15507
8196
6449
2788
6079
6673
8235
4268
21197
1526
7779
4383

4992
6261
5665
343

4502
12846
14227
3090
1262

15507
8196
6449
2787
6057
6721
8486
4210
21445
1530
7598
4435

7555 7358
9437 9623
147 146

2966 2975
87605 87631

The six codes based on d, d, d, d, t, and t (columns 3 to 8 of Table 6.2) differ only in
how they compute the degree. Since aggressive absorption is more difficult when using
some bounds than others, we switched off aggressive absorption for these six codes.
The actual AMD code (in column 2 of Table 6.2) uses d with aggressive absorption.

Table 6.2 lists the median number of nonzeros below the diagonal in L (in thou-
sands) for each method. Results 20% higher than the lowest median ILl in the table (or
higher) are underlined. Our upper bound on the true degree () and the exact true de-
gree (t) give nearly identical results. As expected, using minimum degree algorithms
based on external degree noticeably improves the quality of the ordering (compare
columns 3 and 7, or columns 4 and 8). From the inequality d _< d _< d _< d, we
would expect a similar ranking in the quality of ordering produced by these methods.
Table 6.2 confirms this. The bound d and the exact external degree d produce nearly
identical results. Comparing the AMD results and the d column, aggressive absorp-
tion tends to result in slightly lower fill-in, since it reduces II and thus improves the
accuracy of our bound. The d bound is often accurate enough to produce good re-
sults, but can fail catastrophically for matrices with ahigh percentage of approximate
pivots (see column 4 in Table 6.1). The less accurate d bound produces notably worse
results for many matrices.

Comparing all 378 matrices, the median ILl when using d is never more than 9%
higher than the median fill-in obtained when using the exact external degree d (with
the exception of the FINAN512 matrix). The fill-in results for d and d are identical
for nearly half of the 378 matrices. The approximate degree bound d thus gives a very
reliable estimation of the degree in the context of a minimum degree algorithm.
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TABLE 6.3
Median ordering time of the degree update methods.

Matrix

RAEFSKY3
VENKAT01
BCSSTK32
EX19
BCSSTK30
CT20STIF
NASASRB
OLAF
RAEFSKY1
CRYSTK03
RAEFSKY4
CRYSTK02
BCSSTK33
BCSSTK31
EXll
FINAN512
RIM
BBMAT
EX40
WANG4
LHR34
WANG3
LHR71
ORANI678
PSMIGR1
APPU

Ordering time, in seconds
d d d

1.10 1.09 1.05 1.02
4.95 4.11 4.47 3.88
5.64 4.54 4.91 4.35
1.12 0.89 1.01 0.86
5.30 3.55 3.65 3.51
8.66 6.54 7.07 6.31

11.03 7.73 9.23 7.78
2.56 1.90 2.16 1.83
0.34 0.28 0.32 0.25
4.84 3.08 3.68 3.14
2.90 2.18 2.45 2.08
2.34 1.55 1.64 1.45
1.36 1.05 0.99 0.85
7.53 4.92 5.68 4.56
4.06 2.77 3.00 2.60

34.11 14.45 17.79 15.84
10.38 5.69 6.12 5.72

115.75 27.44 42.17 23.02
1.56 1.10 1.09 0.95

11.45 5.56 6.98 5.21
109.10 25.62 45.36 43.70
10.45 5.49 6.52 4.81

349.58 58.25 129.85 121.96
196.01 8.13 6.97 7.23
334.27 10.07 14.20 8.16

2970.54 39.83 43.20 40.64

1.15 1.09
4.32 3.85
5.55 4.48
1.09 0.87
4.38 3.38
8.63 6.45

11.78 7.99
2.33 1.78
0.35 0.28
5.23 3.30
3.12 2.07
2.04 1.52
1.62 0.91
7.41 4.92
4.23 2.89

46.49 18.58
10.01 5.58

129.32 28.33
1.46 1.12

11.59 5.88
125.41 24.73
11.02 5.02

389.70 60.40
199.01 8.45
339.28 9.94

3074.44 38.93

The FINAN512 matrix is highly sensitive to tie breaking variations. Its graph
consists of two types of nodes: "constraint" nodes and "linking" nodes [5]. The
constraint nodes form independent sparse subgraphs, connected together via a tree of
linking nodes. This matrix is a pathological worst-case matrix for any minimum degree
method. All constraint nodes should be ordered first, but linking nodes have low
degree and tend to be selected first, which causes high fill-in. Using a tree dissection
algorithm, Berger et al. [5] obtain an ordering with only 1.83 million nonzeros in L.

Table 6.3 lists the median ordering time (in seconds on a SUN SPARCstation I0)
for each method. Ordering time twice that of the minimum median ordering time
listed in the table (or higher) is underlined. Computing the d bound is often the
fastest, since it requires only a single pass over the element lists instead of the two
passes required for the d bound. It is, however, sometimes slower than d because
it can generate more fill-in, which increases the ordering time (see expression (5.1)).
The ordering time of the two exact degree updates (d and t) increases dramatically
as the percentage of "costly" degree updates increases (those for which I$iI > 2).

Garbage collection has little effect on the ordering time obtained. In the above
runs, we gave each method elbow room of size n. Usually a single garbage collection
occurred. At most two garbage collections occurred for AMD and at most three for
the other methods (aggressive absorption reduces the memory requirements).

6.3. Comparing algorithms. In this section, we compare AMD with two other
established minimum degree codes: Liu’s MMD code [25] and Duff and Reid’s MA27
code [15]. MMD stores the element patterns in a fragmented manner and requires no
elbow room [20, 21]. It uses the exact external degree d. MMD creates supervariables
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TABLE 6.4
Median fill-in results of the four codes.

Matrix

RAEFSKY3
VENKAT01
BCSSTK32
EX19
BCSSTK30
CT20STIF
NASASRB
OLAF
RAEFSKY1
CRYSTK03
RAEFSKY4
CRYSTK02
BCSSTK33
BCSSTK31
EX11
FINAN512
RIM
BBMAT
EX40
WANG4
LHR34
WANG3
LHR71
ORANI678
PSMIGR1
APPU

Number of nonzeros below diagonal
in L, in thousands

AMD MMD CMMD MA27
4709 4779 4724 5041
5789 5768 5811 6303
5080 5157 5154 5710
319 322 324 345

3752 3788 3712 4529
10858 11212 10833 12760
12282 12490 12483 14068
2860 2876 2872 3063
1151 1165 1177 1255

13836 13812 14066 15496
7685 7539 7582 8245
6007 5980 6155 6507
2624 2599 2604 2766
5115 5231 5216 6056
6014 5947 6022 6619
4778 8180 8180 8159
3948 3947 3914 4283
19673 19876 19876 21139
1418 1408 1401 1521
6547 6619 6619 7598
3618 4162 4162 4384
6545 6657 6657 7707
7933 9190 9190 9438
147 147 147 147

3020 2974 2974 2966
87648 87647 87647 87605

only when two variables and j have no adjacent variables and exactly two adjacent
elements (Ni ;j {e,p}, and 4i 4j , where p is the current pivot element).
A hash function is not required. MMD takes advantage of multiple elimination and
incomplete update.

MA27 uses the true degree t and the same data structures as AMD. It detects
supervariables whenever two variables are adjacent to the current pivot element and
have the same structure in the quotient graph (as does AMD). MA27 uses the true
degree as the hash function for supervariable detection and does aggressive absorption.
Neither AMD nor MA27 take advantage of multiple elimination or incomplete update.

Structural engineering matrices tend to have many rows of identical nonzero pat-
tern. Ashcraft [3] has found that the total ordering time of MMD can be significantly
improved by detecting these initial supervariables before starting the elimination. We
implemented the precompression algorithm used in [3] and modified MMD to allow
for initial supervariables. We call the resulting code CMMD ("compressed" MMD).
Precompression has little effect on AMD, since it finds these supervariables when their
degrees are first updated. The AMD algorithm on compressed matrices together with
the cost of precompression was never faster than AMD.

Table 6.4 lists the median number of nonzeros below the diagonal in L (in thou-
sands) for each code. Results 200 higher than the lowest median ILl in the table
(or higher) are underlined. AMD, MMD, and CMMD find orderings of about the
same quality. MA27 is slightly worse because it uses the true degree (t) instead of the
external degree (d).
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TABLE 6.5
Median ordering time of the four codes.

Matrix

RAEFSKY3
VENKAT01
BCSSTK32
EX19
BCSSTK30
CT20STIF
NASASRB
OLAF
RAEFSKY1
CRYSTK03
RAEFSKY4
CRYSTK02
BCSSTK33
BCSSTK31
EXll
FINAN512
RIM
BBMAT
EX40
WANG4
LHR34
WANG3
LHRT1
ORANI678
PSMIGR1
APPU

Ordering time, in seconds
AMD MMD CMMD MA27
1.05 2.79 1.18 1.23
4.07 9.01 4.50 5.08
4.67 12.47 5.51 6.21
0.87 0.69 0.83 1.03
3.51 7.78 3.71 4.40
6.62 26.00 9.59 9.81
7.69 22.47 11.28 12.75
1.83 5.67 4.41 2.64
0.27 0.82 0.28 0.40
3.30 10.63 3.86 5.27
2.32 5.24 2.36 2.91
1.49 3.89 1.53 2.37
0.91 2.24 1.32 1.31
4.55 11.60 7.76 7.92
2.70 7.45 5.05 3.90

15.03 895.23 897.15 40.31
5.74 9.09 8.11 10.13

27.80 200.86 201.03 134.58
1.04 2.13 2.04 1.30
5.45 10.79 11.60 9.86

19.56 139.49 141.16 77.83
5.02 10.37 10.62 8.23

46.03 396.03 00.40 215.01
5.49 124.99 127.10 124.66

10.61 186.07 185.74 229.51
41.75 5423.23 5339.24 2683.27

Considering the entire set of 378 matrices, AMD produces a better median fill-in
than MMD, CMMD, and MA27 for 62%, 61%, and 81% of the matrices, respectively.
AMD never generates more than 7%, 7%, and 4% more nonzeros in L than MMD,
CMMD, and MA27, respectively. We have shown empirically that AMD produces an
ordering at least as good as these other three methods for this large test set.

If the apparent slight difference in ordering quality between AMD and MMD is
statistically significant, we conjecture that it has more to do with earlier supervariable
detection (which affects the external degree) than with the differences between the
external degree and our upper bound.

Table 6.5 lists the median ordering time (in seconds on a SUN SPARCstation
10) for each method. The ordering time for CMMD includes the time taken by
the precompression algorithm. Ordering time twice that of the minimum median
ordering time listed in the table (or higher) is underlined. On certain classes of
matrices, typically those from structural analysis applications, CMMD is significantly
faster than MMD. AMD is the fastest method for all but the EX19 matrix. For the
other 352 matrices in our full test set, the differences in ordering time among these
various methods is typically less. If we compare the ordering time of AMD with the
other methods on all matrices in our test set requiring at least a tenth of a second of
ordering time, then AMD is slower than MMD, CMMD, and MA27 for only 6, 15, and
8 matrices, respectively. For the full set of matrices, AMD is never more than 30%
slower than these other methods. The best and worst cases for the relative run time
of AMD ibr the smaller matrices are included in Table 6.5 (the EX19 and ORANI678
matrices).
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7. Summary. We have described a new upper bound for the degree of nodes
in the elimination graph that can be easily computed in the context of a minimum
degree algorithm. We have demonstrated that this upper bound for the degree is more
accurate than all previously used degree approximations. We have experimentally
shown that we can replace an exact degree update by our approximate degree update
and obtain almost identical fill-in.

An AMD algorithm based on external degree approximation has been described.
We have shown that the AMD algorithm is highly competitive with other ordering
algorithms. It is typically faster than other minimum degree algorithms and produces
comparable results to MMD (which is also based on external degree) in terms of fill-in.
AMD typically produces better results, in terms of fill-in and computing time, than
the MA27 minimum degree algorithm (based on true degrees).
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algorithm, and Cleve Ashcraft and Stan Eisenstat for their comments on a draft of
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ON THE SOLUTION OF A NONLINEAR MATRIX EQUATION
ARISING IN QUEUEING PROBLEMS*
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Abstract. By extending the cyclic reduction technique to infinite block matrices we devise a
new algorithm for computing the solution Go of the matrix equation G =o GiAi arising in a
wide class of queueing problems. Here Ai, 0, 1,..., are k k nonnegative matrices such that

i=0 Ai is column stochastic. Our algorithm, which under mild conditions generates a sequence
of matrices converging quadratically to G0, can be fully described in terms of simple operations
between matrix power series, i.e., power series in z having matrix coefficients. Such operations,
like multiplication and reciprocation modulo zm, can be quickly computed by means of FFT-based
fast polynomial arithmetic; here m is the degree where the power series are numerically cut off in
order to reduce them to polynomials. These facts lead to a dramatic reduction of the complexity of
solving the given matrix equation; in fact, O(k3m + k2m log m) arithmetic operations are sufficient
to carry out each iteration of the algorithm. Numerical experiments and comparisons performed with
the customary techniques show the effectiveness of our algorithm. For a problem arising from the
modelling of metropolitan networks, our algorithm was about 30 times faster than the algorithms
customarily used in the applications. Cyclic reduction applied to quasi-birth-death (QBD) problems,
i.e., problems where Ai O for > 2, leads to an algorithm similar to the one of [Latouche and
Ramaswami, J. Appl. Probab., 30 (1993), pp. 650-674], but which has a lower computational cost.

Key words, queueing problems, M/G/I-type matrices, cyclic reduction, Toeplitz matrices
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1. Introduction. Let Ai, Ai+l, 0, 1, 2,..., be two sequences of k k non-
negative matrices such that i=0 Ai and i=1 Ji are column stochastic. A matrix
.,4 {aj }j is column stochastic if 0 <_ a,j <_ 1, i a,j 1 for any j; here and
hereafter a stochastic matrix will be a column-stochastic matrix. Consider the infinite
stochastic matrix P defined by

(1.1) P

41 A0 C)
42 A1 A0
Aa Ae A1 A0

Matrices of structure (1.1) are called M/G/l-type matrices [15] and arise in the
mathematical modelling of a wide and important class of queueing problems occurring
in many applications, where the matrix pT is the transition matrix associated with
a Markov chain [7]. Matrices of this kind have the block Toeplitz structure, except
on the first block column, and are in lower block Hessenberg form. We recall that a
block Toeplitz matrix is a block matrix having (i, j)-blocks that depend on i- j and
that a matrix is in lower block Hessenberg form if its blocks are null for j > + 1.

The computation of the probability invariant vector associated with P, that is, a
nonnegative vector r such that

(1.2) PTr- r, 117rll 1,

*Received by the editors April 17, 1995; accepted for publication (in revised form) by C. Meyer
November 22, 1995.

Dipartimento di Matematica, Universit’ di Pisa, Pisa, Italy (bini@dm.unipi.it, meini@dm.
unipi.it).
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plays an important role in the analysis of the queue. Here, for a vector v (v) we
denote Ivll Ei Ivil.

If matrix (1.1) is irreducible, the existence of a solution of (1.2) is equivalent to
the positive recurrence of P [7]. In this case the solution r is unique and positive. For
a complete and detailed study of matrices of type M/G/1 we refer the reader to [15].

Properties of the solution r and numerical techniques for its computation are
strongly related to the minimal nonnegative solution of the matrix equation

i--0

In particular, it can be proved that if P is irreducible and positive recurrent then the
only nonnegative solution Go of (1.3) is a stochastic matrix [15]. The matrix Go has
very important properties; in fact, it is possible to express the solution r {r}_>0
of (1.2) in terms of Go by means of the Ramaswami formula [15]"

r (I- A)-1 A+ ro + A+_rd

where r is the k-dimensional vector obtained by partitioning the vector r according
to structure (1.1) of P, and

(1.4) Ai EGJ-iAJ’ -*Ai+ E Go-ij+l’ i> 1
j=i j=i

The Ramaswami formula, due also to its numerical stability, is an effective tool
for solving problem (1.2) once the solution Go of (1.3) has been computed. Thus, the
availability of efficient numerical methods for computing the matrix Go is crucial in
order to solve (1.2).

Different algorithms for computing the solution of (1.3) have been proposed and
analyzed by several authors. Most of them are based on functional iteration techniques
obtained by manipulating the matrix equation (1.3). For instance, in [16] the iteration

}2 XA,, Xo>_O
i=0

is considered. Similar techniques, based on the recurrences

(1.5b) Xj+ Ao(I- A)- +EX}A(I- A1) -1
i=2

or

( )(1.5C) Xj+l Ao I- EX-1Ai
i=1

--1

are introduced and analyzed in [15], [9], [14] in order to speed up the convergence.
However, the convergence of these numerical schemes still remains linear. In [10] a
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sort of Newton’s iteration is introduced to arrive at a quadratic convergence with
an extreme increase of the computational cost. In [12] the approximation of G0 is
reduced to solving nested finite systems of linear equations associated with the matrix
P by means of a doubling technique. In this way the solution of the matrix P is
approximated with the solution of the problem obtained by cutting the infinite block
matrix P to a suitable finite block size n.

In this paper we propose a new method for the numerical solution of (1.3) that
is quadratically convergent and numerically stable and avoids the necessity of cutting
the infinite matrix (I.i) to a finite size. Moreover, this method, based on the use of
FFT, requires a small number of arithmetic operations.

Our method relies on the technique of the successive state reduction (cyclic re-
duction [6]), introduced and analyzed in [2] for the computation of the vector and
here extended to the computation of the solution G0 of (1.3).

In the case where the matrix P of (1.1) is block tridiagonal, i.e., Ai A O
for > 2, our method is very similar to that of Latouche and Ramaswami [11],
where a modified cyclic reduction scheme was applied to compute the matrix Go
associated with a QBD process, and, moreover, is slightly faster than the Latouche
and Ramaswami algorithm.

Our method generates a sequence P(J) of matrices of type M/G/l, defined by the
blocks {AJ)} and {Y)}i, such that the solution of the equation G Ei+__ GA) is

G02j We associate with the sequence {P(J)}y a sequence of k k stochastic matrices
{R(J) }y which, under mild conditions, due to the quadratic convergence of the matrices

{G0j }j to the limit G’ limj G tends quadratically to the matrix G’ as j tends
to +c. This allows us to devise a fast algorithm for the approximation of G. The
matrix Go is then approximated in a back-substitution stage by means of a suitable
relation that involves G and the matrices A). Moreover, we show that under further
mild conditions the blocks Aj), > 1, tend to the null matrix as j tends to +c.

1)The formulae that relate the sequence {A)} with the sequence {A+ } are

expressed in functional form in terms of the matrix power series (J)(z) =0+ Aj) zi
in the following way (compare [2])"

z(J) rz ,() (z (I () rz -((J+l)(z) odd\ )"Weven\ oddS, ))

where ,n(Z) =o A zi, odd(Z) -=0 2+Z" The computation of the
coefficients of 99(J+)(z), given (J)(z), is performed by applying the above functional
relation modulo z", where rn (cutting level) is an integer that can be dynamically
computed and is such that the matrix m=0 Aj) is "numerically stochastic"; i.e.,
eT(I- ’m=o Aj)) < eeT, where e is the machine precision. In this way the computa-
tion is reduced to computing products and reciprocals of matrix polynomials modulo
z". This can be efficiently obtained by extending to matrix polynomials the FFT-
based techniques which have been devised for scalr polynomial arithmetic [3], [2].

The computational cost of each step of our algorithm is O(k3m + kmlogm)
arithmetic operations versus O(k3m2) operations needed if the customary polynomial
arithmetic were used. The cost of the Mgorithm presented in [12] is O(k3n log2 n),
where n is the size at which the infinite matrix P is cut in order to reduce the infinite
problem to a finite one (typically n >_ m). The cost of each step of the linearly
convergent algorithms based on (1.ha), (1.55), and (1.5c) is O(k3m) operations.

We implemented our algorithm in Fortran 77 and performed comparisons with
the iterative formula based on (1.5c) (which is the fastest among (1.5) (compare [14]))
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for X0 0 and X0 I, and with the algorithm of [12] on a problem arising from
the mathematical modelling of a metropolitan network [I]. Our method was about 30
times faster than the method based on (1.5c) with X0 I, and about 170 times faster
in the case X0 0. The ratio between the number of iterations required by (1.5c) and
our method was 167 for X0 I, and 945 for X0 0. From the numerical computations
that we performed, our method turned out to be much superior, especially in the cases
of "long queues" where either the initial cutting level m of the queue is very large or
the number of the nonnegligible components of the vector 7r is very large. In fact,
in these cases the advantages of the quadratic convergence and the use of FFT are
strongly evident. Another interesting feature of our algorithm that emerged from
the numerical experiments is that the cutting level mj at the jth recursive step of
cyclic reduction has an almost decreasing behaviour. This contributes to a speedier
computation.

The paper is organized as follows. In 2 we describe the cyclic reduction technique
applied to matrices of type M/G/I and prove the main convergence result. In 3 we
give further convergence properties. In 4 we present two different algorithms for the
computation of G0 based on cyclic reduction. The first one, which is slightly faster,
requires the storage of a certain number of blocks that are used in the back-substitution
stage; the second one performs the back-substitution implicitly in the first stage and
does not need to store auxiliary matrices. In 5 we describe our implementations by
giving a detailed description of our algorithm together with the FFT-based techniques
for manipulating matrix power series. Finally, in 6 we report the results of the
numerical experiments and the comparisons with the known algorithms.

2. Cyclic reduction and its convergence properties. In this section we re-
call the method of cyclic reduction introduced and analyzed in [2] for the computation
of the invariant vector r and prove some convergence results that are needed to extend
the method to the computation of the matrix Go.

Here and hereafter we assume that the stochastic matrix P is irreducible and
positive recurrent; i.e.,

(2.1) P eTEiAa < 1,
i--1

where Ei=0 Aia a, Ilall 1, so that the matrix equation (1.3) has only one non-
negative solution, which is stochastic [15], and the vector r is positive. Under these
hypotheses it is possible to prove that [15]

where r(A) denotes the spectral radius of the matrix A and A, i 1,2,..., are
defined in (1.4).

Let Go be the solution of (1.3) and set Ho -Ao, H1 I-A1, Hi -A, i >_ 2,
H I- A, Hi -Ai, i >_ 2, W =o Gi+. Then from (1.3) we may easily
obtain the matrix equation

H_ H0 0
H H Ho

(2.3) (I, Go, G,...) 3 H2 H1 Ho
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Performing an odd-even permutation of the block rows and block columns in the
matrix equation (2.a) we find that

()

(Co, ag,... z, VOW,...)
W() )T(O :(o,o,... w, o, .),

where

H1 0 : 0

H5 H3 H1 H5 H3 HI

Z(o)

Ho 0 Ho 0
H2 Ho H4 H2 Ho
H4 H2 Ho W()-- /6 H4 H2 Ho

Applying one step of block Gaussian elimination to the 2 x 2 block matrix defined
in (2.4) yields

(.5) (+/-, a, a, .)(T() Z(O)T)-W(O)) (Z W, O, o...).

It is interesting to point out (compare [2]) that the Schur complement Q()
T(2)- Z()T()-lW() of T2(), which appears in (2.5), is such that P() I- Q() is a
lower block Hessenberg matrix which, except for the first block column, has the block
Toeplitz structure of the matrix P p(0) i_Q(O) of (1.1) (Toeplitz-like structure).
In other words, Q() is univocally determined by the blocks }1), >_ 1, H}), _> 0,
defining the first two block columns of Q(1); in this way (2.5) can be rewritten as

(2.6) (z w, o, o,...).

We may recursively apply the same reduction (cyclic reduction) to the matrix
equation (2.6) and thus obtain a sequence of matrices {Q(J)} such that P(J) I-Q(J)
has the same lower block Hessenberg and Toeplitz-like structure of (1.1). Each matrix

Q(J) is univocally determined by the blocks J), _> 1, Hj), i _> 0, defining its first
two block columns. The matrices P(J), j 0, 1,..., have further properties, as shown
by the following lemma.

LEMMA 2.1. All the matrices P(J) I- Q(J) recursively generated by applying
cyclic reduction to the stochastic, irreducible, and positive recurrent matrix p(o) of
(1.1) are stochastic, irreducible, and positive recurrent.

Proof. It is sufficient to prove the lemma for P(); then the proof can be com-

pleted by induction. Since eTp(O) eT, i.e., eTT(1 O) -[-eTZ(O) 0 and eTW(O) +
eTT() 0, from (2.5)we have eT(I-P(1))= eT(T()- Z()T)-lW())= eTT(2)+
eTT()T()-W() eTT(2)+ eTW() 0; that is, p(1)is stochastic. Now, in order
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to prove the irreducibility of p(1), we first show that a reducible stochastic matrix
M having a positive probability invariant vector p such that Mp p, lPll 1, has
at least a probability invariant vector having some null components. Indeed, without
loss of generality, we may assume that M (M1’1 O where MI, and M2 2 areM2,1 M2,2
square (possibly infinite) matrices and M, is irreducible. Let us partition the vector
p as pT (pT, p2T)T according to the block structure of M. From the condition
Mp p we deduce that M,lp p; hence

(2.7) eTM,pl eTp.

Since p > 0 and eTMI,1

_
eT (due to the stochasticity of M), we find that if a

component of eTM,I were less than 1, we would have eTM,p < eTp, which would
contradict (2.7). Therefore eTMI,1 eT; i.e., M1,1 is stochastic and M2, O. Thus
it follows that the vector y (pT, 0)T/llpll is such that My y, IlYll 1. Now,
since the vector made up of the even block components of r is a positive probability
invariant vector of P(), we deduce that, if P() were reducible, then there would
exist a vector x :> 0 having some null components such that P(1)x x, lxll 1.

In this way the vector y (yT, y2T)T defined by y -T()-W()x, Y2 x, is
such that P()HTy HTy, where H is the odd-even permutation matrix. This

T}) W() I O T() W()
follows from the relation HQ()HT (z(o) T2()) (Z(O)T()- I )( O Q(1) )’

Q(1) T()_ Z(O)T)-lw(o) (compare (2.4)). This contradicts the assumptions since
the positive recurrent matrix p(0) cannot have a probability invariant vector with
some null components. In order to prove that p(1) is positive recurrent it is sufficient
to show that there exists a positive invariant vector of P() with finite norm (compare
[7, p. 152]). This vector is given by the even blocks of r.

The following lemma relates the matrices Aj) generated by the cyclic reduction
to the matrix G

LEMMA 2.2. (i) For every positive integer j, the matrix Gj G is the minimal
nonnegative solution of the matrix equation

where A(oJ)= -H(oj) AJ)= I- Hj) A)= -H) i> 2 and A)= Ai i> 0

(ii) There exists limy Gy G’. Moreover, G’ g eT, where g =,(g,..., gk)T, is
the nonnegative vector such that eTg 1, G0g g.

(iii) The sequence of matrices {Ej}j, where Ey is such that G G’ + Ey for
j >_ O, converges quadratically to zero.

Proof. By extending (2.3)-(2.6) to the jth step of cyclic reduction it follows that
Gj G is a nonnegative solution of (2.8). From the irreducibility and positive
recurrence of the stochastic matrix P(Y) I- Q(J), obtained at each step j of cyclic
reduction, the nonnegative solution Gj of (2.8) is unique. The convergence results
stated by Lemma 2.2 follow since Go is a stochastic matrix and the only eigenvalue
having the largest modulus is 1 [15]. Indeed, let Go g eT + E0 so that eTEo O,
E0g 0, and the spectral radius of E0 is strictly less than 1. Then G g eT -- Ej,where Ey E02; hence Ey tends quadratically to zero and limj Gy g eT.
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In [2] a functional formulation of the cyclic reduction method was given. More
precisely, the matrix power series

(2.9) i=O

+x

ni+l
i=0

which converge for Izl _< 1, have been introduced. It has been observed that the
)equations that relate the blocks A:/+ with the blocks A"), i _> O, and the blocks

j+l) with the blocks A), i >_ 1, can be formally expressed in functional form as

(2.10a)

(2.10b)

where

(2.11)

These functional relations not only allow us to express in compact form the recurrence
which this method is based on, but also provide the basic tool on which the efficient

computation of the matrices Aj) relies. For the computational and numerical issues
we refer the reader to 4 and 5.

From the functional relations it is immediate to obtain the explicit expression for

A(0J+l); i.e.,

THEOREM 2.3. We have

(2.13)
-1

where Eij G -G’ G2 -G’. Moreover, if the entries of the matrix (I-
+oo Ay)i=1 )-1 are bounded above by a constant, then the sequence of matrices R(J)

=1 )-1 converges quadratically to the matrix G’.
Proof. Since the matrices P(J) are irreducible and positive recurrent, the matrix

(2.14) S(Y) EE Gji-tAi()
/=1 i=l

has spectral radius less than 1 (compare (2.2), (1.4), and [15]). Therefore, since
+ () S(J) + ()i=1 Ai < for the Perron-Frobenius theorem [18] it holds that r(i= Ai <_

+ (J) withr(S(J)) < 1; that is, the matrix I- i=1 Ai is nonsingular. By replacing Gj
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G’ + Ej in (2.8) we arrive at (2.13). The quadratic convergence holds for Lemma 2.2,
part (iii).

The matrix (I + (J)-=1 A )-1 is bounded above in particular if there exists
P limj P(J) and the matrix P is positive recurrent. In fact, if P limj P(J) is

r/V’+ A) sincepositive recurrent, then there exists S limj S() and 1 > r(S) >_ z_=l

> E+ AI )=1 A, where A limy
It is interesting to point out that, in the case where the matrix P is block tridiag-

onal (as in the case of QBD processes), all the matrices P(J) generated by the cyclic
reduction are block tridiagonal and the functions (J)(z) and (J)(z) are matrix poly-
nomials of degree 2 and 1, respectively. Thus the functional relations (2.10) become

(2.15)
(J+l)(z) zA) + (A(o) + zA))(I- AY))-I(Aj) + zAnY)),
(Y+l)(z) J) + (A(o) + zA(2Y))(I- AY))-I).

Similar relations were obtained by Latouche and Ramaswami in [11].
3. Further convergence properties. Under suitable assumptions, further use-

ful convergence results can be proven. From (2.10a) we easily arrive at the following
results.

LEMMA 3.1. For every integer j >_ O, the matrix I- Aj) is nonsingular and

the nonnegative matrix sequence {A)}j is nondecreasing. Moreover, there exists

limj Aj) AI
Proof. By following the same argument used in the proof of Theorem 2.3, since

r(S(Y)) < 1 (compare (2.14)), it follows that for any j the matrix I- Aj) is non-

singular. Let us prove that the sequence of matrices {AJ)}j is monotonically con-
vergent. Comparing the coefficients of z in both sides of (2.10a), it follows that,
for every j _> 0, A+1) Aj)

/ C(J), where C() is the coefficient of z in the series

9
(j) (I ’(J) --1

even(Z) Since the coeflicients of (j) (z and (I (z))-evenk odd

are nonnegative, we find that C() >_ 0; thus Ay+I) _> A). Moreover, since Aj) has

nonnegative entries not greater than 1, it follows that there exists limj Aj) A.
LEMMA 3.2. For every convergent subsequence {A(0a)}j of the sequence of ma-

trices {A(0J)iy, it holds that limy A(0a) # O.

Proof. Let {A(0a)}y be a convergent subsequence of {A(0Y)}j. We prove that if

limy A(0) O, then lim G O, which would contradict part (ii) of Lemma 2.2.
In order to arrive at the condition limj G O, we prove that for any e > 0 there
exists a sequence of nonnegative integers re(j) such that for any j it holds that

(3.1) eTGj eT

_
eT eT(M(J))re(j),

where M(J) + A(hj)Eh=l First we introduce the matrix sequence defined for i, j >_ 0,

(3.2)
Xo,j O,

+Xi+l,j En=0 X,jA), >_ 0

such that Gj limi Xi,j. Then we observe that

(3.3) eTZi,j

_
eT eTM(j)i,



914 DARIO BINI AND BEATRICE MEINI

as it can be easily proven by induction on (we leave it to the reader). Since 0 _<
eTM(J) <_ eT, there exists an increasing sequence of nonnegative numbers in in(j)
such that the subsequence {M(j)in}n is convergent. Therefore, from (3.3), we find
that the matrix Gj limn X, satisfies the inequality

eTGj <_ eT eT lim M(J) in
n

Hence, fixed e > 0, there exists a positive integer (j) such that (3.1) holds
with m(j) i(j)(j). If the sequence {A(0)}y converges to the null matrix, then the

sequence of matrices {M(aJ)}j converges to a stochastic matrix since {+Oh=0 A(h)
is stochastic. Thus, by replacing j with a in (3.1) and taking limits for j +c, we
conclude that limj G -O.

+ (j)Remark 3.3. We observe that from Lemma 3.2 it follows that, if =1 Ai is
+o Aj)irreducible and no accumulation point of = is reducible, then the mtrix

(I- AJ))- is bounded bove for any j. In order to prove this we show

that, under these sumptions, r = < 1 for any j. Indeed, let

rt+A)) and let aj be n increing sequence of nonnegative numberslim supj ti=l

such that limj r( +Aa) + () A),=l--, r(limj =l A and limj A (observe
that a exists since i= and belong to a compact set for any j). In this

+ A)way, since i=0 is stochtic for any j, we have that A +A is stochtic, where
+A) AA lim =1 Since is irreducible and, for Lemma 3.2, A > O A O,

from the eerron-obenius theorem [18] we deduce that 1 r(A’ + A)
In light of Lemma 3.1, if Ai) is irreducible for j j0, then the conditions of

+ ()Remark 3.3 on the irreducibility of i=1 Ai and its accumulation points are satisfied.
LEMMA 3.4. If the matrix Go is irreducible, then the sequence

(3.4) eTA(o)(I A))-g

is such that limj Oj 1.
Proof. Since 0 _</j _< 1 for every integer j, it follows that the sequence 0j has

convergent subsequences whose limits belong to the set [0, 1]. We first prove that 0
cannot be a limit. Let { }j be a convergent subsequence. Assume without loss of

generality that the sequence {A(0)}j is also convergent (the matrices A(0) belong to

a compact set) and set A limj A(0). If limj 0 0, then from (3.4) it holds that

limj A(0) 0 since the vector g is strictly positive, due to the irreducibility of Go,
and the nonnegative matrix (I AJ))-I has diagonal entries greater than 1. This
contradicts. Lemma 3.2. Now we show that any number 0 such that 0 < < 1 cannot
be the limit of any subsequence {Oa }j. From (2.8) it follows that

i=1

by substituting G g eT + Ea (compare Lemma 2.2) we obtain

A(o) ,g eTA(o) + Ea EGIA}a)
i=1
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Hence, by taking limits for j -- cx, we find that A g eTAo g vT, where
vT eTAo From the recursive equation (2.12) it follows that the sequence eTA(0j+l)
is convergent and

lim eTa(aj+l) OvT.0J

It can be easily shown by induction on h that for every integer h >_ 0 there exists

lim eTA’j+h)" 02h--lvT.
J

Hence, for every nonnegative integer h there exists a nonnegative integer jh such that

(3.5) Vj >_ jh IleTA+n) 0  - vTII <

Consider the strictly increasing sequence of nonnegative integers:

/20 O’jo,

/]h h + min{aj j >_ jh, crj > l]h_ 1}, h>l.

It is readily seen from (3.5) that the sequence eTA(o"h) is such that eTA(o) <_ uTO2-1
for every nonnegative integer h, where uT is a constant nonnegative vector. Hence the
sequence of matrices A(0") converges to the null matrix, giving a contradiction, again
for Lemma 3.2. Therefore, the unique accumulation point of the sequence {Oj}j is 1;
hence the sequence {Oj}j converges to 1.

THEOREM 3.5. If the matrix Go is irreducible, then the sequence of matrices P(J)
converges to a stochastic matrix P’ having the M/G/1 structure (1.1). Moreover,

lim A(oj) (I AJ)) -1 G’

and the matrix pt, defined by the blocks A, >_ 1, of its first block column and by the
block entries A, >_ O, of its second block column, is such that

A-A=O, i=2,3,

Proof. To prove the convergence of the block entries J), >_ 1, we follow [2]. For
this purpose, denote r(J) (r, rT.2 r.2J, ...)T, where r r() is the probability
invariant vector defined in (1.2). In this way, due to the cyclic odd-even permutation,
r(J) is the probability invariant vector associated with P(J). For the positive recurrence
of P p(0), it follows that r0 > 0. Moreover, since Irll 1, we have limj ri.2J 0

for i >_ 1. Thus, from the condition (I- g(J))r(J) 0, we deduce that limj J) O
for >_ 2. Let us now analyze the convergence of the block entries Aj), _> 0. Let
{A(0)}j be a convergent subsequence of {A(0J)}y. Then for Lemma 3.4 we have

-1

limeTA) (I A)) g 1.

+ ()Hence, for the stochasticity of the matrix -i=0 Ai it holds that

lira eTE AJ)(I A))
i--2

--1
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-1
Since the vector g is positive and the diagonal entries of the matrices (I- Aj))
are greater than or equal to 1, it holds that

Therefore, the unique accumulation points of the sequence {P(J)}j are stochastic ma-
trices pI such that A O, 2, 3, Moreover, for the convergence of the sequence

Gj and from (2.8) we obtain that Ao G’ G’AI and G’= limy A(oj) (I AJ)) -1.

4. Computing the matrix G. The convergence results given by Theorem 2.3
can be used to derive two efficient and stable algorithms for computing the solution
Go of the nonlinear matrix equation (1.3). In the following, the matrix B IAI, where
A {aij}ij, is the matrix defined by the entries bij --laijl.

It is readily seen that, for every j > 0, it holds that

-1

where Gy is the unique nonnegative solution of the matrix equation (2.8). Observe
(j2iA(J)+o 2z(J) is nonsingular sincethat for every j, the matrix I-=o Gj 2+1

S(J) (compare (2.14), (2.2), (1.4), and [151). Moreover, by replacing G with Gj+I
(compare Lemma 2.2) in (4.1), we arrive at the following recursive relation for the
sequence of matrices

(J) (J)(4.2) Gj ,j+1,2i I- Gj+l_2i+l j >_ O.
\i=0 =0

Equations (4.2), together with the convergence properties stated by Theorem
2.3, allow us to derive the following algorithm for computing the matrix Go either
in the hypotheses of Theorem 3.5 or in the case where the entries of the matrices

(I +o (j)=z Ai )-1 are bounded by a constant (compare Remark 3.3).
ALGORITHM 4.1.

1. Apply cyclic reduction by means of (2.10a) and compute the matrices Aj)

1, 2,..., q, until one of the following conditions is satisfied:

IR(q)- R(q-1)l < eE, eT(I A(oq)(I Aq))-) < eeT,

where, at each step j R(J) A(o) (I +oo (j)’-i=1 Ai )-, e > 0 is fixed, and E is the
k x k matrix having all the entries equal to 1.

2. Compute an approximation of Go by replacing Gq with R(q) in (4.2) for j q- 1,
and then apply back substitution in (4.2) for j q- 1, q- 2,..., 0, until the
approximation of Go is obtained.

In order to apply the back-substitution stage of Algorithm 4.1, one must store
the blocks Aj) for j

_
q computed at stage I. This may require a large amount of

memory in the case where the matrices Ay) are negligible only for large values of i.
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This problem is overcome by the next algorithm, where back substitution is implicitly
performed in the cyclic reduction stage and no storage is required.

Observe that the solution Go of (1.3) satisfies the matrix equation

0
H2 Hi Ho

Go(I, Go, G20,...) 3 H2 H1 Ho (Ao, O, O,.. ,),

where Ho -Ao, Hi I- A1, Hi -Ai, >_ 2, Hi I- A1, Hi -Ai, >_ 2.
By recursively applying cyclic reduction we obtain (as can easily be seen by extending
(2.3)-(2.6) to equation (4.3)) the sequence of matrix equations

(4.4) Go(I, Gj, G, .) (Ao, O,O,...), j > i,

where Gj G and the block entries H) coincide with the block entries of the second

block column of the matrix Q(J) of 2. The matrices .J) I-j), J)
2, A(0J) -H0(j), AJ)= I- Hj), AIJ)= -Hj), i>_ 2, can still be represented by the
functional equations (2.10b) and (2.10a), respectively, where in (2.10b) the functions

(J) (z) must be replaced by (J)(z) i=0 z with (z) =o Ai+lzi so
that (2.10b) is replaced by

,(j) (Y) (Y) .()+

for (J) :z + .2.(j) z and (J) +o ’(j) z Since from (4.5) it holdsE =o
that eTa(J)(1) eTa(0)(1) eT eTAo then we have eT+Y) eT --eTno for

i 7(Y) is nonsingularevery j k O. Moreover, if the matrix i=0 Uy
then it holds that

(4.6) Go Ao I- E
i-o

_1

+o i ’(y) is nonsingular.Suppose that, for every j >_ 0, the matrix I- ’i=0
Observe that if the matrix A0 has no null columns, then the matrix I- +__ G}(j)

+1
is nonsingular for any j. Then the following algorithm for the computation of the
matrix Go can be carried out.

ALGORITHM 4.2.
1. Apply cyclic reduction to (4.3) by means of (2.10a) and (4.5) for ()(z)
+ + () ^()Y’i=o Aizi (o) (z) z=0 Ai+l and compute the matrices A A j

1, 2,..., q, until one of the following conditions is satisfied:

IR(q)- R(q-1) < eE, eT(I- A(oq)(I- Aq)) -1) < eeT,
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where at each step j, R(J) A(oj) (I +oc (j)--i=i Ai )--1, > 0 is fixed, and E is the
k x k matrix having all the entries equal to 1.

2. Compute an approximation of Go by replacing Gq with R(q) in (4.6) for j q.

We observe that both Algorithms 4.1 and 4.2 involve only multiplications and
additions of nonnegative matrices and inversions of M-matrices [18], i.e., matrices
having nonpositive off-diagonal entries and nonnegative inverses. These computations,
if the diagonal adjustment technique [8] is used, can be reduced to performing additions
of positive numbers, multiplications, and divisions. This makes such computations
strongly numerically stable; i.e., the relative rounding errors in the results can be
bounded componentwise.

By following the proof of Theorem 3.5 to show the convergence to zero of the
blocks 2j), __> 2, for j --. +c, we now prove the following theorem.

THEOREM 4.1. For the matrices ?) --J), >_ 2, of (4.4) it holds that

lim/?) O for any >_ 2.

Proof. The probability invariant vector r of (1.2) satisfies the following equation:

I- A1 -Ao () rl A2
-A2 I- A1 -Ao r2 3
-A3 -A2 I-A -Ao r3 4 ro,

where the block matrix in the left-hand side is the same block matrix of (4.3). Thus,
applying j steps of cyclic reduction to the above system, we find that

7to,

where Bj) is such that Bj)

_
0 for every _> 1. Since limj 7ri.2J+i 0, for >_ 1, we

have

"R’I 7rllimj Bj) ’0 _3(j) lim. B3(Y) ’0 + fi.(aj) 0.

Therefore, for the conditions r0 > 0, rl > 0, B? _> O, }J) _> O, we deduce that

limj B? limj Aj) O for _> 2.
The result of Theorem 4.1 suggests adding to the above stop conditions (4.7) the

following one:

(4.8) eT(I- Ao(I- .q))-l) < GeT.

If this condition is verified then the matrix Go can be readily approximated by Ao(I-
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In the case of QBD processes, where P is a block tridiagonal matrix, the matrix
equation (1.3) becomes G Ao / GA1 / G2A2 and Algorithm 4.2 can be rewritten as
follows (compare (2.15)).

ALGORITHM 4.3. QBD processes.
Apply cyclic reduction to (4.3) by means of the following formulae:

A(o A(o A(o
A.+I) A() + A(o)(I- A))-A:) + A(2")(I- A))-A(oJ!,
A(2J+I) A(2J) (I A))-IA(2),
2.j+l) .J) -JI- A(oJ)(I-- AJ))-I(2J)

with A(o) Ao, A)= A1, A) A2,) A for j 1,2,...,q, until one

of the following two conditions is satisfied" eT(I- A(oq)(I- Aq))-) < eeT or

eT(I_ A(oq)(I_ q))-l) < eeT.
Compute an approximation of Go by means of Ao(I- 2q)) -1.

Observe that in the QBD case it holds that (2) A(2). This leads to a saving
of the computational cost.

Each step of Algorithm 4.3 requires six matrix multiplications and one matrix
inversion. The algorithm of [11] is similar to Algorithm 4.3 but it requires eight
matrix multiplications and one matrix inversion per step.

5. Implementation of Algorithm 4.2 by means of FFT-based tech-
niques. In this section we give a detailed description of the implementation of Algo-
rithm 4.2, which we sketched in 4.

According to the customary way of dealing with infinite sequences of blocks [15],
[9], we truncate the sequences {A)} and {.)} to the indexes mj and , respec-

tively, such that eT(I mj A) mj )-i=0 < eT and eT(I A0 ’i= < eeT where
e is an upper bound to the machine precision of the floating point arithmetic used in
the computation and is related to the accuracy of the computed approximation of Go.
In other words, we consider only those blocks that make the matrices -i=0 Ai and

A0 + Ei___I numerically stochastic with respect to e. A nonnegative matrix A is
said to be numerically stochastic with respect to e, or e-stochastic, if eT(I-A) < eeT.
In this way relations (2.10a) and (4.5) can be rewritten in terms of matrix polynomials
in the variable z, instead of matrix power series, and all the operations involved in
(2.10a) and (4.5) are thus reduced to multiplying matrix polynomials and inverting a
matrix polynomial modulo z" for a suitable m.

This kind of truncation seems to be quite natural since it fits. in with the floating
point arithmetic used in the computation in the sense that only the terms that cannot
add information to the problem are neglected. A different meaning has the truncation
used in [12], where the user must replace the infinite matrix (1.1) with a finite one. The
determination of the cutting level in the latter case constitutes a nontrivial problem.
It is not easy to recover an a priori estimate of this cutting level. Even though this
value could be dynamically determined by a suitable modification of the algorithm,
its value should be at least greater than or equal to m0; otherwise, some significant
input data would be lost.
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By extending to matrix power series the known FFT-based techniques for dealing
with scalar power series (see [3]), we now introduce the basic tools on which the fast
version of our algorithm is based.

The use of FFT techniques allows us to reduce the cost of the jth step of cyclic re-
duction from O(k3n.) operations (needed if the customary way of dealing with matrix
power series is used) to O(k3nj + k2nj log nj) operations, where nj max {mj, }.
This computational advantage is paid by a slight deterioration of the numerical fea-
tures of the algorithm. In fact, customary techniques for manipulating power series
related to stochastic matrices are strongly numerically stable; i.e., the relative errors
generated by the floating point arithmetic can be bounded entrywise, whereas with
the use of FFT it is possible to give very good relative error bounds, but only in terms
of norm (weak stability [3], [13]). However, in the many numerical experiments that
we performed we noticed no substantial difference between the numerical behaviour
of the two diverse implementations.

We describe the FFT-based techniques for matrix polynomials via the following.
We first introduce Algorithm 5.1 for matrix polynomial multiplication modulo zm 1,
and then use it for the computation of the product of a block Toeplitz matrix and
a block vector. Then we reduce the inversion of a matrix polynomial modulo z" to
inverting a lower block triangular block Toeplitz matrix, and we introduce Algorithm
5.2 for this computation. Finally, we describe Algorithm 5.3, which expands, with full
computational details, Algorithm 4.2 for the numerical solution of the matrix equation

Throughout this section we will denote by y (y0,..., Yd-1) DFT(x) the dis-
d-Icrete Fourier transform of the vector x (xo,... ,Xd-1) defined by y j=o wJxj,

i 0,...,d- I, where w cos- + sin, and is the imaginary unit such that
2 -I. Analogously, x IDFT(y) denotes the inverse discrete Fourier transform
such that x -j=0d--Jyy, ....0, ,d- I. It is well known that if d 2M,
where M is a positive integer, the computation of DFT and IDFT can be performed
with O(dlog d) real arithmetic operations (hereafter denoted by ops) by means of the
base-2 FFT algorithms. More precisely, in the case of real input the cost of DFT and
IDFT is -dlog d - O(1) ops and dlog d 4- d / O(1) ops, respectively, if we do not
count the cost of computing the dth roots of 1.

Similarly, we extend the above notation to block vectors. Given the block vec-

tor X (Xo,.. Xd-), where X ()(xi,j) are k k matrices, we define by Y
(Y0,..., Yd-) DFT(X) the block vector such that Y (y())i,j are k k matrices

and’ (0) (d-) ? (d-)
yi,y,...,yi,j DFT(x ,...,xi,j ), i,j 1,...,k. Analogously, we set

X IDFT(Y) if (0) (d-1) (0) (d-)
X,j ,j IDFT In this way the com-Yi,j Yi,j

putation of DFT(X) and IDFT(Y) is reduced to the computation of k2 DFT’s and
IDFT’s, respectively, for the cost of O(k2dlog d) ops.

x Q(z) -]=o Rz be matrix=o Qz and R(z) m-Let P(z) z-,=0

polynomials such that R(z) P(z)Q(z) mod (zm 1). Then the matrix coefficients
of R(z) can be computed, given the matrix coefficients of P(z) and Q(z), by means
of the following algorithm.

ALGORITHM 5.1. Computation of matrix polynomial product modulo zm 1.
Input. Positive integers M, k and the kk matrices P0,..., P,-, Q0,..., Q,-,

coefficients of the matrix polynomials P(z) =om- piz, Q(z) =o’- Qz, where
m-2M.

Output. The k k matrices R0,..., Rm-1, coefficients of the matrix polynomial
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R(z) _=-o Rz such that R(z) P(z)Q(z) mod (zm 1).
Computation.

1. (Evaluation) Compute the entries of the 2m matrices Us
2rs 0, ,m 1, w cos+i.... sm- in the following way:

(Uo, Um-1) DFT(Po,...,P,-I), (Vo, Vm-1) DFT(Qo, Qm-1).

2. Compute the m matrix products Ws UsVs, s 0,..., m- 1, such that Ws
p(ws)Q(ws)

3. (Interpolation) Compute the entries of the matrices R0,..., Rm- by means of
the equation (R0,..., Rm-i) IDFT(W0,..., Win-l).
The cost of Algorithm 5.1 is O(k3m + km log m) ops. More precisely, for real

input matrices the cost is less than 5kmlogm + m(3k + 2k). Indeed, due to the
real input we have Ws W,-s, s 1,...,m/2- 1, where W,-s is the complex
conjugate of Win-s; moreover, W0, W,/ are real matrices. Thus the computation at
stage 2 is reduced to m/2- 1 complex matrix products and 2 real matrix products.
Complex matrix products are computed by means of the algorithm, which uses three
multiplications and five additions [5].

Remark 5.1. Observe that if the input polynomials P(z) and Q(z) have degree
at most m/2- 1 then R(z) P(z)Q(z); thus, the matrix polynomial product can be
computed by means of Algorithm 5.1.

Remark 5.2. Algorithm 5.1 can also be used for efficiently computing the product
of a block Toeplitz matrix and a vector. In fact, if P(z) has degree m- 1 and Q(z) has
degree m/2 1, then, comparing the terms of degree m/2,..., m- 1 in the equation
P(z)Q(z) R(z) mod (z" 1), we arrive at the following equation involving a block
Toeplitz matrix:

Rn-1 Pm-1 Pro Qm/2-1

Comparing the coefficients of the term of degree in both sides of the equation
P(z)Q(z) I rood zm yields the matrix equation involving a lower block triangular
block Toeplitz matrix:

(5.1)

O Q0

Po Q,-

Let us denote by T. the matrix in (5.1). Assume for simplicity that m 2M and
M is positive integer and partition T. as follows:

It/ T/
where all four blocks are (m/2) x (m/2) block Toeplit matrices. Then he matrix

T can easily be written as

( o)(5.2) T _)Hm/2T)2
_
T/
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and the first block column (QTo,... QT_I)T of T,q 1, which solves (5.1), can be com-
puted from the first block column (QoT, ,Q,/2-1T )T of Tin by means of two mul-

tiplications between an (m/2) x (m/2) block Toeplitz matrix and a block vector. In
this way we arrive at the following algorithm, which extends to the block case the
algorithm of Lafon and Sieveking-Kung (compare [4]).

ALGORITHM 5.2. Solution of the congruence P(z)Q(z) I mod zm or, equiva-
lently, of system (5.1).

Input. A positive integer M, the k k matrices P0, P,... ,P,-I, rn 2M,
defining the matrix polynomial P(z) j-m__-o Pz, det P0 0.

Output. The matrices Q0, Q,..., Qm- satisfying (5.1) or, equivalently, such
m-that the polynomial Q(z) =o Qz solves the congruence P(z)Q(z) I mod z".

Computation.
1. Compute Q0 P0-1.
2. For 0,...,M- 1, given the first column U (QoT,...,Q2T_I)T of T,

compute the block vector V (QT2,..., Q2T+-)T, which defines the remaining

blocks of the first column of T+, by applying equation (5.2) with rn 2+
in the following way: by applying Algorithm 5.1 and Remark 5.2 compute the
products W HU and V T W.

Observe that at the ith stage of Algorithm 5.2 the computation of three DFT’s
and two IDFT’s of order 2+1 must be performed, together with the multiplication of
about 2+ complex k k matrices. The overall cost is about 6ink3 / kmlog rn
ops.

Remark 5.3. In our applications P(z) I () (z (compare (2.11)) is such’#’odd

that the power series P(z)- --i=0 Qizi is convergent for Izl 1. In this way
we have limi Qi O; thus P(z) -1 can be numerically truncated to the polynomial
Q(z) im=o Qiz for a suitable rn such that

eT(p(1)- --Q(1)) < eeT.

The value of the integer rn such that (5.3) holds can be dynamically adjusted by
modifying Algorithm 5.2 in such a way to test, at each step i, inequality (5.3).

In the following, we will denote with the same symbols (Y)(z) and (J)(z) the
polynomials of degree mj and tj, respectively, obtained by numerically truncating
the power series (J)(z) and (J)(z) of (2.10a) and (4.5). Now we are ready to give a
detailed description of Algorithm 4.2 by means of the following.

ALGORITHM 5.3. Computation of the solution Go of (1.3).
Input. Positive integers m0, k, an error bound e > 0, and the nonnegative k k

matrices A, 0, 1,... ,m0, such that the matrix =0A is e-stochastic nd the
associated Markov chain is positive_recurrent.

Output. An approximation G of the solution Go of (1.3) together with an error

bound 5 such that eTI +=0 Ai- 1-< SeT
Computation.

1. (Inizialization) Let ()(z) mo 7mo--1-,=o Aizi, ()(z) z.i=0 Ai+zi, R() Ao(I-
moY’.i= ni)- j O.

2. (Computation of the coefficients of the polynomials qa(Y)(z) and (Y)(z) of degree
mj and y, respectively, for j 1, 2,..., where my,/’j are such that the matrices
qa(J)(1) and A0 + (Y)(1) are e-stochastic.)

Repeat
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2.1. By means of Algorithm 5.2 and Remark 5.3 compute an integer q and the
q--1coefficients of the polynomial Q(z) i=0 Qiz such that

(I -(J)-odd(Z))Q(z) I mod zq

and (5.3)is verified for P(z) I- odd(Z).
2.2. By means of Algorithm 5.1 and Remark 5.1 compute the coefficients of the

polynomial
S(z)

2.3. By means of Algorithm 5.1 and Remark 5.1 compute the coefficients of the
polynomials

T(z)= S(z) even(Z).

2.4. Setj=j+l.
2.5. Compute the integers my, j and the coefficients of the polynomials 9(J)(z)

and (J)(z) of degree my and Fry, respectively, such that

(J)(z) (j--l)
ZqOodd (z) + T(z) mod zmJ,

(J)(z) odd (Z) + mod

and the matrices (J)(1) and A0 + ()(1) are e-stochastic.

2.6 Compute R(J) A(oj) (I- E=I AJ)) -1.
Until one of the following conditions is verified.

(C1) JR(J)- R(J-1) <
eT(I- A(oJ)(I- AJ))-I) <: eeT,
eT(I- do(I- Y))-) < eeT.

3. (Computation of the matrix G.)
3.1. If condition (C1) is verified then ( Ao(I ---=0mJ- R(J)(J),+,j-*

3.2. If condition (C2)is verified then Ao(I =0"- R(J)(J),i+,)-*.
3.3. If condition (C3) is verified then ( Ao(I- J))-l.

k4. (Computation of the error bound 5.) Compute 5 maxj=l,...,k +=, Iw,jl for
W W ,i=o GAi G.

6. Numerical experiments. We implemented Algorithm 4.2 in Fortran 77 by
using the customary arithmetic for matrix polynomials (program CCR: customary
cyclic reduction) and by using the FFT-based arithmetic for matrix polynomials,
as described in detail by Algorithm 5.3 (program FCR: fast cyclic reduction). The
programs were run on a Spark Workstation using the standard double precision IEEE
arithmetic. The value of e defining the stopping condition was chosen as e 10-13.
We compared our algorithms with the functional iteration (1.5c), which is the fastest
among iterations (1.5) (compare [14]), starting with X0 O and X0 I, respectively,
and with the method proposed in [12]. The implementation of functional iteration
(1.5c) was performed in Fortran 77 (program FIF: functional iteration formula), while
for the algorithm of Latouche and Stewart [12] we adapted to the specific problem the
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implementation in C given by Stewart [17] (program Latouche-Stewart (LS)). In this
adaptation we did not use FFT.

We tested our programs on a problem analyzed in [1] arising from the mathe-
matical modelling of a metropolitan network. The blocks A of (1.3) have dimension
k 16. We tested the algorithms for different values of the parameter p of (2.1).
For p 0.1 the initial cutting level m0 is 168, for p 0.8 the initial cutting level
m0 is 240, and for the remaining tested values of p >_ 0.9 the initial cutting level m0
is 264. The problems with p close to 1 are characterized by a "long queue"; i.e., the
components r of the invariant probability vector are not negligible even for very large
values of i. Programs FCR and CCR provided an approximation to the solution Go
with a residual 5 < 10-13 for p 0.1, and 5 < 10-12 for the tested values of p _> 0.8.

Table 6.1 reports the CPU time and the number of iterations needed by algorithms
FCR and CCR, together with the residual IleTIG ,oY=o GAIII Observe that despite
the weak stability property of FCR, the residual values of FCR and CCR are equal.
We may observe that the use of FFT leads to a substantial reduction of the CPU time.

p-- 0.1 27

p=0.8 61

p 0.9 62

p 0.95 65

p 0.96 65

p 0.97 66

TABLE 6.1

Cyclic reduction.

c cca
Time (s.) Iterations Residual Time (s.) Iterations Residual

9

13

14

16

17

20

8.5. 10-14

2.7. 10-13

2.7. 10-13

1.8. 10-13

2.0. 10-13

2.3. 10-13

185

484

545

592

592

603

9

13

14

16

17

20

8.5. 10-14

2.7. 10-13

2.7.10-13

1.8. 10-13

2.0. 10-13

2.3. 10-13

Table 6.2 reports the time and the number of iterations needed by program FIF,
starting with X0 I and X0 O, respectively, to compute an approximation of the
matrix Go with a residual value less than 10-12.

TABLE 6.2

Functional iterations.

FIF (Xo I)
Residual Time (s.) Iterations

2.3.10-14 8.4 22

1.1.10-13 116 211

1.2.10-13 294 495

1.2. 10-13 1104 1866

1.3.10-13 2561 4343

1.2. 10-13 11148 18900

Time (sl) Iterations

p 0.1 8.4 22

p 0.8 79 148

p 0.9 220 373

p 0.95 902 1534

p 0.96 1862 3157

p 0.97 1967 3336

FIF (X0 O)
Residual

2.6 10" 14

2.0. 10-13

2.3. 10-13

1.2.10-13

1.4. 10-13

1.5 I0-13

Table 6.3 reports the CPU time and the cut-off level needed by algorithm LS, together
with the residual IleTIG moL’=0 GAIII For p 0.1 the cut-off level sufficient to obtain
a residual value less than 10-12 is 600. For p _> 0.8 we have higher residual values
since we were not able to increase the cut-off level above 3500.

Table 6.4 reports the ratio between the CPU times needed by algorithms CCR,
FIF (with X0 I and X0 O), and LS and the CPU time needed by algorithm
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TABLE 6.3

Algorithm LS.

Ti,me,.,(s.,)
p=0.1 1019

Cut-off level Residui
600 7.8 10-13

p 0.8 12332

p 0.9 12332

p 0.95 12332

p 0.96 12332

p 0.97 12332

3500

3500

3500

3500
3500

5.3.10-s

6.5.10-6

2.2.10-5

2.4.10-5

2.3- 10-5

TABLE 6.4

Ratio of CPU times.

CCR/FCR
p--0.1

p=0.8

p--0.9

p 0.95

p 0.96

p 0.97

6.8

7.9

8.8

9.1

9.1

9.1

FIF/FCR (Xo=I)

0.3

1.3

3.5

13.9

28.6

29.8

FIF/FcR (Xo=O)

0.3

1.9

4.7

17.0

39.4

168.9

LS/FCR
37.7

20. (*)
198.9 (*)
189.7 (*)
189.7 (*)
186.8 (*)

300

250

200

150

lOO

rho=0.1
rho=0.97

0 10 15 20
Step

FIC. 6.1.

FCR. The symbol "," means that the corresponding residual value is higher than the
residual value obtained with program FCR and we were not able to decrease it.

We observe that our method is almost not sensible with respect to the values of
p, whereas the performance of FIF strongly deteriorates when p approaches 1. It is
interesting to point out the different rates of convergence of FIF in the cases X0 I
and X0 O. This behaviour, already pointed out by Latouche [9], received a full
theoretical explanation in [14].
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The number of steps needed by our algorithm seems to depend on log. d, where
d is a positive integer such that the components r are negligible for > d. It is
worth pointing out that our algorithm is particularly suitable for "hard" problems,
where the value of p is close to 1 and the classical functional iteration formulae (1.5)
converge very slowly.

Figure 6.1 shows the size of the cutting level rnj at each step of cyclic reduction
for p 0.1 and p 0.97. The decreasing behaviour leads to a further reduction of
the complexity.
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Abstract. Certain interesting classes of functions on a real inner product space are invari-
ant under an associated group of orthogonM linear transformations. This invariance can be made
explicit via a simple decomposition. For example, rotationally invariant functions on R2 are just
even functions of the Euclidean norm, and functions on the Hermitian matrices (with trace inner
product) which are invariant under unitary similarity transformations are just symmetric functions
of the eigenvalues. We develop a framework for answering geometric and analytic (both classical
and nonsmooth) questions about such a function by answering the corresponding question for the
(much simpler) function appearing in the decomposition. The aim is to understand and extend the
foundations of eigenvMue optimization, matrix approximation, and semidefinite programming.

Key words, convexity, group invariance, nonsmooth analysis, semidefinite program, eigenvalue
optimization, Fenchel conjugate, subdifferential, spectral function, unitarily invariant norm, Schur
convex, extreme point, yon Neumann’s lemma
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1. Introduction. Why is there such a strong parallel between, on the one hand,
semidefinite programming and other eigenvalue optimization problems, and on the
other hand, ordinary linear prograInming and related problems? Why are there close
analogies between many important matrix norms on the one hand, and associated vec-
tor norms on the other? This paper aims to explain the simple algebraic symmetries
which drive these parallels.

A simple example may be illustrative. Suppose that we wish to understand convex
functions f R -- R which are "orthogonally invariant." By this we mean that
f(x) f(Ux) for any point x in an and any orthogonal matrix U. What can wesay
about such functions?

We might observe first that, since f is determined by its behaviour on the half-
line {el I/

_
0}, where e (1, 0, 0,..., 0), we can write f(x) h(llxll), where

the function h R+ --+ R is defined by h() f(e). What conditions on h are
equivalent to the convexity of f? Clearly h must be convex (being the restriction of

f to a half-line), but this is not sufficient.
After some more thought we might arrive at the following answer: h must be

convex and nondecreasing at the origin. But this obscures the essential symmetry of
f. A simple trick allows us to preserve this in our answer. Instead of examining the
restriction of f to the half-line R+e we consider the restriction to the whole subspace
Re1. We then arrive at the following nuch more satisfactory answer: h([[. ]]) is convex
if and only if the function h R -- R is even and convex.

This easy example illustrates the fundamental technique of this paper--analyzing
the consequences of the symmetries of a function by analyzing its symmetries on a
"transversal" (or defining) subspace, yon Neumann’s famous 1937 characterization of
unitarily invariant matrix norms [27] is precisely of this mold. One statement of this
result is that a unitarily invariant matrix function f (one satisfying f(x) f(uxv)
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Overton November 20, 1995. This research was partially supported by the Natural Sciences and
Engineering Research Council of Canada.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo Ontario
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for any unitary u and v) is a norm exactly when its restriction to the subspace of real
diagonal matrices is a symmetric gauge function.

What algebraic structure underlies yon Neumann’s result? There are three es-
sential ingredients: first, a real inner product space X (in this case X Cmn with
(x, w Re tr x’w); second, a (closed) group of orthogonal linear transformations
(in this case those of the form x - uxv for unitary u and v); third, a map 3’ from
X to a transversal subspace (in this case 7(x) is the diagonal matrix with diagonal
entries the singular values of x arranged in nonincreasing order). The map 7 should
be -invariant and should satisfy the following conditions.

AXIOM 1.1 (decomposition). Any element x of X can be decomposed as x
A7(x) for some operator A in .

AXIOM 1.2 (angle contraction). Any elements x and w in X satisfy the inequality
(, ) <_ ((x), ()}.

In von Neumann’s case, Axiom 1.1 is just the singular value decomposition, and
Axiom 1.2 is "von Neumann’s lemma" (see, for example, [7]).

This structure (X, G, 7) (which we call a normal decomposition system) is the focus
of this paper. Our aim is to analyze G-invariant functions on X via their restriction
on the range of 7. For this to be of much interest we would hope that the range of

7 has lower dimension than X. Our other main example, of fundamental interest in
matrix optimization, also has this property:

X {n n symmetric matrices},
{x uTxulu orthogonal},

7(x) DiagA(x), where

l(X) /2(X) /n(X)

with (x, w} tr xw,
and

are the eigenvalues of x.

In a later paper [22] a broad family of examples generated from the theory of
semisimple Lie groups will be discussed. In this paper we concentrate on outlining
how the idea of a normal decomposition system provides a simple yet powerful uni-
fying framework in which to study a wide variety of important results. Examples
include Schur convexity (see, for example, [23]), the convexity of eigenvalue functions
[i0, 6, II, 3, 13, 18], calculations of Fenchel conjugates and subdifferentials of convex
eigenvalue functions [26, 5, 12, 34, 31, 28, 29, 30, 15, 16, I, 17, 18, 24, 33], yon Neu-
mann’s original result [27] and generalizations (for example, [4, 19]), subdifferentials
of unitarily invariant norms [37, 38, 39, 40, 41, 8, 7, 9, 19], and characterizations of
extreme, exposed, and smooth points of unit balls [2, 40, 41, 8, 7, 9, 19].

This paper concentrates on convexity and its ramifications.

2. Group invariant normal forms. Underlying all the work in this paper is
a rather simple algebraic structure. We therefore begin by fixing our notation and
formally defining this structure.

We will work in a real inner product space X. For simplicity we will assume
that X is finite dimensional, although many of our results extend easily. The adjoint
of a linear operator A X X is the linear operator A* X X defined by
(A*w,x} (w, Ax} for all points w and x in X. We denote the identity operator
by id X - X, and if A*A id then we say that A is orthogonal. In fact, A is
orthogonal if and only if it is norm preserving: IIAxll- Ilxll for all x in X, where the
norm is defined by Ilxll- V/(x, x/. In this case, A- A*.

We denote the group of all orthogonal linear operators on X (with composition)
by O(X), which we endow with the natural topology. Thus A approaches A in O(X)
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if and only if Arx approaches Ax in X for all x in X. Given a subgroup G of O(X),
a function f on X is G-invariant if f(Ax) f(x) for all x in X and A in 6. We can
now describe our fundamental structure--this structure is an underlying assumption
throughout the paper.

DEFINITION 2.1. Given a real inner product space X and a closed subgroup of
the orthogonal group O(X), the map " X X induces a G-invariant normal form
onX if

(a) is G-invariant,
(b) for any point x in X there is an operator A in with x A/(x), and
(c) any points x and w in X satisfy the inequality (x, w) <_ (/(x), (w)).

In this case (X, G, /) is called a normal decomposition system.
Notice two immediate consequences of this definition: the map /must be idempo-

tent, since for any point x in X, properties (a) and (b) imply (/(x)) /(A*x) ,(x),
and furthermore "), must be norm preserving, since II,(x)ll--IIA*xll--Ilxll. Our first
result, which is somewhat less trivial, has the following important corollary.

The condition for equality in property (c) is the existence of an operator A
in G with x A/(x) and w A/(w).

THEOREM 2.2. A subset K of X has the property that (x,
for every pair of elements x and w of K if and only if there is an operator A in
satisfying x A/(x) for all x in K.

Proof. The "if" direction is easy, so consider the "only if" direction. Without
loss of generality, K is nonempty, so choose a point z in ri (convK) and an A in
for which z A(z). If there is a point x in K with x A/(x) then the Cauchy-
Schwartz inequality implies that (x, A/(x)) < Ilxll 2. It is easy to write z as a convex
combination z a0x + i>0 cixi for strictly positive (i’s with sum 1 and points x
in K. But now we have

(/(x), /(z)) (A/(x), A/(z)) (A/(x), z)
< ao[[x[[ 2 + (A/(x), i>0 aixi)
<  ollxll +

i>0

 o11 11 + ",(x,x

(x, z) <

which is a contradiction.
We defer a systematic discussion of examples until the end of the paper. How-

ever, for the sake of concreteness the reader may wish to keep in mind the following
extremely simple example: X R (with (x, w) xw), (-t-ida, and /(x)
The properties are easily verified.

We will only use the closedness of G very rarely (specifically, in Theorem 3.3), but
it does not rule out much of interest. We think of the formula x A’(x) in property
(b) as being a "normal form decomposition" of x. Property (c) expresses the fact that
/contracts the angle between the vectors x and w unless they have a simultaneous
normal form decomposition (in which case the angle remains constant). If we write

(2.1) Gx {A e x A(x)},

then (b) says that 6x is nonempty, while the condition for equality in (c) is that
Gx N Gw be nonempty.
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PROPOSITION 2.3. For points x and w in X,

max (x, Aw) (3‘(x) 3‘(w)).
AEG

Proof. Note that (x, Aw} <_ (3‘(x), 3‘(Aw)} (3‘(x), 3‘(w)} for any operator A in
G. On the other hand, since there exist operators B and C in G with x B3‘(x) and
w C3‘(w), we have that (3‘(x),3‘(w)} (B*x,C*w} (x, BC*w}, so the maximum
is attained by A BC*.

Given a subset K of X, the dual cone of K is defined to be the closed, convex
cone

K+ {w e X l(x,w) >_ 0 for all x in K}.

The set K is a closed, convex cone if and only if K K++ [32, Thm. 14.1]. The
function 3‘ is K+-convex if the real function (3‘(.), w} is convex for all vectors w in K,
and a function f" K -- [-oc, +oc] is K+-isotone if f(x) >_ I(w) for any x and w in
K satisfying x- w E K+.

It transpires that Definition 2.1 has strong implications for possible maps 3’.
THEOREM 2.4. The range R(3‘) of the map 3‘ is a closed, convez cone. Further-

more, 3‘ is norm preserving, positively homogeneous, and R(3‘)+-convex with global
Lipschitz constant 1.

Proof. For any point x in X it follows from Definition 2.1 that (x, w) _< (3‘(x), w}
for all points w in R(3‘), and hence 3‘(x)- x e R(3‘)+. If in particular x lies in R(3‘)++
then

0 <_ (x, z(x) x/= (,() -Ilxll < 0

since, as we have seen, II(x)ll Ilxll, It follows that x 3‘(x) e R(3‘), so R(3‘)++ c
R(3‘), and hence R(3‘) is a closed, convex cone.

Supposing once more that x lies in X and that the scalar is nonnegative, we
have

II(x)- ,(x)ll -II(x)ll + ,ll(x)ll 2((,x), (x))
_< II),xll / llxll
=0;

whence 3‘(Ax) A3‘(x). Thus 3‘ is positively homogeneous.
By Proposition 2.3, for any w in R(3‘) we have

@(x) w} max (x, Aw}
A

and hence @(.), w} is convex, being a pointwise maximum of linear functions. Thus
3‘ is R(3‘)+-convex.

Finally, for any x and w in X,

(,y(x),-y(x)> + <,y(),,y()> <-y(x),

Ilxll + Ilwll = 2<x, w>

whence the Lipschitz constant 1.
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Various algebraic ideas can be applied naturally to the concept of a normal de-
composition system. For example, we say that two normal decomposition systems
(X1, 1,3’1) and (X2, g}2,3’2) are isomorphic if there is an inner product space isomor-
phism a X1 --* X2 and a group isomorphism/ G1 -- G2 such that for all points x in

X1 and operators A in 1 we have 3’2(a(x))= a(3’l(X)) and (/(A))(a(x)) a(Ax).
There is also a natural notion of the Cartesian product of two normal decomposi-
tion systems. Observe finally that, given any inner product space X and subgroup G
of O(X), easy examples show that there may be no map 3’ with (X, 6, 3’) a normal
decomposition system.

3. G-invariant functions and sets. The main aim of this paper is to study
functions f X --. [-oc, +oc] on the inner product space X which are G-invariant:
I(Ax) f(x) for all points x in Z and operators A in the group . As usual,
we assume that the map 3’ induces a G-invariant normal form on X in the sense of
Definition 2.1.

We will be particularly interested in convex functions f, which we define by re-
quiring that the epigraph

epif {(x,c) e X x R Ic > f(x)}

be a convex set. The function f is closed if its epigraph is closed and is proper if it
never takes the value -x and has nonempty domain,

domf {x e X If(x) <

The (Fenchel) conjugate of f is the closed, convex function f* X
defined by

f* (w) sup{ (x, w) f(x) x e X}.

For proper, convex f, the conjugate f* is also proper with f** f providing that f
is also closed. For proper f we can define the (convex) subdifferential at a point x in
dom f by

Of(x) {w e z f(x) + f* (w) (x, w) }.

Elements of the subdifferential are called subgradients. For all of these ideas the
standard reference is [32].

The following result is rather reminiscent of the discussion in [32, pp. 110-111].
It shows that conjugacy preserves G-invariance.

PROPOSITION 3.1. If the function f X [-x, +x] is G-invariant then so is
the conjugate function f*, and

f*(w) sup{(x,3’(w)) f(x) lx e R(3’)}

for any point x in X.
Proof. For any operator A in o (whence w A3’(w)),

f* (w) sup{(z, w) f(z) z e X}
sup{(Bx, A3"(w))- f(Bx) lx e R(3’), B e G}
sup{sup{(x,B*A3"(w))lB e } f(x)[x e R(3’)}
sup{(x, 3’(w)) f(x) lx e R(3’)}
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by Proposition 2.3. Since 3’ is G-invariant, so is f*.
LEMMA 3.2. A G-invariant function f: X -- [-oc, +oe] is (grechet) differen-

tiable at the point x in X if and only if it is differentiable at /(x).
Proof. For any operator B in G, we know that f(Bw) f(w) for all points w in

X, and hence by the chain rule, if f is differentiable at Bw then it is differentiable at
w. Choosing an operator A in Gx (so that x A’(x)), the result follows by setting
w=x, B=A* andw=(x), B=Ainturn.

The next result is our first rather nontrivial observation. A consequence, for
example, is that symmetric, convex functions on R are "Schur convex" (see Example
7.1).

THEOREM 3.3. If the G-invariant function f X [-oc, +oc] is convex then it
is R(/)+-isotone on R(@: if points x and w lie in R(/) with x- w in R(/)+ then

f(x) >_ f(w).
Proof. The coset x is compact (since G is compact). If w lay outside its convex

hull then there would exist a separating hyperplane defined by a vector v in X with

max (v, Ax} (/(v),

by Proposition 2.3, and then (7(v), x- w} < 0, contradicting the assumption that
x- w lies in R(@+. Hence there exist positive scalars A1, A2,..., A with sum 1 and
operators A1,A2,... ,A in G with w [ AiAix.

Suppose that f(x) < f(w). Then we can choose a real number a in the interval
(f(x), f(w)), and since f is -invariant, f(Aix) f(x) < a for each 1,2,..., r.

Now since f is convex,

(see [32, Thm. 4.2]), which is a contradiction. [:]

We will also be interested in G-invariant subsets of X, so we will conclude this
section with some simple observations illustrating how various algebraic and topo-
logical constructions preserve -invariance. Notice first that the class of 6-invariant
sets is easily seen to be closed under arbitrary unions, intersections, and comple-
ments. Suppose that the subset D of X is 6-invariant (that is, x E D, A E implies
Ax D). Then the interior of D is quickly seen to be G-invariant; whence the closure
and boundary of D are also G-invariant.

For each r 1, 2,..., suppose that A is a subset of R and define a subset of X,

It is immediate that this set is G-invariant. By taking A to be R R {A E

RI A 1}, and {A RI A 1} in turn we see that the linear hull, the
conical hull, the af-fine hull, and the convex hull of D re all -invriant.

We say that a point x lies in the intrinsic core of D, written icr D, if for any point
w in the ne hull ffD, x + 5(w x) lies in D for ll real 5 sufficiently smll. When
D is convex its intrinsic core coincides with its relative interior ri D, the interior of
D relative to its affine hull (see [32]), and in this case the relative boundary rb D is

just cl D \ ri D. Since it is easy to check that icr D is G-invariant, it follows that for
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convex, G-invariant D, the relative interior and boundary of D are also G-invariant.
Finally, for any -invariant set D the dual cone D+ and the orthogonal complement
D+/- are both -invariant.

4. Reduction. Let us assume once more that (X, G, ) is a normal decompo-
sition system in the sense of Definition 2.1. If the function f X - [-c, /c] is

G-invariant then since f(x) f((x)) for all points x in X, the behaviour of f is
determined by its behaviour on R(), the range of . The key idea of this paper is
then rather simple--we reduce questions about f to corresponding questions about
the restriction of f to a subspace Y containing R(): typically, Y R() R(7).

Given a subspace Y of X, we denote the stabilizer of Y in G by

y {A e AY Y}.

We will frequently abuse notation and write Gy for the group of restricted operators

[ (AIy A e Gy}.

In other words, we think of operators in Gy as orthogonal transformations on Y (as
well as on X). When Y contains R(7) we can consider the restricted map 71Y Y --* Y:
we will frequently write 7 in place of

The following central assumption will remain in force throughout the remainder

of the paper.
ASSUMPTION 4.1. In the sense of Definition 2.1, (X,G,7) is a normal decom-

position system. The inner product space Y is a subspace of X (with the inherited
inner product) and contains the range of 7. Furthermore, (Y, G, 7) is also a normal
decomposition system.

This amounts to the additional assumption that if, in Definition 2.1, the point x
in fact lies in Y then the operator A in property (b) can actually be chosen to leave Y
invariant. Of course a trivial example is Y X. Once again, since we are deferring
examples until the end of the paper, it may be helpful to keep a simple (although
nontrivial) example in mind. We take X to be R with the standard inner product,
G (Dn, the orthogonal group on R, and let e be the vector (1, 0, 0,..., 0). Then
it is easily verified that if we define 7(x) IIxlle for all x in R then we obtain a
normal decomposition system, and that if Y span {e } then Assumption 4.1 holds.

An interesting general framework in which Assumption 4.1 holds is developed in

[22]. In summary, suppose that G is a real, semisimple Lie group with a maximal
compact subgroup K, and that g k (R) t is the corresponding Cartan decomposition
(where g and k are the tangent algebras of G and K, respectively). Now let X t,
let the group consist of the adjoint actions of elements of K on t, and let Y be
a maximal R-diagonalizable subspace of t. Then y is (essentially) the associated
Weyl group. Finally, fix a closed Weyl chamber D C Y and for any point x in t define
7(x) to be the (singleton) intersection of the -orbit of x with the chamber D. Then
Assumption 4.1 holds; see [22] for details. In fact, all of the concrete examples which
we develop later fall into this framework.

In what follows, o denotes composition. Thus (h o 7)(x) h(7(x)).
PROPOSITION 4.2. A function f is -invariant on X if and only if it can be

written in the form f h o 7 for some y-invariant function h on Y.
Proof. Any function of the form h o 7 is -invariant since 7 is. If, on the other

hand, f is -invariant then it is immediate that f flY o 7, and clearly fly is y-
invariant.
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Thus henceforth we will restrict attention to -invariant functions h o 3/, where
the function h is y-invariant. We now follow two distinct approaches to the elegant
fact that such an extended real-valued function h o 3/is convex on X if and only if
h is convex on Y. The first approach is direct, using Theorem 3.3, and hence relies
on the underlying assumption that the group is closed. The second approach does
not require this assumption, but instead assumes that the function h is closed and
employs an attractive Fenchel conjugacy argument.

THEOREM 4.3 (convex and closed functions). Suppose that the function h" Y --[-x, +] is Gy-invariant. Then the function h o 3/ is convex (respectively, closed)
on X if and only if h is convex (respectively, closed) on Y. Hence, a G-invariant
function on X is convex (respectively, closed) if and only if its restriction to Y is
convex (respectively, closed).

Proof. Since h (h o 3/)lY, one direction is clear. Conversely, suppose that h is
convex. For any points x and w in X and real A in (0, 1), we know by Theorem 2.4
that 3/(x) + (1 )3/(w) and 3/(x + (1 )w) both lie in R(3/), and that (3/(x)+
(1 A)3/(w))- 3/(/\x + (1 A)w) lies in R(3/)+. Hence by Theorem 3.3 (applied to the
system (Y, y, 3/)), we have

h(13/(x) + (1 l)3/(w)) >_ h(3/(Ax + (1 l)w)).

Now for any real numbers a > h(3/(x)) and/ > h(3/(w)), since h is convex we deduce
that h(3/(Ax + (1 A)w)) < Ac + (1 A)/; whence h o 3/is convex [32, Thm. 4.2].

Turning now to the closed case, since h (h o 3/)lY we have that

(4.1) epi h epi(h o 3/) n (Y x R),

so that if h o 3/is closed, then so is h. Suppose on the other hand that h is closed.
If {(x, r)} is a sequence of points in epi (h o 3/) approaching the point (x,r), then
since the sequence ((3/(x),ri)) lies in the closed set epih and approaches
(as 3/is continuous by Theorem 2.4), it follows that (3/(x), r) E epi h, and so (x, r)
epi (h o 3/). El

The second approach to convexity is rather more transparent once we have derived
the following elegant formula.

THEOREM 4.4 (conjugacy). Suppose that the function h Y --, [-oo,+oo] is
Gy-invariant. Then on the space X,

(h o 3/)* h* o3/.

Proof. By Proposition 3.1 applied in turn to the systems (X, G, 3/) and (Y, lY, 3/),
we see that for any point w in X,

(h o G)*(w) sup{<x, G(w)) h(G(x))lx e R(G)}
sup{<x, G(w)> h(x) lx e R(G)}
h*(3/(w)). El

It is an immediate consequence of this conjugacy formula that a y-invariant
function h: Y --. (-oc, /oc] (note that we exclude -ec) is closed and convex exactly
when the function h o 3/ is closed and convex on X. One direction is clear from
equation (4.1). On the other hand, if h is closed and convex then h h**, so that
h o 3/= (h o 3/)** by Theorem 4.4, and hence h o 3/is also closed and convex.



GROUP INVARIANCE AND CONVEX MATRIX ANALYSIS 935

Proposition 4.2 shows that the restriction operation which maps an extended
real-valued function h on X to its restriction hly gives a one-to-one correspondence
between -invariant functions on X and y-invariant functions on Y. Theorem 4.3
(convex and closed functions) shows that this correspondence preserves convexity and
closedness, and Theorem 4.4 (conjugacy) shows that it also preserves the conjugacy
operation. We shall see in 6 that restriction also preserves essential strict convexity
and smoothness (Corollary 6.2).

The next result provides perhaps a more compelling motivation for the conju-
gacy approach. Recall that for a point x in X, the set x describes the possible
decompositions of x: x {A E lx A/(x)}.

THEOaEM 4.5 (subdifferentials). Given a function h Y (-c, +c] which
is Gy-invariant, suppose that the point x in X satisfies y(x) dom (h). Then the
element w of X is a subgradient of the function h o / at x if and only if /(w) is a

subgradient of h at "(x) with x and w having simultaneous decompositions: Gx NGw
O. In fact, the following "chain rule" holds:

(4.2) O(h o 7)(x) GOh(9/(x)).

Proof. By definition, w O(h o 7)(x) if and only if

(x, w) (h o 7)(x) + (h o 7)*(w) h(7(x)) + h*(7(w)),

using Theorem 4.4 (conjugacy). But then, since

h(7(x)) + h* (7(w)) >_ (7(x), 7(w)} > (x, w},

equality holds throughout, and the first part of the result follows using Theorem 2.2.
Suppose that w e O(h o 7)(x). Then by the above, 7(w) e Oh(7(x)) and we can

choose an operator A in G N G. Then

w AT(w) e AOh(7(x)) C GOh(7(x)).

Conversely, suppose that y Oh(7(x)) and that A G. Then

(h o 7)(x) + (h o 7)* (Ay) h(7(x)) + h*(7(Ay))
h(7(x))+ h*(7(y))
h(7(x))+ h* (y)

using Theorem 4.4 (conjugacy) and the Gy-invariance of h*. Thus Ay lies in O(h o

) (x), as required.
Notice that this result is the first point at which we have used the condition for

equality in property (c) of Definition 2.1.
COROLLAaY 4.6. Suppose that the function f X (-, +] is G-invariant

and that the point x lies in dom f Then the element w of X is a subgradient of f at
x if and only if’(w) is a subgradient of f at 7(x) with x and w having simultaneous
decompositions: O. In fact, Of(x) 6xOf(,(x)).

Proof. Take Y X in Theorem 4.5 (subdifferentials).
COROLLARY 4.7. Suppose that the function f X - (-oe, +oe] is G-invariant

and convex. If f is differentiable at the point x then Vf(7(x))= 7(Vf(x)).
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Proof. By Lemma 3.2, f is differentiable at 7(x). By Corollary 4.6, since Vf(x).E
Of(x) it follows that 7(Vf(x)) e Of(7(x))= (Vf(7(x))}. [:l

Given functions h,p Y -- (-cx, +oc], we define the infimal convolution h[:]p
Y [-c, +oc] by

(h[:]p)(y) inf {h(w) + p(y w)}.
wEY

An analogous definition holds on X.
THEOREM 4.8 (infimal convolution). Suppose that the functions h,p" Y

(-, +c] are Gy-invariant and convex. Then

(h[:lp) o 7 (h o 7)D(p o 7).

Proof. Given any two points x and z in X, define two compact convex subsets of
Y by

C conv GyT(z), and

D ()- conv(x- z).

These two sets are not disjoint, since a separating hyperplane would give an element
u of Y and a scalar/ with

(7(u), 7(z)) max (u,
AEy

< < min (u,"/(x)-A7(x-z))
Ay

<, (x)> <(),( z)>
((u), (x) (x z)),

which contradicts the convexity and positive homogeneity of ((u), 7(’)) (Theorem
2.4). Thus there is a point w in C N D, and this point must satisfy h(w) <_ h(7(z))
and p((x) w) <_ p(7(x z)).

Now consider any fixed point x in X. By the above argument we see that

(h[:]p)(7(x)) inf {h(w) + p(7(x) w)}
wY

< inf {h(7(z))+ p(7(x- z))}
zX

((h o 7)[:](p o 7))(x).

On the other hand, we can choose an operator A in Gx, and then

The result follows.
This result strengthens and generalizes those in [33, 22].
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5. Invariant sets. In the last section we studied -invariant functions on the
space X. In this section we consider analogous questions for -invariant subsets of
X. As usual, (X, , 7) is a normal decomposition system with a subsystem (Y, y,
(where Y contains the range of /). In other words, Assumption 4.1 holds.

PROPOSITION 5.1. A subset D of X is -invariant if and only if it has the form
D -I(C) for some Gy-invariant subset C of Y.

Proof. Clearly any set of the form 7-1(C) {x E X ly(x) C} is G-invariant
because 7 is. On the other hand, if D is G-invariant then it is easily checked that we
can write D 7-I(D N Y), which has the required form.

Thus henceforth we will restrict our attention to G-invariant sets /-1(C) (or,
equivalently, GC), where the set C C Y is y-invariant. Sets can be effectively
studied via their indicator functions,

5c(Y) O, y C,

Notice, for example, that 5-1(c) 5c o , for any subset C of Y.
COROLLARY 5.2 (closed and convex sets). Suppose that the subset C of Y is

Gy-invariant. Then the set - (C) is closed (respectively, convex) if and only if C is
closed (respectively, convex).

Proof. Apply Theorem 4.3 to the function 5c.
A fundamental idea in optinization is the (convex) normal cone to a subset C of

Y at a point y in C, defined by

N(ylC {w e Y l(w,z y}

_
0 for all z e C}.

It is easily checked that N(ylC OSc(y), whence the following useful formula.
COROLLARY 5.3 (normal cones). Suppose that the subset C of Y is Gy-invariant

and that the point x in X satisfies "(x) C. Then the element w of X lies in the
normal cone N(xI/-(C)) if and only if (w) lies in N(/(x)lC) with x and w having
simultaneous decompositions (x ? ). In fact,

Proof. Apply Theorem 4.5 (subdifferentials) to the function h 5c.
Other convex-analytic formulae follow easily from Theorem 4.4 (conjugacy). For

convenience, we collect some similar-looking results in a single theorem. The polar
set of a subset C of Y is defined by

C {z e Y l(z, y)

_
1 for all y e C},

while the polar cone is

C- {z e Y l{z,y}

_
0 for all y e C}.

THEOREM 5.4. Suppose that the subset C of Y is Gy-invariant. Then
(i) (’-l(C))- ’-l(c-),
(ii) (7-(C)) /-(C), and
(iii) intz/-(C) -l(intyC).

Furthermore, C "- (C) Y, and if C is also convex then
(iv) ri ,- (C) -(ri C), and
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(V) affT-l(C) 7-1(&ffC).
Proof. An element w of X lies in (7-1(C)) if and only if

0 5,,[-1(C)(’W (5C o /)(W)

whence (i), and (ii)is similar.
To see (iii), note that since 7 may be regarded as a map from X to Y and is

continuous by Theorem 2.4, 7-1(intyC) is an open subset of 7-1(C), and hence
7-1(intyC) c intx7-1(C). Conversely, suppose that the point x lies in intx7-1(C),
and yet 7(x) inty(C). Then there is a sequence of points (Yn) in Y \ C approaching
7(x). Each point has a decomposition yn A,7(Yn) for some operator An in Gy, and
since Gy is compact there is a convergent subsequence An, - A E Gy. Now notice
that the sequence 7(Yn’) A,yn, approaches A*7(x). Since 7-1(C) is G-invariant,
so is intx7-1(C), and hence since x lies in intx7-1(C), so does A*7(x). Thus for
sufficiently large n’ we have 7(Yn’) 7-1(C); whence 7(Y,’) C. Now since C is
Gy-invariant, yn, C, which is a contradiction.

For any point y in C, y lies in Y and there is an operator A in Gy with y =AT(y).
Since C is Gy-invariant it follows that 7(Y) C, so that y 7-1(C)C? Y. Conversely,
if y E 7-1(C) g Y then again there exists A in Gy with y A7(y); whence y C
since C is Gy-invariant. Thus C 7-1(C) C Y.

Now suppose that C is convex and, without loss of generality, nonempty. By
Corollary 5.2, 7-1(C) is a nonempty, G-invariant, convex set, so there exists a point
x in ri7-1(C). Since ri7-1(C)is G-invariant, 7(x) lies in Y gl ri7-1(C). Hence
the relative interiors of the convex sets
7-1(C)) Y N riT-l(C), by [32, Cor. 6.5.1], and it is elementary to check that
aft (Y 7

-1 (C)) Y aft7-1 (C). Now, a point z belongs to ri 7-1(C) if and only if
7(z) YClriT-l(C) ri C, by the -invariance of 7-1(C), and (iv) follows. Equation
(v) is similar.

The pattern of these results is clear. If the convex subset C of Y is -invariant
then for many set operations ’#’ the following metaformula holds:

The utility of this formula lies in expressing the result of an operation in the larger
space X on a complicated set, 7-1(C), in terms of the result of the same operation
in a smaller space Y on the simpler set C. A straightforward deduction (in light of
Theorem 5.4) is that if the convex subset D of X is G-invariant then for many set
operations ’’ the following metafornula holds:

(5.2) Y --/=/=D =/=/=(Y C D).

We will see another example of this pattern in the next section--we will show that
exp (7-1(C)) 7-(exp C) for a closed, convex set C, where expC denotes the set of
exposed points of C. To end this section we prove the analogous result for the set of
extreme points of C, denoted ext C, which are those points x in C for which C \ {x}
is convex.

THEOREM 5.5 (extreme points). If the subset C ofY is convex and Gy-invariant
then

( xt c).
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Proof. Suppose first that the point x in X does not belong to /-1 (ext C), so that
7(x) extC. If /(x) C then clearly x ext (-1(C)), so suppose that for some
points u and v in C distinct from 7(x) and some scalar a in (0, 1) we have /(x)
au + (1- a)v. For any operator A in G we now have x AT(x) aAu + (1- a)Av,
and since the points Au and Av are distinct from x in the set -(C), it follows that
x is not extreme in this set.

On the other hand, suppose that 7(x) is extreme in C and yet x is not extreme
in 7-(C)---we will derive a contradiction. Pick points Ul and v distinct from x in
7-(C) and a scalar a in (0, 1) with x au + (1 a)v. Now define a new point

f (X + Ul) if 7(X) 7(Ul),
U

ul otherwise.

Since 7-1(C) is convex, u lies in 7-1(C), and if 7(x) 7(u) then x] ]Ul] by
Theorem 2.4 with

< +

Hence in either case 7(u) 7(x). By defining a point v in an analogous fashion we
arrive at a representation x au + (1 a)v for a scalar a in (0, 1) with 7(u) and
7(v) distinct from 7(x)in C.

Now certainly 7(x) does not belong to either of the cosets GyT(u) or GyT(v).
For example, if 7(x) AT(u) for some operator A in Gy then applying 7 gives a
contradiction. Thus, since 7(x) is extreme,

(x) conv (6rT(u) 6r(v)).

Since the set on the right-hand side is compact, we can choose an element y of Y
(defining a separating hyperplane) so that

@(y), 7(x)} (y, (x)} > max (y, Gy(u) Gr(v)}
max{ (7(Y), 7(u)), @(y), 7(v)} },

using Proposition 2.3. But this contradicts the fact that x au + (1 a)v and the
function (7(Y), (’)} is convex (Theorem 2.4).

6. Smoothness strict convexity and invariant norms. Our aim in this
section is to investigate the dual concepts of smoothness and strict convexity for G-
invariant convex functions. Once again, we assume throughout that (X,G, ) is a
normal decomposition system, and that Assumption 4.1 holds, which is to say that
(Y, Gy, ) is a subsystem where the space Y contains the range of .

The first result shows that a G-invariant convex function h7 (where the function
h is Gy-invariantsee Proposition 4.2) is differentiable at a point x in X if and only
if h is differentiable at (x).

THEOREM 6.1 (differentiability). Let the function h Y (-, +] be Gy-
invariant. If h o is differentiable at a point x in X then h is differentiable at (x),
and the following chain rule holds:

V(h AVh( (x)) A 6x.

Conversely, if h is in addition convex, and differentiable at 7(x), then h is differ-
at x a d, Z)(x))=
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Proof. For any operator A in Gx we have x AT(x), and for all points y in Y

(h o /)(Ay) h(7(Ay)) h(’y(y)) h(y),

since h is y-invariant. The left-hand side is differentiable at y /(x), by the chain
rule, hence so is the right-hand side with Vh(/(x)) A*V(h o /)(x). The first part
of the result follows.

On the other hand, if h is also convex, and differentiable at -(x), then Oh(’(x))
{Vh(7(x))} by [32, Tam. 25.1]. Now by Theorem 4.5 (subdifferentials), if an element
w of X belongs to O(h o "y)(x) then -(w) e Oh(/(x)), and so -(w) Vh(/(x)). In
particular, since /is norm preserving (Theorem 2.4), any such subgradient has norm

IIVh(/(x))]]. Since O(h o )(x) is a convex set and I1" is a strict norm, O(h
has at most one element. However, it is nonempty by the chain rule (4.2). Thus it
is a singleton, whence h o /is differentiable at x by [32, Thm. 25.1], and the result
follows.

We say that a proper, closed, convex function h" Y --. (-oo, +oo] is essentially
smooth if it is differentiable at any point where it has a subgradient, and is essentially
strictly convex if it is strictly convex on any convex set on which the subdifferential
is everywhere nonempty. These two concepts are dual to each other: h is essentially
smooth if and only if its conjugate is essentially strictly convex and vice versa [32,
Thm. 26.3].

COROLLAR.Y 6.2 (essential smoothness and strict convexity). Suppose that the
function h" Y -- (-oo, +oo] is y-invariant, closed, proper, and convex. Then the
function h o is essentially smooth (respectively, essentially strictly convex) if and
only if h is essentially smooth (respectively, essentially strictly convex).

Proof. Suppose first that h o / is essentially smooth. If h has a subgradient
v e Y at the point y E Y then by Corollary 4.6 we have -(v) E Oh(9/(y)). Since the
identity operator lies in G(Y) it follows from the subdifferential formula (4.2) that
"y(v) O(h o /)(/(y)). Thus because h o , is essentially smooth, it is differentiable
at (y), and hence by Theorem 6.1 (differentiability), h is differentiable at /(y), and
therefore also at y by Lemma 3.2. Thus h must be essentially smooth.

Conversely, suppose that h is essentially smooth. If h o , has a subgradient at a
point x in X then the subdifferential formula (4.2) implies that Oh(/(x)) is nonempty.
Hence h is differentiable at (x), and therefore ho/is differentiable at x by Theorem
6.1 (differentiability). Thus h o is essentially smooth.

The essentially strictly convex case follows by taking conjugates.
The following result is another example of the pattern (5.1) that we observed

in the last section: #(-(C)) -(#(C)). If the subset C of Y is closed and
convex then we say that a point y in C is exposed if there is an element z of Y with
(z, Y/ > (z, u} for all points u in C \ {y}. Equivalently, a point y in C is exposed if
and only if it lies in the rnge of Vh [32, Cor. 25.1.3]. We denote the set of exposed
points by exp(C). A generMiztion of this result to exposed faces appears in [21].

COROLLARY 6.3 (exposed points). Suppose that the subset C ofY is Gy-invariant,
closed, and convex. Then

exp(-y-1 (C)) 9,-l(exp(C)).

Proof. If the point x in X satisfies 9’(x) e exp(C) then for some element v of Y we
have /(x) Vh(v), and by Corollary 4.7 it follows that "(x) Vh(/(v)). Notice
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that 5-1(c) 5co7, and hence by Theorem 4.4 (conjugacy) we have 5_(c 5o7.

Choose an operator A in , so that x Ag/(x), and observe that A a-(). Thus,
applying the chain rule (6.1),

*V6._(c)(A9/(v)) V(5 o 9/)(Ag/(v)) AV6b(9/(v)) A9/(x) z,

so that x . exp(9/-l(C)).
Conversely, if x E exp(9/-l(C)) then for some element w of X we have x

5_(c (w) (5o9/)(w). It follows by Theorem 6.1 (differentiability) that 9/(x)
VS(9/(w)), whence 9/(x)

To end this section we examine our results for the special case of invariant norms.
If p is a norm on Y then we denote the dual norm on Y by pD, where for an element
z of Y,

pD (Z) max{ (y, z} Y e Y, p(y) 1 }.

We relate the dualizing operation for norms with conjugacy by the following standard
and straightforward trick.

LEMMA 6.4. If p is a norm on Y then (1/2p(. ),= l(pD(.))2.
A norm p on Y is smooth if it is differentiable except at the origin. Equivalently,

the proper, closed, convex function p2/2 is essentially smooth. Furthermore, p is
strict if p(u + v) < 2 for all distinct points u and v in the unit ball for p, namely,
{Y Y IP(Y) <- 1}. Equivalently, p2/2 is essentially strictly convex. A point y in Y is
a smooth point of the unit ball if p(y) 1 and p is differentiable at y.

THEOREM 6.5 (norms). The G-invariant norms on X are those functions of the
form p o 9/, where p is a Gy-invariant norm on Y. The dual of such a norm is pD o 9/.
The norm p o 9/is smooth (respectively, strict) if and only if p is smooth (respectively,
strict). A point x in X is an extreme (respectively, exposed, smooth) point of the unit
ball for p o 9/ if and only if 9/(x) is an extreme (respectively, exposed, smooth) point of
the unit ball for p.

Proof. By Proposition 4.2, the G-invariant functions on X are those of the form
p o 9/with p a y-invariant function on Y. If p o 9/is actually a norm on X then p is a
norm on Y, since by Gy-invariance, p agrees with pog/on Y. Conversely, suppose that
p is a Gy-invariant norm. Then certainly (p o 9/)(x) p(9/(x)) >_ 0 for all points x in
X with equality if and only if 9/(x) 0 or, equivalently, x 0. Positive homogeneity
of p 9/follows from that of 9/(Theorem 2.4). Finally, p o 9/is convex by Theorem 4.3,
and hence is a norm.

By Lemma 6.4 we have

((p o ((p o o

o o (v o

using Theorem 4.4 (conjugacy). Hence (p o 9/)D pD o 9/. The norm p o 9/is smooth
if and only if (p o 9/)2/2 p2/2 o 9/is essentially smooth, which by Corollary 6.2 is
equivalent to the essential smoothness of p2/2, and hence to the smoothness of p. The
strict case is analogous.

The last statement follows by applying Theorem 5.5 (extreme points) and Corol-
lary 6.3 (exposed points) to the unit ball for p, and by applying Theorem 6.1 (differ-
entiability) to p.
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7. Examples. The idea of a normal decomposition system that we introduced
in Definition 2.1 works well as an abstract mechanism. Its real significance, however,
is in the variety of examples that it models. In this section we discuss these examples.
They fall into two distinct categories: "discrete" examples, where the group is a
reflection group (in fact a "Weyl group") and the range of the map has full dimension
in the underlying inner product space X, and "continuous" examples, where /maps
X into a strictly smaller space Y. Both categories are important for our purposes.
Further discussion of the role of Weyl groups in this construction may be found in

First we explain some notation for various sets of matrices. The trace of a matrix
w is denoted by tr (w) and the Hermitian conjugate by w*.

Mm,n(R):

The (multiplicative) group of n x n real orthogonal matrices.
The (multiplicative) group of n n complex unitary
matrices.
The (multiplicative) group of n n permutation matrices.
The (multiplicative) group of n n "signed" permutation
matrices (having exactly one nonzero entry, +1, in each row
and each column.
The inner product space of n n real symmetric matrices
with (w, v) tr (wv).
The (real) inner product space of n n complex Hermitian
matrices with {w, v} tr (wv).
The inner product space of rn n real matrices
with {w, v} tr (wTv).
The (real) inner product space of m n complex matrices
with {w, v} Re tr (w’v).

For a matrix w in Sn or Hn, the vector/k(w) E Rn has components the eigenvalues
of w, arranged in nonincreasing order. For a matrix w in M,,n(R) or M,,,(C), the
vector a(w) E R_ (where min{rn, n}) has components the singular values of w,
arranged in nonincreasing order.

Recall that a normal decomposition system consists of a real inner product space
X, a subgroup G of the orthogonal group on X, O(X), and a map / X --+ X
satisfying Definition 2.1.

EXAMPLE 7.1 (reordering on R). We take X Rn (with the standard inner
product), g 7) (considered as a subgroup of O(R) On in the natural way),
and 7(x) 2, where the vector 2 Rn has components {Xl,X2,... ,x} arranged in
nonincreasing order. The conditions in Definition 2.1 are immediate except for (c),
which states that

(7.1) for all x and z in R

(with equality if and only if x A2 and z A2 for some permutation matrix A).
Inequality (7.1) is classical; see, for example, [14, Thm. 368] and [18, Lern. 2.1].

The range of 7 is R> {x R (x) nonincreasing}. The dual cone is straight-
forward to compute. In fact, a vector z lies in (R)+ if and only if

for j 1,2,...,n
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with equality for j n. We say that a real function f on R> is Schur convex if

f(x) > f(w) whenever x and w lie in R> with x- w in (R>)+. Theorem 3.3 now
shows that any symmetric, convex functio-n is Schur convex [-3, Prop. 3.C.2].

EXAMPLE 7.2 (absolute reordering on Rn). We take X Rn, G P, and
-y(x) Ixl (where Ixl (Ix1 I, Ix21, IXnl) Thus

and so forth. The conditions in Definition 2.1 are easy to check: (c) follows from
inequality (7.1).

Diagonal matrices will play an important role in our continuous examples. We
denote the smaller of the two dimensions m and n by min{m, n}, and then we
define a map Diag :R --+ Mm,n(C) by

c ifi=j,
(Diag a)j 0 otherwise.

EXAMPLE 7.3 (symmetric matrices). We take X Sn and 7 to be the group
of orthogonal similarity transformations x -+ uTxu for symmetric matrices x and
orthogonal matrices u. Finally, we define -y(x) Diag A(x).

More formally, define the adjoint representation of (9n on Sn, which we write
Ad: (gn O(Sn), by (Ad(u))x uTxu for orthogonal u and symmetric x. Then G is
just the range of this representation, which has kernel {=kid}, and so G is isomorphic
to (gn/{=kid}.

Let us check the conditions of Definition 2.1. Condition (a), the 6-invariance of
-y, anounts to the invariance of the set of eigenvalues under orthogonal similarity.
Condition (b), the decomposition axiom, follows from the spectral decomposition.
Condition (c), the angle contraction axiom, becomes the following inequality:

tr (wx) <_ (k(w), A(x)) for all w,x e n
(with equality if and only if there exists an orthogonal matrix u satisfying x
uT(Diag,(x))u and w uT(Diag,(w))u). The inequality appears in [25], for exam-
ple, and the conditions for equality may be found in [35], using algebraic techniques.
A variational proof is given in [18]. The result is closely connected with earlier work
of von Neumannsee Example 7.5.

The natural choice for the subspace Y is the space of diagonal matrices DiagRn.
A standard calculation shows that an orthogonal u has Ad(u) in the stabilizer Gy if
and only if u P. However, since

(Ad(Diag (+l, 4-1,..., =kl)))lY id,

we see that the group y acting on the space Y of diagonal matrices is simply the
permutation group :P acting on the diagonal entries.

Notice also that for any vector a in Rn we have -(Diag a) Diag 6. Hence the
subsystem (Y, Gy, /) is a normal decomposition system isomorphic to the "reordering"
system described in Example 7.1. In particular, Assumption 4.1 holds, so that all of
the machinery that we have developed can be applied. We list some consequences in
the final section.

EXAMPLE 7.4 (Hermitian matrices). The complex analogue of the previous ex-
ample is very similar (and there is a quaternionic analogue). We take X Hn, which
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we consider a real inner product space (since we are primarily concerned with prop-
erties of real vector spaces, such as convexity). The group now consists of unitary
similarity transformations x -. u*xu for Hermitian x and unitary u and, as before
-y(x) Diag

Formally, we define the adjoint representation of 5/n on Hn, written Ad b/n
O(Hn), by (Ad(u))(x) u*xu for unitary u and nermitian x. Then G is just the
range of this representation, which has kernel Tid, where T is the circle group {T E
C II- 1}. Thus 6 is isomorphic to b/n/Tid. Checking Definition 2.1 is entirely
analogous to the previous example.

An aside is illustrative at this point. If we choose the subspace Y as Sn then the
stabilizer Gy acts on Y exactly as Ad(.gn. Thus in this case the subsystem (Y, Gy, /)
is a normal decomposition system isomorphic to the previous "symmetric matrix"
Example 7.3. In particular, Assumption 4.1 holds.

The natural choice, however, is again to choose Y as the subspace of diagonal
matrices DiagRn. Then it is once again straightforward to identify the action of
the stabilizer Gy on this subspace with the permutation group 7)n acting on the
diagonal entries. Thus the subsystem (Y, Gy,-) is a normal decomposition system
isomorphic to the "reordering" system, Example 7.1. Again Assumption 4.1 holds, so
our machinery applies.

EXAMPLE 7.5 (real matrices). We take X Mm,n(R) and 6 to be the group of
transformations x H uTxv for orthogonal matrices u in (.gin and v in On. Then we
define -(x) Diag a(x).

Formally, we define a representation of (D, x (-gn on Mm,n(R), written Ac
Om On --* O(Mm,n(R)), by (Ac(u,v))x uTxv. Then is the range of this
representation: since the kernel of Ac is just {+(id, id)}, the group 6 is isomorphic to
(Ore x On)/{+/-(id, id)}.

Checking Definition 2.1, -invriance mounts to the invriance of the set of
singular values under the transformations we consider. Condition (b), the decompo-
sition axiom, follows from the singular value decomposition, nd condition (c), the
angle contraction axiom, becomes "yon Neumann’s lemm" [27]"
(7.2) tr(wTx) <_ (a(w),a(x)), for all w,x e Mm,n(R)
(with equality if and only if w and x have simultaneous singular value decompositions
w uT(Diaga(w))v and x uT(Diaga(x))v for some u in Om and v in On)--see
the discussion in [7].

The natural choice for Y is the space of diagonal matrices Diag R (where
min{m, n}). A little thought then identifies the action of the stabilizer Gy on the
space Y with the group of transformations Diag (a) H Diag (pa) for a vector a in R
and a matrix p in 7). To see this, note that any such transformation clearly belongs
to Gy, whereas on the other hand a transformation in Gy must preserve diagonality
and the singular values.

Notice also that -(Diag a) ]al for any vector a in Rz. Thus the subsystem
(Y, g;y, ") is a normal decomposition system isomorphic to the "absolute reordering"
system described in Example 7.2. Since Assumption 4.1 holds, our machinery applies.
Some consequences appear in the final section.

Two special cases deserve mention. The case m 1 gives exactly the example
discussed after Assumption 4.1. The even more special case rn n 1 gives our very
first example of a normal decomposition system, discussed after Definition 2.1.

EXAMPLE 7.6 (complex matrices). The complex analogue of the previous example
is very similar (and again there is a quaternionic analogue). We take X M,,n(C)
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and to be the group of transformations x - u*xv for a matrix x in Mm,n(C) and
unitary matrices u in b/m and v in/gn. Once again we define /(x) Diag or(x).

Formally, we define a representation of/g, x 5/n on M,,n (C), written Ac :b/, x
bl O(Mm,n(C)), by (Ac(u, v))x u*xv. Then G is the range of this representation.
Since the kernel of Ac is easily checked to be T(id, id) (where T is once again the circle
group), we see that the group G is isomorphic to (5/m x b/n)/Tid. Checking Definition
2.1 is analogous to the previous example. In fact, if we choose Y Mm,(R) then
the subsystem (Y, Gy,-) is isomorphic to the previous example.

If we make the natural choice for Y, namely, the space of real diagonal matrices
DiagRt, then a similar argument to the previous example identifies the action of the
stabilizer 6Y on the space Y as the group of transformations Diag (a) -, Diag (pc)
for a vector a in R and a matrix p in 7). Thus just as in the previous example, the
subsystem (Y, Gy, /) is isomorphic to the "absolute reordering" system, Example 7.2.
Again, all our machinery applies.

8. Consequences for matrix functions. In this concluding section we con-
sider how our results can be applied to the examples in the previous section to derive
a variety of interesting results in the literature. We begin with the case of symmet-
ric matrices, Example 7.3. The complex analogue is entirely similar, and we do not
pursue it.

Symmetric matrices. A function h R [-, +cx] is symmetric if for
any vector a in Rn the value h(a) is unchanged by permuting the components of
a--using the notation of Example 7.1, h(a) h((). Similarly, a subset C of R is
symmetric when a C if and only if C. A function on the space of symmetric
matrices f: S [-oc, +oe] is weakly orthogonally invariant if f(uTxu) f(x) for
any matrices x in S and u in (gn. Such functions have also been called spectral [13]..
Analogously, a subset D of S is weakly orthogonally invariant if uTxu D whenever
x D (for orthogonal u).

The following result follows immediately by applying our machinery to Example
7.3. We make no attempt to be exhaustive.

THEOREM 8.1 (convex spectral functions). Weakly orthogonally invariant ex-
tended real-valued functions on Sn are exactly those functions of the form h o ik for
a symmetric function h Rn --, (-c, +x]. Such a function on S is convex (re-
spectively, closed, essentially strictly convex, essentially smooth) if and only if h is
convex (respectively, closed, essentially strictly convex, essentially smooth). For any
such symmetric function h we have

(8.1) (h o A)* h* o A.

Suppose further that some symmetric matrix x satisfies )(x) dom h. Then the
symmetric matrix w is a subgradient of ho ; at x if and only if )(w) is a subgradient of
h at ;(x) and x and w have simultaneous spectral decompositions x uT(Diag A(x))u
and w uT(Diag A(w))u for some orthogonal matrix u. In fact, the following "chain
rule" holds:

O(h o ik)(x) {uT(Diag#)u u e On, uT(Diagik(x))u x, # e Oh(ik(x))}.

If h is convex then h o is differentiable at x if and only if h is differentiable at A(x).
EXAMPLE 8.2 (the log barrier). Let us define a symmetric function h R

(-oc, +oc] by

h(a) Y’i=l log cxi if a > O,
+oc otherwise.
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Then h is a closed, convex function, essentially smooth, and essentially strictly convex,
with conjugate

-n- i--1 log(-#i) if # < O,h* (#) + otherwise.

Ig follows that ghe matrix function h o ,X" S (-, +c] defined by

if z is positive definite,(h o )(x) +x otherwise

is also closed, convex, essentially smooth, nd essentially strictly convex with conju-
gate

-n- log(det(-w)) if w is negative definite,(h o A)*(w) +c otherwise.

It is easy to check, using the chain rule, that for a positive-definite symmetric matrix

X

V(hoA)(x)=-x-1.

The convexity part of Theorem 8.1 was essentially first proved in [6]. It was
rediscovered in [3]. A characterization of convexity in the differentiable case was
proved in [13] via Schur convexity, and the closed case was proved via the conjugacy
formula (8.1) in [18]. The latter paper also contains the remainder of Theorem 8.1.
A proof appears in [36] that h o A is analytic at x if and only if h is analytic at
A(x). Somewhat related results appear in [20]. Numerous formulae for subgradients
of specific matrix functions appear, for example, in [29, 30, 15, 16]. The chain rule in
Theorem 8.1 provides a simple unified approach to these.

THEOREM 8.3 (spectral convex sets). Weakly orthogonally invariant subsets of
Sn are exactly those sets of the form A-I(C) for symmetric subsets C of I:tn. If
the symmetric matrix x has A(x) in the symmetric set C then a symmetric matrix
w lies in the normal cone N(x[A-I(C)) if and only if A(w) lies in N(A(x)[C) with
x and w having simultaneous spectral decompositions, x uT(DiagA(x))u and w
uT(Diag A(w))u for some orthogonal matrix u. In fact,

{uT(Diag#)u u e On, uT(DiagA(x))u x, # e N(A(x)IC)}.

Furthermore,

(-- (C)),-- ,,,-- (C-),
(--1 (C))O

int (A-(C)) A-(int (C)), and

Diag C A- (C) A DiagRn.
The set -(C) is convex (respectively, closed) if and only if C is convex (respectively,
closed). If C is convex then

ri (A-.’ (C)) )-(ri (C)),
a[:]!(A-l(c)) A-l(aff(C)), and

ext (A-(C)) A-(ext (C)),
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and if C is in addition closed then

exp (A-I(C)) A-l(exp (C)).

EXAMPLE 8.4 (the simplex). Let us define a symmetric subset of Rn by

C- ERn (_0, -1
i=1

Then C is a closed, convex set with the standard unit vectors as extreme (in fact,
exposed) points. We deduce that the set of symmetric matrices

A-I(C) {x E Sn Ix positive semidefinite, tr (x) 1}

is closed and convex with extreme (exposed) points yyT for unit column vectors y in
Rn

The fact that the set -(C) is convex if and only if C is convex, for a symmetric
closed set C, was proved in [11].

Unitarily invariant norms. A function h" R [-oc,+oc] is absolutely
symmetric if the value h(c) at a vector c in R is independent of the order and
signs of the components ai" in the notation of Example 7.2, h(c) h(I(l) for all
c. In particular, if such a function is also a norm then it is called a symmetric
gauge function. A matrix function f" Mn,n(C)- [-oc, +oe] is (strongly) unitarily
invariant if f(u*xv) f(x) for any matrix x in Mn,(C) and unitary matrices u and
V.

The following result is a consequence of applying our machinery to Example 7.6.
The real analogue is entirely similar. For brevity, we restrict ourselves to the norm
case.

THEOREM 8.5 (unitarily invariant norms). Unitarily invariant norms on Mm,(C)
are exactly those functions of the form h ocr for symmetric gauge functions h on R
(where l= min{m, n}). In this case the dual norm is given by

(; o o

p o a is smooth (respectively, strict) if and only if p is smooth (respectively, strict),
and a matrix x is an extreme (respectively, exposed, smooth) point of the unit ball for
p o a if and only if a(x) is an extreme (respectively, exposed, smooth) point of the
unit ball for p. Furthermore, a matrix w is a subgradient of p o a at x if and only if
a(w) is a subgradient of p at a(x) with x and w having simultaneous singular value
decompositions x u*(Diag a(x))v and w u*(Diag a(w))v for unitary matrices u
and v. In fact,

o(; o

{u* (Diag #)v ]u e bl,, v e [n, U* (Diag cr(x))v x, # e Op(a(x))}.

The classical examples are the symmetric gauge function ]]. lip (for 1 < p <_
which gives the "Schatten p-norm," and the functions

k

p(a) E(-) (for k 1,2,...,1),
i=1
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which give the "Ky Fan k-norms."
The fundamental characterization of unitarily invariant norms is due to von New-

mann [27]. He proved the result in an analogous fashion to our conjugacy argument
following Theorem 4.4 by proving the duality formula (8.2) via his lemma (7.2). Some
interesting analogous results appear in [4]. The characterization of extreme, exposed,
and smooth points was proved in [2]; see also [40, 41, 8, 7, 9]. Versions of the subdif-
ferential formula appear in [38, 39].

Acknowledgments, Many thanks to Jean-Pierre Haeberly for simplifying the
presentation of Definition 2.1, and for a number of other helpful comments. Many
thanks also to Juan-Enrique Martinez-Legaz for helpful discussions concerning the
presentation of Definition 2.1.
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STABILIZING THE GENERALIZED SCHUR ALGORITHM*
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Abstract. This paper provides a detailed analysis that shows how to stabilize the generalized
Schur algorithm, which is a fast procedure for the Cholesky factorization of positive-definite struc-
tured matrices R that satisfy displacement equations of the form R- FRFT GJGT, where J is
a 2 x 2 signature matrix, F is a stable lower-triangular matrix, and G is a generator matrix. In
particular, two new schemes for carrying out the required hyperbolic rotations are introduced and
special care is taken to ensure that the entries of a Blaschke matrix are computed to high relative ac-
curacy. Also, a condition on the smallest eigenvalue of the matrix, along with several computational
enhancements, is introduced in order to avoid possible breakdowns of the algorithm by assuring the
positive-definiteness of the successive Schur complements. We use a perturbation analysis to indicate
the best accuracy that can be expected from any finite-precision algorithm that uses the generator
matrix as the input data. We then show that the modified Schur algorithm proposed in this work
essentially achieves this bound when coupled with a scheme to control the generator growth. The
analysis further clarifies when pivoting strategies may be helpful and includes illustrative numerical
examples. For all practical purposes, the major conclusion of the analysis is that the modified Schur
algorithm is backward stable for a large class of structured matrices.

Key words, displacement structure, generalized Schur algorithm, Cholesky factorization, hy-
perbolic rotations, generator matrices, pivoting, Schur functions, error analysis

AMS subject classifications. 65F05, 65G05, 65F30, 15A23

1. Introduction. We show how to stabilize the generalized Schur algorithm and
give a finite-precision error analysis to support our conclusions. The notion of struc-
tured matrices, along with the algorithm itself, is reviewed in the next two sections.
Here we proceed with a general overview of earlier relevant work in the literature.

One of the most frequent structures, at least in signal processing applications,
is the Toeplitz structure, with constant entries along the diagonals of the matrix. A
classical algorithm for the Cholesky factorization of the inverses of such matrices is the
so-called Levinson-Durbin algorithm [14, 8], an error analysis of which was provided
by Cybenko [7]. He showed that, in the case of positive reflection coefficients, the
residual error produced by the Levinson-Durbin procedure is comparable to the error
produced by the Cholesky factorization [8, p. 191].

A related analysis was carried out by Sweet [22] for the Bareiss algorithm
which is also closely related to an algorithm of Schur [20, 12]. These are fast procedures
for the Cholesky factorization of the Toeplitz matrix itself rather than its inverse.
Sweet concluded that the Bareiss algorithm is asymptotically stable.

In recent work, Bojanczyk et al. [3] further extended and strengthened the con-
clusions of Sweet [22] by employing elementary downdating techniqles [1, 4, 5] that
are also characteristic of array formulations of the Schur algorithm [13, 17]. They
considered the larger class of quasi-Toeplitz matrices [13], which includes the Toeplitz
matrix as a special case, and provided an error analysis that establishes that the Schur
algorithm for this class of matrices is asymptotically stable.

The interesting formulation of Bojanczyk et al. [3] motivated us to take a closer
look at the numerical stability of a generalized Schur algorithm [13, 15, 18] that applies
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to a wider class of positive-definite structured matrices R that satisfy displacement
equations of the form R-FRFT GJGT, where J is a signature matrix, F is a stable
lower-triangular matrix, and G is a generator matrix. This class is briefly introduced
in the next section, where the lower-triangular matrix F is shown to be pivotal in
characterizing the structure of the matrix. For example, in the Toeplitz or quasi-
Toeplitz case, the matrix F is equal to the shift matrix Z (i.e., a Jordan block with
zero eigenvalue and ones on the first subdiagonal). Multiplying a column vector u by
Z simply corresponds to shifting down the entries of u by one position. In general,
however, the matrix F can be any lower-triangular matrix (for example, diagonal,
bidiagonal, strictly lower triangular, etc.). This creates several complications that we
address closely in order to guarantee a reliable algorithm.

For this purpose, we propose several modifications to the generalized Schur al-
gorithm (Matlab codes for the new modified algorithm are provided at the end of
this paper). In particular, two new schemes for carrying out the required hyperbolic
rotations are introduced and special care is taken to ensure that the entries of the
Blaschke matrix are computed to high relative accuracy. Also, a condition on the
smallest eigenvalue of the matrix, along with several computational enhancements,
is introduced in order to avoid possible breakdowns of the algorithm by assuring the
positive-definiteness of the successive Schur complements.

We further use a perturbation analysis to indicate the best accuracy that can be
expected from any finite-precision algorithm (slow or fast) that uses the generator
matrix as the input data. We then show that the modified Schur algorithm proposed
in this work essentially achieves this bound when coupled with a scheme to control
the generator growth.

Another interesting idea that was recently suggested by Heinig [10] is the intro-
duction of pivoting into algorithms for structured matrices when F is diagonal. In
this paper, we have tried to clarify when pivoting may be helpful for positive-definite
matrices. Numerical examples are included to support our observations. In particu-
lar, we emphasize that, in the diagonal F case, pivoting becomes necessary only when
IIFII is very close to one. Furthermore, we note the following.

If F is positive (or negative), a good strategy is shown to be the reordering
of the entries of F in increasing order of magnitude.
If F has both positive and negative entries, then numerical examples indicate
that pivoting may not help in controlling the growth of the generators.

In our opinion, for positive-definite structured matrices, with diagonal or strictly
lower-triangular F, the stabilization of the generalized Schur algorithm is critically
dependent on the following:

proper implementations of the hyperbolic rotations,
proper evaluation of the Blaschke matrix-vector product,
enforcement of positive-definiteness to avoid early breakdowns,
control of the generator growth.

1.1. Notation. In the discussion that follows we use 1[. to denote the 2-norm
of its argument. We further assume, without loss of generality, that F is represented
exactly in the computer. Also, the notation denotes computed quantities, while the
: notation denotes intermediate exact quantities. We further let e denote the machine
precision and n the matrix size. We also use subscripted 5’s to denote quantities
bounded by machine precision in magnitude, and subscripted c’s to denote low-order
polynomials in n.

We assume that in our floating point model, additions, subtractions, multiplica-
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tions, divisions, and square roots are done to high relative accuracy; i.e.,

( o ) ( o )( + ),

where o denotes +,-, , + and 151 < e. The same holds for the square root operation.
This is true for floating point processors that adhere to the IEEE standards.

2. Displacement structure. Consider an n n symmetric positive-definite ma-
trix R and an n n lower-triangular real-valued matrix F. The displacement of R
with respect to F is denoted by VF and defined as

(1) VF R- FRFT.

The matrix R is said to have low displacement rank with respect to F if the rank of
VF is considerably lower than n. In this case, R is said to have displacement structure
with respect to F [13].

Let r << n denote the rank of VF. It follows that we can factor VF as

(2) VF GJGT,
where G is an n r matrix and J is a signature matrix of the form

(3) j [ Ip 0
0 -Iq p+q=r.

The integer p denotes the number of positive eigenvalues of VF, while the integer q
denotes the number of its negative eigenvalues. Factorization (2) is highly nonunique.
If G satisfies (2) then GO also satisfies (2) for any J-unitary matrix O, i.e., for any
O such that OJOT J. This follows from the trivial identity

(GO)J(GO)T G(oJOT)GT GJGT.

Combining (1) and (2), a matrix R is said to be structured with respect to the
displacement operation defined by (1) if it satisfies a displacement equation of the
form

(4) R- FRFT GJGT,
with a "low" rank matrix G. Equation (4) uniquely defines R (i.e., it has a unique
solution R) if and only if the diagonal entries of the lower-triangular matrix F satisfy
the condition

# o for an i, j.

This uniqueness condition will be assumed throughout the paper, although it can be
relaxed in some instances [13].

The pair (G, J) is said to be a generator pair for R since, along with F, it com-
pletely identifies R. Note, however, that while R has n2 entries, the matrix G has nr
entries and r is usually much smaller than n. Therefore, algorithms that operate on
the entries of G, with the purpose of obtaining a triangular factorization for R, will
generally be an order of magnitude faster than algorithms that operate on the entries
of R itself. The generalized Schur algorithm is one such fast O(rn2) procedure, which
receives as input data the matrices (F, G, J) and provides as output data the Cholesky
factor of R. A recent survey on various other forms of displacement structure and on
the associated forms of Schur algorithms is [13].
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2.1. Illustrative examples. The concept of displacement structure is perhaps
best introduced by considering the much-studied special case of a symmetric Toeplitz
matrix T tli_jl i,j=l, to 1.

Let Z denote the n n lower-triangular shift matrix with ones on the first sub-
diagonal and zeros elsewhere (i.e., a lower-triangular Jordan block with eigenvalue
0):

0

(S) Z

It can be easily checked that the difference T-ZTZT has displacement rank 2 (except
when all ti, 0, are zero), and a generator for T is {G, (1 (R)-1)}, where

T
1 0 1 0

tltl[lO] tltl
(6) T- ZTZT

0 -1
GJGT"

tn-1 tn--1 tn--1 tn--1

Another example is the so-called Pick matrix, which arises in the study of inter-
polation problems in the unit disc [19]:

1 fify ,=

where the/i are real scalars and the fi are distinct real points in the interval (-1, 1).
Let F denote the diagonal matrix F diag[f, f2,..., fn]; then it can be verified that
the above Pick matrix R has displacement rank 2 with respect to F since

1 31 1 1
T

13 [10] 1/3
(7) R- FRFT=

0 -1

More generally, one can allow for complex-vMued quantities and define the Pick matrix

where denotes Hermitian conjugation (complex conjugation for scalars), zi and i
are 1 x p and 1 x q row vectors, and fi are complex points inside he open unit disc
(Ifi < 1). or the same diagonal matrix F diag[fl, f,..., f], the above Pick
matrix has displacement rank r (p + q), since

H

x2 Y2 [ Zp O ] x2 y2
(8) R- FRFH=

0 -lq
Xn Yn Xn Yn
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Without loss of generality, the analysis provided in this paper focuses on reM-valued
data, i.e., on displacement equations of form (4) and on the important special cse of
matrices with displacement rank 2 (i.e., G hs two columns and J (1 (R)-1)). The
results can be extended to higher displacement ranks nd to the complex cse.

The displacement structure implied by (4) applies to symmetric matrices R. The
case of nonsymmetric mtrices will be pursued elsewhere since it lso includes impor-
tant matrices as special cases such as the Vandermonde matrix

1 O 0/21 0/

2 n1 an an an

It is immediate to verify that the matrix V has displacement rank 1 since

1

(9) V- FVZT= 1 0 0 ],
i

where F is now the diagonal matrix

F diag [01,... an].

3. The generalized Schur algorithm. The discussion in what follows focuses
on symmetric positive-definite matrices R with displacement rank 2 with respect to
a lower-triangular matrix F, viz., matrices R that satisfy displacement equations of
the form

1 0 ] T(10) R-FRFT= [u V
0 --1 [Ul Vl

where U and vl denote the n 1 column vectors of G. The diagonal entries of F are
further assumed to be strictly inside the open unit disc (Ifl < 1). In this case, the
matrix F is said to be stable. This condition is clearly satisfied for the Toeplitz case
(5), where fi 0, and for the Pick matrix (7). In applications, the following forms
are the most frequent occurrences for F: F Z, F a diagonal matrix with distinct
entries, F a Jordan block,

fl
fl

fl

F in bidiagonal form,

fl
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or F strictly lower triangular such as Z, Z2, (Z (R) Z), etc.
Also, since a generator matrix G is highly nonunique, it can always be chosen to

be of the form

x 0
X X

(11) G= x x

X X

That is, the top entry of v, v, cn always be chosen to be zero. Indeed, assume
that generator G for R is found that does not satisfy this requirement, say

ttll Vll
X X

X X

It then follows from (10) that the (1, 1) entry of R, which is positive, is given by

Rll > O.
1 -Ifl

Consequently, lUll > Ivl and a hyperbolic rotation O can always be found in order
to reduce the row u Vll to the form V/lUll2- Iv1112 0 ]. The matrix GO
can then be used instead of G as a generator for R.

A generator matrix of form (11) is said to be in proper form. Note that in the
Toeplitz case (6), the generator G is already in proper form.

The following algorithm is known as the generalized Schur algorithm" it oper-
ates on the entries of (F, G, J) and provides the Cholesky factor of R. (We remark
that the algorithm can be extended to more general scenarios, e.g., an unstable F,
nonsymmetric matrices R, etc.--see [13, 18, 15].)

ALGORITHM 3.1 (the generalized Schur algorithm).

Input data: A stable lower-triangular matrix F, a generator G1 G in proper
form, with columns denoted by Ul and vl, and J (1 (R)-1).

Output data: The lower-triangular Cholesky factor L of the unique matrix R
that satisfies (10), R LLT.

The algorithm operates as follows: start with (ul, vl) and repeat for 1, 2,..., n"

1. Compute the n n matrix (F- fiI)(I- fiE) -1. Note that the (i, i)
diagonal entry of is zero.

2. Form the prearray of numbers iui vi ]. At step i, the top i entries of
iui and vi will be zero.

3. Apply a hyperbolic rotation Oi in order to annihilate the (i + 1) entry of vi.
Denote the resulting column vectors by (ui+l, vi+l)"

(12) [u+l v+l ]-[ u v IOn.
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The matrix Gi+I ui+
rows equal to zero"

vi+ will also be in proper form, with the top

Gi+l

_x x

4. The ith column of the Cholesky factor L is given by

(13) l V/1 -Ifil2(I- fiF)-ui.

The top (i- 1) entries of l are zero.

After n steps, the algorithm provides the Cholesky decomposition

(14) R E l{lT’
i--1

as shown below. Moreover, the successive matrices Gi that are obtained via the
recursion have an interesting interpretation. Let R denote the Schur complement of
R with respect to its leading (i- 1) (i- 1) submatrix. That is, R1 R, R2 is
the Schur complement with respect to the (1, 1) top left entry of R, R3 is the Schur
complement with respect to the 2 2 top left submatrix of R, and so on. The matrix

R is therefore (n + 1) (n + 1). Define the n n embedding

Then it can be shown that [13]

(5) FFT GiJGT
In other words, Gi is a generator matrix for the ith Schur complement, which is also
structured.

THEOREM 3.2. The generalized Schur algorithm provides the Cholesky decompo-
sition of R, viz.,

Proof. It follows from relation (12) that

(17) uT Vi+lVY+IUi+l i+1

where, in view of (13),

1 1
ui Vi L. lfi.]2

(I- fiF)li, Oiui
V,1-_ []i[’’2

(F- fiI)li.
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Summing (17) over i, up to n- 1, we obtain

n--1 n--1

uT uT oT --vlvT since v 0
i=1 i=1

which is equivalent to

i ii 1 1 since O.
i=1 i=1

Using ghe above expressions for i and ii in terms of li we obtain

[($- SF)ll(I- f,F)T (- f,I)l,l(F- SI)T]. 1 -Ifl 1 -fl vv.
Expanding and simplifying the ih erm of ghe sum on the left-hand side we get

(1

i=1

Therefore,

n

i--1 i--1

This shows that ’in__l lilT satisfies the displacement equation (10). Hence, by unique-
ness,

n

i--1

4. Limits to numerical accuracy. Given a symmetric positive-definite matrix
R (not necessarily structured), if its Cholesky factor is evaluated by any standard
backward stable method that operates on the entries of R, e.g., Gaussian elimination
[8, Chap. 4], the corresponding error bound is given by

where e is the machine precision and cl is a low-order polynomial in n, the matrix
size.

A fundamental question that needs to be answered then is the following: Given
(F, G, J), but not R, how accurately can we expect to be able to compute the Cholesky
factorization of R irrespective of the algorithm used (slow or fast)?

To address this issue we note that just representing (F, G) in finite precision
already induces round-off errors. This fact in turn imposes limits on how accurate an
algorithm that employs (F, G) can be. We demonstrate this point by the following
example.

Let F be a stable diagonal matrix with distinct entries {f } and assume f is the
largest in magnitude. Let the entries of the column vectors u and vl be given by

Ul v /fuil l,
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where -y is chosen such that 0 < "y < 1.
The unique matrix R that solves (10) for the given (F, Ul, Vl) is symmetric positive

definite. This can be verified by invoking Theorem A.1 and by noting that

Vil ?il 3(fi),

where s(z) is the Schur function (i.e., analytic and strictly bounded by one in Izl < 1)

For this example, we have

(18) lull] 2 1 3

1/(1- ) 4

Now define the perturbed vectors 21 and 31 with

?11 ltll(1 + ), 5il uil, _> 2, 1 Vl.

That is, we make only a relative perturbation in the first entry of ul and keep all
other entries of ul and vl unchanged. Here, 5 is a small number (for example, for
round-off errors, 151 is smaller than machine precision).

Let R be the unique solution of the displacement equation with the perturbed
generator matrix, _

FFT jT, 1 1 ],

and introduce the error matrix E R-/. Then E is the unique solution of

from which we find

Therefore,

E FEFT GJGT jT iLl.T1 IT1,

But since F is diagonal and ]fl < 1 is its largest entry, we have

(20) (1 f12) -1 [l(I- F (R) Y)-lI[,

where (R) denotes the Kronecker product of two matrices.
Using (18), we conclude that

3
IExxl _> 21i I1(I- F (R) y)-lll I111[ 2,

from which we get a lower bound on the norm of the error matrix

3
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We now show that by suitably choosing 7, the norm of R can be much smaller than
the above bound. Indeed,

max Ru

u vimax
1-f2

1 72f2max |
[ 1-f2 2]uii

from which we see that as 7 1, the norm of R can be bounded by nllul 2. Therefore,
in this example, lIRII can be made much smaller than [[(I- F (R) F)-l[[ Ilulll 2 by
choosing fl and 7 close to one.

In summary, we have shown that, at the same time,
[[R- [[ can be larger than [5[ [[(I- F (R) F)-I[[ I[Ul]I 2 and
[[R[[ can be much smaller than [[(I- F @ F)-[[

Hence, in general, we cannot expect the error norm, [R-LL[, for any algorithm
(slow or fast) that uses (F, G, J) as input data (but not R), to be small as
for some constant c.

Therefore, we conclude that irrespective of the algorithm we use (slow or fast),
if the input data is (F, G, J), for a general lower-triangular F, we cannot expect
better bound than

5. Hyperbolic rotation. Each step (12) of the generalized Schur algorithm
requires the application of a hyperbolic rotation O. The purpose of the rotation is to
rotate the (i + 1)th row of the prearray (Ihu vi to proper form (recall that the
top rows of (Ihu vi are zero by construction). If we denote the top nonzero
row of the prearray by

(Iiti)i.4-1 (Vi)i+l ]--[ Ozi i

then the expression fbr a hyperbolic rotation that transforms it to the form

is given by

1 [ 1 -Pi ] where pi=
i

vq 1

The positive-definiteness of R guarantees [Pil < 1.
For notational convenience, we rewrite equation (12) in the compact form

(23) Gi+l Gi+l Oi,

where we have denoted the prearray iui vi by i+1. Note that both Gi+l and
(i+1 can be regarded as generator matrices for the (i + 1)th Schur complement.

Expression (23) shows that in infinite precision, the generator matrices Gi+l and
(i+1 must satisfy the fundamental requirement

(24) ai+lJaT+ i+IJ/T+I.
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Obviously, this condition cannot be guaranteed in finite precision. But it turns
out that with an appropriate implementation of transformation (23), equality (24)
can be guaranteed to within a "small" error. (The need to enforce the condition in
finite precision was first observed for the F Z case by Bojanczyk et al. [3].) To see
how, we consider the case when G+I is available exactly in the following subsections.

5.1. Direct implementation. A naive implementation of the hyperbolic trans-
formation (23) can lead to large errors. Indeed, in finite precision, if we apply O
directly to (+1 we obtain a computed matrix (+1 such that

where the norm of the error matrix Ei+l satisfies [8, p. 66]

The constant c3 is a low-order polynomial in the size of the matrices and e is the
machine precision. Consequently,

O -Ti+lJTi+l i+lJTi+l + Ei+IJEI + i+leiETi+l + Ei+I iGi+1,

which shows that

But since I]O[I can be large, the computed quantities are not guaranteed to satisfy
relation (24) to sufficient accuracy. This possibly explains the disrepute to which
fast algorithms have fallen.

5.2. Mixed downdating. One possible way to ameliorate the above problem is
to employ the mixed-downdating procedure as suggested by Bojanczyk et al. [3, 4].
This scheme guarantees that

IIi+lJTi+l- i+lJTi+lll c5( (11i+1]12- ’1i-t-1112)
This bound is sufficient, when combined with other modifications suggested in 6
and 8.4, to make the algorithm numerically reliable (7).

5.3. A new method: The OD procedure. An alternate scheme is now pro-
posed which is based on using the SVD of the hyperbolic rotation O (it is a mod-
ification of a scheme in [6]). Its good numerical properties come from the fact that
the hyperbolic rotation is applied as a sequence of orthogonal and diagonal matrices,
which we shall refer to as the OD (orthogonal-diagonal) procedure. Its other advan-
tage is that it is a general technique that can be applied in other situations, such
as the Schur algorithms for nonsymmetric matrices. It can be implemented with the
same operation count as the mixed-downdating algorithm of [3].

Interestingly, though, Bojanczyk et al. [3] showed that for the special case F Z and displace-
ment rank r 2, the direct implementation of the hyperbolic rotation still leads to an asymptotically
backward stable algorithm. This conclusion, however, does not hold for higher displacement ranks.
Stewart and Van Dooren [21] showed that for F Z and r > 2, the direct implementation of the
hyperbolic rotation can be unstable.
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It is straightforward to verify that any hyperbolic rotation of form (22) admits
the following eigen(svd-)decomposition:

_1111 -’
where the matrix

is orthogonal (QQT I).
If the eigendecomposition QiDQT is now applied to the prearray (i+1 in (23),

then it can be shown that the computed generator matrix (+1 satisfies (see Appendix
c)

(27) (0i+1 + E2,i+1) (0i+1 -- El,i+l)Oi,

with

It further follows from (27) that (i+1 satisfies

(28) (i+1 + E2,i+l)J(Oi+l -t- E2,i-F1)T ((i+1 + El,i+l)J(i+l -F El,i+1)T,

which shows that

(29)

ALGORITHM 5.1 (the OD procedure). Given a hyperbolic rotation 0 with reflec-
tion co2ficit /, I1 < , a o ,cto x ], t ota
row vector xl y can be computed as follows:

[11]Ix’ ’]-[x ]
_

Ix" "][x’ ’][0 0 ]
The algorithm guarantees (cf. (27)-(29)) the following error bounds:

1 --el 11 --2 X -4-e3 y---e4

with
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5.4. Another new method: The H procedure. Let p =/3/a be the reflec-
tion coefficient of a hyperbolic rotation (9,

0
V/1 p. -P 1

with IP] < 1. Let Ix1 yl and x
respectively,

y be the postarray and prearray rows,

x Yl x y ]O, with

The advantage of the method to be described in this section is that the computed
quantities &l and )1 satisfy the equation

(31) 51 -- ( 1 "- ( X y O,

where the error terms satisfy

(32)

Compare this with (27), where the prearray is also perturbed. Moreover, we shall
show in 10.2 that by a slight modification we can further enforce that 1211 > I/11,
which is needed to prevent breakdown in the algorithm. (If Ix] < lYl, then it can be
seen that y x ]O- [yl x ]. Therefore, without loss of generality, we shall
only consider the case Ixl > lYl.)

The expression for x can be written in the form

Xl

The term 1 t can be evaluated to high relative accuracy as follows:
X

If _t < 1/2
then 1

else

=dl +d2-dld2

The argument employed in 6.1 establishes that

+
where 51 denotes a quantity that is smaller than the machine precision in magnitude.
Therefore, x can be computed to high relative accuracy from the expression

Xl
v/(a- + Z);

;1 Xl (1 + 51352)

for some constant C13.
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To compute Yl we use the expression

+ Z (x u).Yl --Xl

_
Then the computed Yl satisfies

1 Xl(1 + C1352) V (X y)(1 + C143) (1 + e41,

from which we get

1 Yl - XLC1555 -}- 1C1656.

Therefore,

In summary, the H procedure is the following.

ALGORITHM 5.2 (the H procedure). Given a hyperbolic rotation 0 with reflection
coej:ficient p /a, IPl < 1, and a prearray x y] with Ixl > lYl, the postarray
x yl can be computed as follows:

If-x < 1/2
then -- 1 y

else

d + d dd
endif
x (a_Z)(+Z)

u)Yl xl a_

This algorithm guarantees (31) and (32). We remark that the H procedure re-
quires 5n to 7n multiplications and 3n to 5n additions. It is therefore costlier than
the OD procedure, which requires 2n multiplications and 4n additions. But the H
procedure is forward stable (cf. (31)), whereas the OD method is only stable (cf.

om now on we shall denote by i+ and Oi+ the computed generator columns
at step i; i.e.,

starting with

6. Blaschke matrix. Each step of the algorithm also requires multiplying the
Blaschke matrix (I)i by ui. (Note that the top rows of (Ihui are zero and, hence, can
be ignored in the computation.) In this section, we consider the following two cases.
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F is stable and diagonal, in which case i itself is diagonal and given by

fj-fi

F is strictly lower triangular; e.g., F Z, F (Z (R) Z), or other more
involved choices. In these situations, the matrix (IN is equal to F since the fi
are all zero,

d2i F.

6.1. The case of diagonal F. The goal of this section is to show how to com-
pute (I) to high componentwise relative accuracy (i.e., high relative accuracy for
each component of the computed vector). Here, denotes the computed value of u.

The numerator of ((Ih)jj can be computed to high relative accuracy as

fl(fj fi) (fj fi)(1 + (1).

Computing the denominator xj (1- ffj) to high relative accuracy is a bit trickier,
as the following example shows.

Let fl f2 0.998842. Then in 6-digit arithmetic 1- flf2 2.31500 x 10-3,
whereas the actual answer is 2.31465903600 x 10-3. Therefore, the relative error
is approximately 1.5 x 10-4. Using the scheme given below, we find 1 flf2
2.31466 x 10-3. The relative error is now approximately 4.2 x 10-7.

The scheme we use to compute xij is as follows:

If fif < 1/2
then xij 1 f fj

else
dj l- lfjl, di= l- lfl
Xij di + dj didj

We now show that this scheme ensures that xij is computed to high relative
accuracy. Indeed, when ffj < 1/2, we have I1- fifjl > 1/2. Moreover,

&ij (1- fifj(1 + 52))(1 + 53)

=xij (1- fifJ 52) (l + 53).
xj

Since [fifj/xij[ < 1, we have j xj(1 + 354). On the other hand, for fifj

_
1/2,

we note that

and

&y [(i + )(1 + 67) &y(1 + 6s)] (1 + 69),

&ij xij (l + ll
(di + dj + didj) 5lo)xij

j dj(1 + 55), ( di(1 + (6),

which, when simplified, gives
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We shall now show that (d + dj + didj)/xij < 3. Indeed, first note that d and dj are
positive numbers smaller than 1/2 since Ifl > 1/(21fjl) > 1/2. It then follows from

1 1 d
2dj

that di + dj > 2didj. Therefore,

+ + ( + )
di / dj didj

< 1/2 (di / dj)

which shows that

In summary, we have shown how to compute (I) to componentwise accuracy. There-
fore, since (I) is diagonal, t can be computed to componentwise high relative
accuracy. More specifically,

(33) fl (@i)y (@)y(1 + 726i2).

We should remark that if the denominator entries (1 fifj) were instead computed
directly, the error in computing (@) would also depend on the norm of (I-fF) -i,
which can be large. For this reason, we have introduced the above computational
scheme for evaluating (1- fifj). This scheme, however, is not totally successful when
F is a general triangular matrix (for example, when F is bidiagonal). A way around
this difficulty will be addressed elsewhere. But for a strictly lower-triangular F, the
situation is far simpler, as shown in the next subsection.

But for now, let us consider how to compute the/i’s. Define

(34)

We use the expression

(l)j v/(1 fi)(1 + fi)
f,f (’)

to compute li with the technique explained above for the denominator (1 ffj).
Then we can show that

(35) ([i)j ([i)j(1 / C18(13).

6.2. The case of strictly lower-triangular F. For a strictly lower-triangu-
lar F, we use the standard matrix-vector multiplication. In this case, the computed
quantities satisfy the relation [8, p. 66]

Also, since fi 0,

(36) l [.
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6.3. Enforcing positive-definiteness. Condition (44) on the matrix R in 7.1
guarantees the positive-definiteness of the successive Schur complements and, there-
fore, that I(I)i%li+l > I1i+1. This assures that the reflection coefficients will be
smaller than one in magnitude, a condition that we now enforce in finite precision as
follows:

If Ifl(()l+ < 16+,1 then
f1(’5)+ +-16+,i1(1 + 3)sign(f/((I)%)+l).

This enhancement, along with condition (44), will be shown in 7.1 to guarantee that
the algorithm will complete without any breakdowns.

7. Error analysis of the algorithm. The argument in this section is motivated
by the analysis in Bojanczyk et al. [3].

Note that for diagonal and for strictly lower-triangular F we can write

Therefore, from the error analysis (27) of the hyperbolic rotation we obtain

(37) (i+1 + E2,i+l) ([ i’i )i + E3,i+l)Oi,

where

It then follows that

(38)

where

(39)

Since

the following two equations hold:

Hence, following the proof of Theorem 3.2, we can establish that

(40)
i=1 i=1 i=1

Define

n

i=1
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and

E=R-R.

Then note that E satisfies
n

(41) FFT EM
i=1

since, we assume, 1 u and ) v.
Now if

then

i--1 i--1

Using (35) and (36) we can establish that, for diagonal or strictly lower-triangular F,

i---1 i..-1

Therefore,

(42)

n

IIEII < a241111 + I1(I F
i=1

<_c25e ]I/]}+I](I-F(R)F)-II] E{(I+I]II2) ]l}l2+II112}
i=1

7.1. Avoiding breakdown. The above error analysis assumes that the Mgo-
rithm does not break down. That is, at every iteration the reflection coefficients of
the hyperbolic rotations are assumed to be strictly less than one in magnitude. In
this section we show that this can be guaranteed by imposing condition (44) on R
and by employing the enhancement suggested in 6.3.

The argument is inductive. We know that Iu12 > Iv12. Now assume that the
algorithm has successfully gone through the first i steps and define the [ as in (34).
Also define the matrix S that solves the displacement equation

(43)

as well as the matrix

Following the proof of Theorem 3.2, we can establish that

i-i

FFT ltT1 )1)T1 E Mj.
j--1
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If we further introduce the error matrix

Ei R- Ri,

we then note that it satisfies

i-1

F-aFT E My

since, we assume, tl u and
Then, as before, we can establish that

i-1

j---1

where in the second step we use Lemma B.1. Now note that for diagonal and stable F,
II(I)ill < 1, and if F is strictly lower triangular then II(I)ill < IIFll. Therefore, combining
both cases, we get 1 + ]loll2 <_ 2 + IIFII 2, which leads to

It now follows that if the minimum eigenvalue of R meets the lower bound

.Xmin(R) > 28e11(I- F (R) F)-II (2 + IIFII 2) I111 + 11611
j=l

then/i will be guaranteed to be positive definite and, consequently, Si will be positive
definite. Then, by positive-definiteness,

But since we enforce fl(lOitili+l > Ii1+1, the algorithm can continue to the next
iteration.

This suggests the following lower bound on the smallest eigenvalue of R in order
to avoid breakdown of the algorithm (i.e., in order to ensure the positive-definiteness
of the computed Schur complements):

(44) )min(R) > csll(r- F (R) F)-Xll (2 / IIFll) IIll / IIjll
j-l

7.2. Error bound. From the discussion in the previous section, we can conclude
the following.
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THEOREM 7.1 (error bound). The generalized Schur algorithm for a structured
positive-definite matrix R satisfying (44), with a stable diagonal or strictly lower-
triangular F, implemented as detailed in this paper (see listing in Appendix D), guar-
antees the following error bound:

(45) IIEII _< 9[[(- F F)-II (2 + IIFII =) [ ]I111 + I1112
j=l

The term I1(/- F F)-Xll in the error bound is expected from the perturbation
analysis of 4. However, the presence of the norms of the successive generators makes
the error bound larger than the bound suggested by the perturbation analysis, which
depends only on the norm of the first generator matrix.

7.3. Growth of generators. The natural question then is as follows: How big
can the norm of the generators be? An analysis based on the norm of the hyperbolic
rotations used in the algorithm gives the following bound:

(46)
k=l

which is reminiscent of the error bounds of Cybenko for the Levinson algorithm [7].
A tighter bound can be obtained by using the fact that R is positive definite to get
(recall (13))

(47) [lu}l = < II(I- F F)-xII ( + IIFIlZ)2 IIRll.
This shows that the growth of the generators depends on (I- F (R) F) -1 II, But for
a strictly lower-triangular F a better bound is Iluill 2 < IIRII. Therefore, for strictly
lower-triangular F the error bound is as good as can be expected from the perturbation
analysis of 4.

What does this say about the stability of the generalized Schur algorithm for
a diagonal and stable F? Clearly, when the eigenvalues of F are sufficiently far
from 1 the method has excellent numerical stability. The algorithm degrades as the
eigenvalues of F get closer to 1. This is to be expected from the perturbation analysis
(whether we use a slow or a fast algorithm). However, if the generators grow rapidly
(i.e., as fast as (47)) then the algorithm degrades faster than the rate predicted by
the perturbation analysis.

Is there anything further we can do to ameliorate this problem? One thing we
have not considered yet is pivoting, which is possible only when F is diagonal. We
discuss this in 8.

7.4. F strictly lower triangular. When F is strictly lower triangular the error
bound can be written in the alternate form

This shows that when F is contractive (IIFll _< 1), the error bound is as good as can
be expected from the perturbation analysis; i.e.,
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We observed in 7.3 that Ilul] 2 _< IIRII. Therefore, if F is strictly lower triangular and
contractive, then the algorithm is backward stable.

This includes the important class of positive-definite quasi-Toeplitz matrices,
which correspond to F Z. In this case, we strengthen the result of Bojanczyk
et al. [3], which states that for quasi-Toeplitz symmetric positive-definite matrices,
the Schur algorithm is asymptotically backward stable. Our analysis shows that the
modified algorithm proposed here is backward stable provided the smallest eigenvalue
of the quasi-Toeplitz matrix satisfies

j=l

If F is strictly lower triangular but noncontractive then the error norm can pos-
sibly depend on

7.5. F diagonal. For the special case of a stable diagonal F, the bound in (45)
may suggest that the norm of the error can become very large when the magnitude
of the diagonal entries of F become close to one. But this is not necessarily the case
(see also the numerical example in the next section).

First note that the bound in (39) can be strengthened since the hyperbolic rota-
tions are applied to each row independently. By assumption (44), the Schur comple-
ment generated by (2i, 3) is positive definite. Hence, by Theorem A.1,

and we conclude that

Define

It then follows from (43) that

Therefore,

Vj,i
Pj,i

j,i

Uj,iUk,i

1 fj fk
(1 Py,Pk,).

Now using expression (41) we obtain

This establishes the following alternative bound for the error matrix E:

1-maxj,i

which is independent of the {f}. In other words, if the coefficients pj, are sufficiently
smaller than one, then the algorithm will be backward stable irrespective of how close
the {Ifl} are to one.
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8. Pivoting with diagonal F. When F is diagonal it is possible to accom-
modate pivoting into the algorithm, as suggested by Heinig [10]; it corresponds to
reordering the fj’s, uj,i’s, and vj,’s identically at the ith iteration of the algorithm.
This has the effect of computing the Cholesky factorization of PRPT, where P is the
product of all the permutations that were carried out during the algorithm.

In finite precision, pivoting strategies are employed in classical Cholesky factor-
ization algorithms when the positive-definite matrix is numerically singular. In the
context of the generalized Schur algorithm of this paper, the main motivation for
pivoting should be to keep the norm of the generator matrices as small as possible!
This is suggested by the expression for the error bound in (45), which depends on the
norm of the generators. Note that this motivation has little to do with the size of the
smallest eigenvalue of the matrix.

We would like to emphasize that pivoting is necessary only when the norm of F
is very close to one since otherwise the generators do not grow appreciably (47).

8.1. A numerical example. The first question that arises then is whether there
exists a pivoting strategy that guarantees a small growth in the norm of the genera-
tors. Unfortunately, we have numerical examples that show that irrespective of what
pivoting strategy is employed, the norms of the generators may not exhibit significant
reduction.

Consider the matrix R the satisfies the displacement equation R-FRFT GJGT
with

0.26782811166721 0.26782805810159
0.65586390188981 -0.65586311485320

j [ 1 0G
0.65268528182561 0.65268365011256 0 -1
0.26853783287812 -0.26853149538590

and

F diagonal{0.9999999,-0.9999989, 0.9999976,-0.9999765}.

The matrix R is positive definite since the entries of the column vector Vl were gen-
erated from the relation v,l u,ls(fi), where s(z) is the Schur function s(z)
0.9999999z. Table 8.1 lists the values of

n

for all 24 possible pivoting options of the rows of the generator natrix G. The
results indicate that none of the pivoting options significantly reduces the size of the
generators. Indeed, note that the norm of u is approximately one, while the best
growth rate we achieve with pivoting is approximately 104 This best case is achieved
when the diagonal entries of F are approximately in increasing order of magnitude.

8.2. The case of positive F. This raises the next question: Is pivoting useful
at all? It is useful when the the entries of the F matrix are strictly positive (or
negative). In this case, we permute the entries of F (and, correspondingly, the entries
of ul and vl) such that the diagonal of F is in increasing order of magnitude. Then
it is shown below that

II’a, < I1.111/:,
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TABLE 8.1

5,30 0.41
5.30 0.41
5.21 0.40
5.21 0.40
5.03 0.40
5.O3 0.40
0.83 0.04
0.83 0.04
0.83 O.O4
0.83 0.04
0.83 0.04
0.83 0.04

which makes the first-order term of the upper bound on E depend only on the first
power of II(I- F (R) F)-IlI. Indeed, we know that

1

where the top (i 1) entries of ui and li are zero. For j >_ i,

and due to the ordering of the entries of F, and since Ifil < 1, we have

1- ffi <. 1- f2 <_ V/1-1fl2.

Therefore,

V/1 -if,

and we conclude that

116 11 _< IIZ- ll _< II ll 1/=,

as desired.

8.3. The nonpositive case. When F is not positive, the example in 8.1 sug-
gests that pivoting may not help in general. However, it may still be beneficial to
try a heuristic pivoting strategy to control the growth of the generators. Ideally, at
the ith iteration we should pick the row of the prearray Gi+l which would lead to
the smallest (in norm) postarray Gi+l. Since there seems to be no efficient way to
do this we suggest picking the row that leads to the smallest reflection coefficient (in
magnitude) for the hyperbolic rotation Oi. As suggested by the example of 8.1, an
alternate strategy would be to order the fi’s in increasing order of magnitude.

We stress that pivoting is relevant only when the norm of F is very close to one,
as indicated by the error bound (45) and (47).
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8.4. Controlling the generator growth. We have shown in 7.4 and 8.2 that
the generators do not grow (i) if F is strictly lower triangular and contractive or (ii)
if F is a positive diagonal matrix with increasing diagonal entries. We now show how
to control the generator growth in general using an idea suggested by Gu [9].

It follows from (43) that

Let WiAiWT denote the eigendecomposition of (ij(T, where Ai is a 2 2 real
diagonal matrix with (Ai) > 0 and (Ai)22 < 0. Then WiAi] can be taken as a
generator for Si with the desirable property that

where ]]] ]R] to first order in e.
Therefore, whenever the generator grows, i.e., ]]]2 becomes larger thn a given

threshold (sy, 2R(1 + ]F]])), we can replace it by W]. This computation
can be done in O((n- i)r2 + r3) flop2 (r 2 in the cse under consideration) by first
computing the QR fctorization of G, say

QiPi, QiQ I,

and then computing the eigendecomposition of the 2 2 matrix PiJP. We can then
get Wi by multiplying Qi by the orthogonal eigenvector matrix of PiJP.

9. Solution of linear systems of equations. The analysis in the earlier sec-
tions suggests that for ]]F] sufficiently close to one, the error norm can become large.
However, if our original motivation is the solution of the linear system of equations

Rx b,

then the error can be improved by resorting to iterative refinement if either the matrix
R is given or if it can be computed accurately from (F, G). In what follows we show
that for a diagonal F, the matrix R can be evaluated to high relative accuracy if u
and v are exact.

9.1. Computing the matrix R. Given a positive-definite structured matrix R
that satisfies

R- FRET uu vv,
with F diagonal and stable, its entries cn be computed to high relative accuracy, as
we explain below.

It follows from the displacement equation that

tti,l Uj,1 Vi,l Vj,1
rij 1- ffj

where, by positive-definiteness, the ratios

vi,i and
ti,1

are strictly less than one.

Ui,l Uj,l (1 v’----2 224-’ )ui,i uj,i

Vj,1

Uj,1

The term 1- v,l can be evaluated to high relative accuracy, as explained
ui,1 uj,

earlier in the paper in 5.4, viz.,
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If v’--A ’ < 1/2’I/,i, j,l

then 1- vi,___!_

else

lU,l I1
dl + d dld

Likewise, we evaluate # (1 ffj) and then

This guarantees that

Ui,lUj,I

/, r,j(1 + c&).

9.2. Iterative refinement. If the factorization T is not too inaccurate and
if R is not too ill conditioned, then it follows from the analysis in [11] that the solution
2 of Rx b can be made backward stable by iterative refinement.

ALGORITHM 9.1 (iterative refinement).

Set o c, r b- R2o
repeat until ]]r]] _< c3[[R[[ I]511

solve LLTSx r
set 2i i-1 + 5X
r b- R2

endrepeat

10. Enhancing the robustness of the algorithm. We now suggest enhance-
ments to further improve the robustness of the algorithm.

To begin with, carrying out the hyperbolic rotation as in (26) enforces the relation
(S),

(48) ,./i+151 Vi+lVi+l" "T iiTT ,)T Ni+l

where

(49)

But the positive-definiteness of R further imposes conditions on the columns of
the generator matrix. Indeed,

for a diagonal and stable F, by Theorem A.1, a necessary condition for the
positive-definiteness of the matrix is that we must have

where the inequality holds componentwise;
for a lower-triangular contractive F, Lemma B.2 shows that a necessary con-
dition for positive-definiteness is
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in all cases, the condition I(Ihuili+l > Ivil+l is required to ensure that the
reflection coefficient of the hyperbolic rotation O is less than 1.

We have found that if all these necessary conditions are enforced explicitly the
algorithm is more reliable numerically. An example of this can be found in 10.3.

We now show how the OD and H methods can be modified to preserve the sign
of the J-norm of each row of the prearray.

10.1. Enhancing the OD method. The OD method can be enhanced to pre-
serve the sign of the J-norm of the row it is being applied to. For this purpose, assume
that

Then from (27) we see that if the jth row of the perturbed prearray has a positive
J-norm then by adding a small perturbation to the jth row of the computed postarray
we can guarantee a positive J-norm. If the jth row of the perturbed prearray does
not have a positive J-norm, then in general there does not exist a small perturbation
for the jth row of the postarray that will guarantee a positive J-norm. For such
a row, the prearray must be perturbed to make its J-norm sufficiently positive and
then the hyperbolic rotation must be reapplied by the OD method to that row. The
new jth row of the postarray can now be made to have a positive J-norm by a
small perturbation. The details are given in the algorithm below. For the case of a
diagonal and stable F, all the rows of the prearray should have a positive J-norm.
The algorithm should enforce this property.

In the statement of the algorithm, x y stands for a particular row of the
prearray i+1, ;I 91 stands for the corresponding row of the postarray (i+, and
0 stands for the hyperbolic rotation. Here we are explicitly assuming that Ixl > IYl,
which is automatically the case when F is diagonal and stable. Otherwise, since

], toc ni.u, mu t us. .it . .m.nts i.,.t
row interchanged.

ALGORITHM i0.I (enhanced OD method).

Assumption:
if ]il < 1911

i 1 + 11 > -l th.n

else
Vl C6(Ixl + lyl)sign(x)
2 c6,(Ixl + lyl)sign(y)
i x+ y-2 ]0 (via the OD method)

if I&ll> I11 then
else

v (el + )sign(e)
c( + l)sign(l)

endif
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endif
endif

The computed columns i+l and ?i+1 continue to satisfy a relation of form (27).
10.2. Enhancing the H procedure. Here again, x y stands for a par-

ticular row of the prearray (9+1 and 51 91 stands for the corresponding row of
the postarray. We shall again assume that Ixl > lY[. If that is not the case then the
procedure must be applied to [y x ], since [y x ]O [yl Xl ].

It follows from Ix > lYl and relation (31) that

+ , 12 + .212 > 0

for the H procedure. Therefore, by adding small numbers to 51 and )1 we can guar-
antee 151] > I)11.

ALGORITHM 10.2 (enhanced H method).

Assumption: Ix] > lYl.
Apply the hyperbolic rotation (9 to x
If I11< I)11 then
1 +-I11(1 3e)sign()l)

y using the H procedure.

10.3. A numerical example. The following example exhibits a positive-defi-
nite matrix R for which a direct implementation of the Schur algorithm, without the
enhancements and modifications proposed herein, breaks down. On the other hand,
the modified Schur algorithm enforces positive-definiteness and avoids breakdown, as
the example shows. The data is given in Appendix E.

A straightforward implementation of the generalized Schur algorithm (i.e., with
a naive implementation of the hyperbolic rotation and the Blaschke matrix-vector
multiply) breaks down at the 8th step and declares the matrix indefinite.

On the other hand, our implementation, using the enhanced H procedure (10.2)
and the enhanced Blaschke matrix-vector multiply (6.3), successfully completes the
matrix factorization and yields a relative error

I[R-
0.1 .

Furthermore, the relative backward error I]R- LLT]]/]]R]I is approximately 10-11

(using a machine precision of approximately 10-16).
11. Summary of results. The general conclusion is the following.

The modified Schur algorithm is backward stable for a large class of structured
matrices. Generally, it is as stable as can be expected from the analysis in 4.

More specifically, we have the following.
If F is strictly lower triangular and contractive (e.g., F Z), then the
modified algorithm.is backward stable with no generator growth.
If F is stable, diagonal, and positive, then by reordering the entries of F in
increing order, there will be no generator growth and the algorithm will be

stable as can be expected from 4. In particular, it will be backward stable
if IIFII is not too close to one (e.g., IlEll 1 ).
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In all other cases, we can use the technique outlined in 8.4 to controlthe
generator growth and make the algorithm as stable as can be expected from
4. In particular, it is backward stable if IIFII is not too close to one (e.g.,
IIFII e < 1- -).
If R is given or can be computed accurately (e.g., when F is diagonal), iter-
ative refinement can be used to make the algorithm backward stable for the
solution of linear equations.

As far as pivoting is concerned, in the diagonal F case, we emphasize that it is
necessary only when IIFII is very close to one.

If F is positive (or negative), a good strategy is to reorder the entries of F in
increasing order of magnitude.
If F has both positive and negative entries, then our numerical example of
8.1 indicates that pivoting may not help control the growth of the generators.

In our opinion, for positive-definite structured matrices, with diagonal or strictly
lower-triangular F, the stabilization of the generalized Schur algorithm is critically
dependent on the following:

proper implementations of the hyperbolic rotations (using the OD or H pro-
cedures),
proper evaluation of the Blaschke matrix-vector product,
enforcement of positive-definiteness to avoid early breakdowns,
control of the generator growth.

12. Concluding remarks. The analysis and results of this paper can be ex-
tended to positive-definite structured matrices with displacement rank larger than 2,
as well as to other forms of displacement structure, say the Hankel-like case

FR + RFT GJGT.

While the current analysis can also be extended to the bidiagonal F case, the
error bound will further depend on the norm of the Blaschke matrices, which need
not be smaller than one. Further improvements seem possible and will be discussed
elsewhere.

We are currently pursuing the extension of our results to general nonsymmetric
structured matrices. In these cases, the hyperbolic rotations are replaced by coupled
rotations [16] and the OD and H procedures can be generalized to implement these
rotations accurately.

Moreover, the results of this work suggest improvements to certain fast algorithms
in adaptive filtering and state-space estimation in view of the connections of these
algorithms to the Schur algorithm [15]. This is a subject of ongoing investigation.

The H procedure can also be extended to other elementary transformations like
Gauss transforms and Givens rotations. The implications of this fact will be addressed
elsewhere.

Appendix A. Schur functions. A function s(z) that is analytic and strictly
bounded by one (in magnitude) in the closed unit disc (Izl

__
1) will be referred to as

a Schur function. Such functions arise naturally in the study of symmetric positive-
definite matrices R that satisfy (10) with a stable diagonal matrix F with distinct
entries. Indeed, let {uii } and {vii } denote the entries of the generator column vectors
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Ul and vi"

tll
U21

it1 Vl

tnl

Vll
V21

Vnl

The following theorem guarantees the existence of a Schur function s(z) that maps
the il to the vii [19, Thm. 2.1], [15, 17].

THEOREM A.1. The matrix R that solves (10) with a stable diagonal matrix F
with distinct entries is positive definite if and only if there exists a Schur .function
s(z) such that

(A.51) Vil ZtilS(fi).

It follows from (A.51) that IVill < Itill and, consequently, that IIv:ll < Ilu:ll.
Appendix B. Useful lemmas. The following two results are used in the body

of the paper.
LEMMA B. 1. If R FRFT uuT vvT then

The following is an extension of a result in [3].
LEMMA B.2. If R- FRFT uuT- vvT, R is a positive-definite matrix, and F

is a contractive matrix, then

Proof. Taking the trace of both sides of the displacement equation we get

tr(R) tr(FRFT) II ll -I1 11
Introduce the SVD of F: F UEVT with Ei _< 1. Then tr(FRFT) tr(EVTRVE) <_
tr(VTRV) tr(R), from which the result follows. B

Appendix C. Error analysis of the OD method. In this section we analyze
the application of a hyperbolic rotation O using its eigendecomposition QDQT,
where

1[ 11
Q= -1 1

and

0

for given number c and such that lal >
Let B OA. We shall now show that

(/ + E2) O(A + E),
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where lIE211 <_ c3911/}11 and
First note that using the above expressions for D and Q, their entries can be

computed to high componentwise relative accuracy (assuming that the square roots
can be computed to high relative accuracy).

Next observe that, for any vector x,

fl(([gx)j) (Dx)j(1 + c415s).

Therefore, IIx- Dxll <_ c,i2ellDxll. Also, note that

+

Hence, we can show that

fl(x)
where [[1] [[ C44X ca5e]fl(Qx)].

Now, let y QDQTx. Then in finite precision we have

fl(QTx) QT(x + e3),
fl(DQT (x + ea)) DQT (x + ea) +

and

fl(2(DQT(x + ea) + e4)) Q(DQT(x + e) + ea) + e
QDQT(x + el) e6 9.

Thus,

9 + e6 QDQT (x + e) O(x + e3),

where, by the bounds above,

Appendix D. Matlab programs. We include here a Matlab listing of the sta-
bilized Schur algorithm suggested in this paper. The program assumes that the input
matrix is positive definite and tries to enforce it. The algorithm listed here can be
easily modified to test if a structured matrix is positive definite.

D.I. The H procedure. Input data: The ratio beta/alpha represents the re-
flection coefficient, which is smaller than one in magnitude. Also, y/x is assumed
smaller than one in magnitude.

Output data: The entries X

x y with Ixll> lYll-
Yl that result by applying a hyperbolic rotation to

function xl, yl h_procedure(x, y, beta, alpha)

c (beta y)/(alpha x);
ifc < 0.5

xi 1 c;
else



980 S. CHANDRASEKARAN AND ALI H. SAYED

dl (abs(alpha) abs(beta) /abs(alpha)
d2 (abs(x) abs(y))/abs(x);
xi dl + d2- dl d2;

end
xl (abs(alpha) x xi)/sqrt((alpha- beta) (alpha + beta));
yl xl sqrt((alpha + beta)/(alpha beta)) (x y);
if abs(xl) < abs(yl)
yl abs(xl) (1 3 eps) sign(y1)

end

D.2. The Blaschke matrix-vector product. We now list the program that
computes iui for both a diagonal F and a strictly lower-triangular F.

Input data,: An n n stable and diagonal matrix F, a vector u, a vector v (such that

Iv < lul), and an index i (1 _< i _< n).

Output data: The matrix-vector product z Oiu, where (I- fF)-I(F- fI),
and the vector ub (I- fF)-lu.

function z, ub blaschke_l(F, u, v, i, n)

ub = u;
z - u;
for j n

if F(i, i), F(j, j) < 0.5
xi 1/(1 F(j,j), F(i, i));

else
dl 1 abs(F(i, i));
d2 1 abs(F(j,j));
xi 1/(dl + d2 dl 42);

end
ub(j) xi z(j);
z(j) (F(j,j) F(i, i)) , ub(j);
if abs(z(j)) < abs(v(j))

z(j) abs(v(j)) (1 + 3 eps) sign(z(j));
end

end

For a strictly lower-triangular F we use the following.

Input data: An n n strictly lower-triangular matrix F, a vector u, a vector v (such
that Ivl <: lul), and an index (1 _< i _< n).

Output data: The matrix-vector product z Fu and ub u.

function z, ub blaschke_2(F, u, v, i, n)

ub u;
z--F,u;

0;
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if abs(z(i + 1)) < abs(v(i + 1))
z(i + 1) abs(v(i + 1)) (1 + 3 eps) sign(z(/+ 1));

end

D.3. The stable Schur algorithm. We now list two versions of the stable
modified Schur algorithm--one for diagonal stable F and the other for strictly lower-
triangular F.

Input data: An n n diagonal and stable matrix F, a generator G u
proper form (i.e., vl 0) with column vectors u, v.

v]in

Output data: A lower-triangular Cholesky factor L such that IIR- LLTII satisfies
().

function L stable_schur_l(u, v, F)

n ze(, );
fori=l:n-1

u, ub blaschke_l(F, u, v, i, n);
n(:, i) sqrt((1 F(i, i)) . (1 + F(i, i))) . ub;
a=v(i+l);
b u(i + );
for j + l n

(j), (j) _,od,((), (y), , );
end
(i + ) 0;

end
i(n, n) (1/srt((1 F(, )) (1 + F(, n)))) ();
L(l:- 1, n)= z,o(n- , 1);

Input data: An n n strictly lower-triangular matrix F, a generator G u v
in proper form (i.e., vl O) with column vectors u, v.

Output data: A lower-triangular Cholesky factor L such that IIR- LLTII satisfies
(4).

function L stable_schur_2(u, v, F)

n size(F, 1);
for i-- 1 :n- 1

u, ub blaschke_2(F, u, v, i, n);
n(:, i) sqrt((1 F(i, i)) , (1 + F(i, i))) , ub;
a=v(i+);
=(i+);
for j + l n

if abs(u(j)) > abs(v(j))
u(j), v(j) h_procedure(u(j),v(j),a, b);

else
temp_v, temp_u h_procedure(v(j), u(j), a, b);

v(j) temp_v; u(j) temp_u;
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endif
end
v(i + 1) 0;

end
L(n, n) (1/sqrt((1 F(n, n)). (1 + F(n, n)))) u(n);
L(l n- 1, n) zeros(n- 1, 1);

Appendix E. Example of breakdown.

0.29256168393970
0.28263551029525
0.09633626413940
0.06797943459994
0.55275012712414
0.42631253478657
0.50468895704517
0.23936358366577
0.14608901804405

0
-0.10728616660709
0.01541380240248

-0.02572176567354
0.22069874528633
0.06821000412583
0.20125628531328

-0.09527653751206
0.02337424345679

F diag

0.40000000000000
0.97781078411630

-0.00000000433051
0.97646762001746

-0.99577002371173
0.00000001005313

-0.99285659894698
0.99789820799463

-0.00000001100000

The matrix R that solves R-FRFT GJGT is positive definite since the entries
of v were computed from

where s(z) is the Schur function

s(z) =0.4
0.4-z
1 0.4z"
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Abstract. The best available bounds for the departure from normality of a matrix are given.
The significant properties of these lower and upper bounds are also described. For example, one of
the upper bounds is a practical estimate that costs (at most) 2m multiplications, where m is the
number of nonzeros in the matrix. In terms of applications, the results can be used to bound from
above the sensitivity of eigenvalues to matrix perturbations or to bound from below the distance to
the closest normal matrix.

Key words, nonnormal matrix, departure from normality, condition numbers, eigenvalues

AMS subject classifications. 65F35, 15A60, 15A12

1. Introduction. The departure from normality of a matrix, like the condition
number of a matrix, is a real scalar that can be used to compute various matrix
bounds. If A is an n n matrix, its departure from normality in the Frobenius norm
is defined to be [8]

(1.1) dep(A) "= ([[A[[ 2 [[A[[ 2) 1/2,
where A is a diagonal matrix whose entries are the eigenvMues, Ak, of A. This measure
of matrix nonnormality can be used to bound the spectral norm of matrix functions [2],
[5]; the sensitivity of eigenvMues to matrix perturbations [8], [15]; and the distance to
the closest normal matrix [10], [16], for example. It is impractical to compute dep(A)
if A is large and its eigenvalues are unknown. This difficulty motivates us to seek
lower and upper bounds for dep(A) that are practical to compute or optimal in some
sense.

In terms of eigenvalues, bounds for dep(A) can be used to obtain lower and upper-
bounds for

(1.2) ]IA]] 2, I]Re(A)[] 2, and [lIm(A)[[ 2,

where Re(A) and Im(A) are the real and imaginary parts of A. In particular, such
results can be obtained by substituting lower and upper bounds for dep(A) into [12,
Lem. 3.1]

(1.4)

where

IIAII IIAII dep2(A),

[IRe(A)I[ 2 [[M[[ 2 -dep2(A),
[[Im(A)[I 2 -IINl[ 2 -1.dep2(A),

1
(A + AH)M=-

1 (A- AHa,nd N - )
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96OR22464 with Lockheed Martin Energy Research Corporation.

Mathematical Sciences Section, Oak Ridge National Laboratory, P. O. Box 2008, Building 6012,
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are the Hermitian and skew-Hermitian parts of A, respectively. Upper bounds for [[A[[ 2
can be used to bound the spectral radius [14] and the spread of a matrix [1]. As we
show later, the lower and upper bounds for [[A[I 2 in [5], [9] are especially useful because
they can be substituted into (1.1) to help obtain better bounds for dep(A).

The outline of this paper is as follows. In 2, we give the notation, definitions, and
observations that will be needed in later sections. In 3, we present various bounds
for [[A[[ 2 that are then used to obtain better bounds for dep2(A). In 4, we describe
the significant properties of the newly improved bounds. In 5, we group the currently
known a priori bounds for dep2(A) into two main categories and then show that the
new bounds are among the best available.

2. Preliminaries. Let A (aij) be an n n matrix with conjugate transpose
AH (ji) and Frobenius norm

i,j

Also, recall that A is normal if and only if (iff), for example, the following are true [7]"

(2.1a)

(2.1b)

(2.1c)

A has a complete, orthogonal set of eigenvectors,

or

AHA- AAH O.

The set of normal matrices includes the Hermitian, skew-Hermitian, and unitary
matrices and, in general, any matrix that is unitarily similar to a diagonal matrix. It
is easily seen that dep(A) is invariant with respect to shifts and rotations. That is,

dep(A) dep(e-i (A aI))

for any complex scalar a and 0 _< < 2r. The commutator in (2.1c) is another
measure of nonnormality [4] that is invariant to shifts and rotations of A; for example,

(2.3) II(A aI)H(A aI) (A aI)(A aI)HII IIAHA AAHII.
It is easy to show that the quadratic function IIA a112 is minimized for a t(A)

n
where tr(A) is the trace of A. If tr(A) 0, we shall say A is a centered matrix.
Centered mtrices such as

.= A tr(A) I
n

will be denoted with a tilde accent. Finally, we give a lemma that relates the norm
of the shifted matrix A aI to the norm of the centered matrix A.

LEMMA 2.1. For any n n matrix A and complex scalar a,

Itr(A aI)l 2

(2.4) IIA- alII 2 I1112 + n

Proof. First, we relate the norm of A to the norm of For a tr(A) we haven

IIAll2- I11[ 2 IIA]] 2 A tr(A)
i

n
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(2.6)

H H ffH ffH(]

trg(A)tr-(A) trH (A) + tr(A) n
n n

2 Itr(A)l2 Itr(A) 12
n

Itr(A)l2

tr(A) 12n

If we replace A with A aI on the right-hand side of (2.5) and (2.6), we obtain

A-aI-tr(A-aI)I ]tr(A-aI)l
n n

and the second term simplifies to

A-I-tr(A-aI) I =]]1]2

n

to obtain (2.4).
3. Bounds for eigenvalues and departure from normality. We now present

several bounds for IIAII 2 and dep2 (A), along with their important properties. An upper
bound for IIAII 2 is given by Kress, de Vries, and Wegmann [9]. Moreover, the authors
exhibit nonnormal matrices for which the bound is sharp and prove that the upper
bound is the best possible in terms of IIAII and IIAHA- AAH II.

THEOREM 3.1 (see [9, Thm. 1]). For nonnormal A there holds

) 1/2
(3.1) IIA[12 < ]IAII4 1 ]IAHA AAH]I2-with equality iff

(3.2) A (vwH "- rwvH)
where "y is a nonzero complex scalar; 0 <_ r < 1 is a real scalar; and v, w are
orhonormal vectors.

The practical lower bound for IIAII 2 in [5],

(3.3)

comes from the triangle inequality applied to the eigenvalues of A2:

Itr(A2)l Itr(A2)l [,k +... +
< ]] + + 1.] I1 +... + !.1 IIAII

The lower bound is sharp iff zero and the eigenvalues of A are collinear. Moreover, the
bound is cheap to compute since only the diagonal of A2 is needed. This diagonal can
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be computed with (at most) rn multiplications, where rn is the number of nonzeros
in A.

The lower bound [17, p. 161] and the upper bound [5] for dep2(A),

(3.5)

can be obtained by substituting (3.1) and (3.3) into (1.1). The upper bound in (3.5)
is sharp iff zero and the eigenvalues of A are collinear, and it can be computed with
(at most) 2m multiplications. The lower bound is an O(n3) computation that is sharp
iff A is normal or satisfies condition (3.2). This lower bound inherits the properties
of the upper bound (3.1) via (1.1); thus, it is the best possible in terms of
and IIAHA-

It is straightforward to improve the dep2(A) lower bound in (3.5) if we recall
that dep(A) is invariant with respect to the shift parameter a; see (2.2). For normal
matrices, the bound

(3.6) IIA oIII 2 [[A O&[[[ 4
1 [[AHA AAH 2 <__ dep2 (A cI) dep2 (A)

is zero for any choice of (. For nonnormal matrices, however, there is a unique value
of ( that maximizes (3.6). In particular, by substituting (2.4) into (3.6), we seek to
maximize the function

where

and

f(z(a)) (32 + z2(a)) [(32 + z2(a))2 -K21] 1/2

z(c) ]tr(A cI)] 2

n

i1 112, K2 IIAHA_ AAHII 2 > 0.

By solving 0, we find that the unique solution z 0 is a global maximum

since -z (0) < 0. By solving z(a) 0, we find that the lower bound is maximized

for a tr(A..__).
n

tr(A) al80 optimizes the upper boundIn 4, we prove that c n

(3.8) dep2(A) dep2(A oI) I1 112 IlXll 2 I1 112 -Itr(fi2)I.
4. Main results. We now establish the significant properties of the new bounds

given in 3. To begin, recall that the lower bound in (3.5) is sharp for any nonnormal
tr(A)matrix that satisfies condition (3.2). The improved lower bound (3.6), with c n

is unaffected by complex shifts; thus, it is sharp for

A (vwH -J- rwvH) aI

for any choice of the scalar a. Note that we have

tr(/(vwH + rwvH) crI)
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so that a tr(A) cancels the arbitrary shift or. The improved bound is also unaffectedn
by rotations. We summarize the above results as follows.

THEOREM 4.1. For any n x n matrix A,

(4.1) dep2(A) > I111- IIII4--IIAHA--AAHII
where A-I The bound is sharp, with equality iff A is normal or

(4.) A -((" +) )
where , r, and are complex scalars; 0 0 2; and , w are orthonormal vectors.

We will now prove that the upper bound (3.8) i8 sharp iff the eigenwlue8 of A are
collinear in the complex plane. Before doing so, we must establish a naturM measure
of the noncollinearity of mtrix eigenvMues. One approach i8 to define "departure
from collinearity" 8

(4.3) depcol(A) := Idol
where d[ i8 the perpendicular distance from to the straight line, total least
square8 (TLS) fit of the eigenvalues of A. Recall that a TLS fit minimizes the sum
of the 8quire8 of the perpendicular distance8 from the point8 to the fitted line and
UhU Idol is Uhe TLS eo [6]. aven Uhe deniUion (4.3), we nd depcol(A) to be a
sensible metric for quantifying departure from c011inerity, especiMly since depcol(A)
0 iff A has collinear eigenvMues.

A useful result concerning departure from collinearity follow8 from [11, Thm. 2.2].
THEOEM 4.2. Given the complex numbers zk, k 1,..., n, let z so

that

Zk Zk Z.

The error for the TLS fit is

(4.4) ldl -where Idol is the perpendicular distaece from z to the fit.
In the context of matrix eigenvalues, (4.4) yields

1 ([[X[[2-tr(2))(4.) dco(A)

If we arrange (4.5) as

IlXll -Itr()l + depcol(A),

we can substitute to obtain

(4.6) dep2(A) -IIll -IIXII 2 -I1112 (Itr(j.2)l / 2 depcol(A)).
The upper bound in (3.8) is a special case of the equality in (4.6).

THEOREM 4.3. For any n x n matrix A,

(4.7) dep (A)

where A-I The bound is sharp, with equality iff the eigenvalues of A are
collinear in the complex plane.

Proof. The bound (4.7) is obtained from (4.6) by dropping the term 2 depcol(A).
The bound is sharp iff depcol(A) 0, that is, iff the eigenvalues of A are collinear. El
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5. Discussion and summary. To the best of our knowledge, a priori bounds
for dep(A) fall into one of two distinct categories. The bounds in the first category
are based on computing the Frobenius norm of the commutator AHA- AAH [3], [4],
[8], [13], [17]. The bounds in the second category are based on inequalities that are
sharp iff the eigenvalues of A have a certain alignment in the complex plane [5], [12].
For each of these categories, we give the best bounds known to us at this time.

Bounds based on

n3 n
(5.1) dep(d)

(5.2) dep2(A) > "l] 2 (]12,,4 1 )1/2- I[AHA AAH 2

Remarks. The upper bound (5.1) is due to Senrici [8, Thm. 1]. The lower
bound (5.2) is given in Theorem 4.1. Sun’s lower bound (3.5) is the best possible in
terms of IIAHA- ddHII and IIdI]; thus it is stronger than the bounds in [3], [4]. The
bound (5.2) improves upon Sun’s lower bound, and it is also stronger than the one
in [13].

Bounds based on eigenvalue alignment.

(5.3) dep2 (d)

Remarks. The upper bound (5.3) is sharp iff the eigenvalues of A are collinear.
tr(A)In contrast, note that for a , we have [12, Thm. 3.3]

(5.4) dep(d) 2 min { lIM ae()Zll 2, Jig Im(a)I]]}.
This bound is sharp only when the eigenvalues are horizontally or vertically aligned
in the complex plane. rthermore, the bound (5.3) is about half as expensive to
compute as (5.4). Despite these shortcomings, the latter bound is useful and has
some noteworthy properties. In particular, (5.3) and (5.4) yield the same value if A
is a real matrix. We also remark that (5.4) explicitly bounds matrix nonnormality in
terms of the nonsymmetry of A.

Besides its practicality, the bound (5.3) is also appealing because it sometimes
enables us to compute dep(A) for matrices with extremely sensitive eigenvalues. For
example, consider the n x n matrix

uHwu

where Wn is dense and unitarily similar to the Wilkinson matrix [18, p. 90]

n n
(n-l) n

2

The eigenvalues of Wn are real, and the interior eigenvalues are notoriously difficult
to compute for n >> 20. Thus, we cannot determine the departure from normality
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for 50 via (1.1) because IIAII 2 cannot be computed accurately. However, we can

precisely determine that dep(W50) 350 via (5.3) since the sharpness of the formula
(modulo rounding errors) only depends upon eigenvalue collinearity--not eigenvalue
sensitivity.

The dep2(A) bounds (5.1)-(5.3), together with equations (1.3)-(1.5), lead to
better bounds for IIAII , IIRe(A)II 2, and IlIm(A)ll 2. For example, substituting (5.2)
into (1.3) yields

(5.5) IIAII2 < (112114 1 )1/2- IIAA AAH 2 +
n

which improves upon the original result in (3.1). This bound is sharp, with equality
iff A is normal or satisfies condition (4.2). For additional results concerning bounds
for eigenvalues, see [19] and the references therein.

To summarize, we have developed new bounds for dep2(A) and described their
significant properties. We have also grouped these and the other known a priori
bounds into two categories. Within each category, we have given the best available
bounds. The bounds based on IIAHA-AAH have an important property: they reduce
to zero if A is normal. Unfortunately, such bounds are often weak and impractical to
compute if A is large. On the other hand, the bounds based on eigenvalue alignment
are often good estimates (e.g., [12, Table 1]), and they are practical to compute if A
is large and sparse. A minor drawback is that these bounds only reduce to zero
for normal matrices with collinear eigenvalues (e.g., Hermitian and skew-Hermitian
matrices). Theorem 4.1, Theorem 4.3, and [8, Thm. 1] describe nonnormal matrices
for which the best available bounds in (5.1)-(5.3) are sharp. The significance of our
results is described in 1.
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GENERALIZED MONOTONE AFFINE MAPS*
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Abstract. In this paper we derive new necessary and sufficient conditions for an affine map to
be quasimonotone on a convex set.
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1. Introduction. Recently, quasimonotone and pseudomonotone maps have been
introduced and studied in the context of complementarity problems and variational
inequalities problems [10, 11, 12, 17]. Several existence results have been obtained
and algorithmic implications are being studied. For a recent survey see [17].

In the particular case where a map F is the gradient of a function f, quasicon-
vexity (pseudoconvexity) of f is equivalent to the quasimonotonicity (pseudomono-
ton]city) of F. In this paper, we consider affine maps F(x) Ax + q; here A is an
n n matrix and q is a vector of n.

If A is symmetric, then F is the gradient of a quadratic function. Quasiconvexity
and pseudoconvexity of quadratic functions have been studied extensively [1, 4, 6, 13,
15, 16], and therefore characterizations of generalized monotone affine maps are well
known in this case. The purpose of this paper is to treat the case where A is not
necessarily symmetric. For some initial results see [7, 8, 9, 12, 14].

Generalized monotone affine maps arise in linear complementarity problems and
linear variational inequality problems; see, for example, [7]-[10], [17].

2. Definitions and notation. Let U be a convex subset ofn and F U -* n.
The map F is quasimonotone on U if for every x, y E U

F(x)) > 0 x, E(u)) _> 0,

and F is pseudomonotone on U if for every x, y E U

x, F(x)) > 0 x, > O.

For various definitions of generalized monotonicity see for instance [11]. For any subset
U of n, its (positive) polar cone is given by

U+ (y }n (y,x)

_
0 Vx e U}.

Given a square n n matrix D, its (Moore-Penrose) pseudoinverse [2] is the
uniquely defined n n natrix D which satisfies the following conditions:

DD*D D, D*DD* D*, (DD*) DD*, and (DID) D*D.

Received by the editors August 21, 1995; accepted for publication (in revised form) by R. Cottle
November 30, 1995.

Applied Mathematics, Universite! Blaise Pascal, 63177 Aubire Cedex, France (crouzeix@
ucfma,univ-bpclermont,fr).

Graduate School of Management, University of California, Riverside, CA 92521 (schaible
ucracl.ucr.edu).
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Given a symmetric n x n matrix B, its inertia is the triple

 n(e)

where n+, n_ and no denote the number of positive, negative, and zero eigenvalues
of B, respectively; then n+ + n_ + no n. Lagrange-Sylvester’s law on inertia says
that In(B) In(PtBP) for any nonsingular n x n matrix P.

Given a partitioned symmetric matrix

M B C

with A nonsingular, the Schur complement of A is the matrix M/A C- BtA-1B
[3]. The inertias of M, A, and M/A are related to each other as follows:

In(M) In(A)+ In(M/A).

In what follows,
F(x) Ax + q where A is an n x n matrix and q is a vector of n,
B 1/2(A + At),
C AtBtA,
In(B) (n+, n_, no) and r dim(Kern(A)),
f(x) (Ax + q, Bt (Ax + q)),
S-- {x: f(x) <_ 0},
T {x: {Cx, x} < 0},
and U is a convex set of iRn with nonempty interior.

3. The main results. It is known [12] that an affine map is quasimonotone on
an open convex set if and only if it is pseudomonotone on that set. This result is not
true for a convex set in general [12]. For a continuous (not necessarily affine) map G,
we have the following result which uses the nonemptiness of int(U).

LEMMA 1. Let G U - n. Assume that G is continuous on U and quasimono-
tone on int(U); then it is also quasimonotone .on U.

Proof. Assume that G is not quasimonotone on U; then x, y E U exist such that

(y x, G(x)} > 0 and (y x, G(y)) < O.

Then there exist x’, y’ E int(U) sufficiently close to x, y, respectively, such that

(y’-x’, G(x’)} > 0 and (y’-x’, G(y’)} < O,

contradicting quasimonotonicity of G on int(U).
On the other hand, we have the following characterization of pseudomonotone

affine maps on open convex sets.
PROPOSITION 1 (see [12, Thin. 5.2]). The map F is pseudomonotoue on int(U)

if and only if

(3) x int(U), h e iRn, and (Ax + q, h) 0 imply (Bh, h) >_ O.

Combining Lemma 1 and Proposition 1, we obtain the following characterization.
PROPOSITION 2. F is quasimonotoue on U (and pseudomonotoue on int(U)) if

and only if one of the following conditions holds:
(i) n_ 0; i.e., B is positive semidefinite and F is monotone on n;
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(ii) n_ 1, -q A(int(U)), q e B(n)

_
A(n), and U C S.

Proof. It is known [5] that for a vector b E n the condition

(4) h e }n, (b, h) 0 imply (Bh, h) >_ 0

holds if and only if either
(i) n_ 0; i.e., B is positive semidefinite; or

(ii) n_ 1, b = 0, and there exists v n such that Bv b and (b, v) _< 0.
We note that (ii) is equivalent to

n_ 1, 0 # b B(n), and (b, Btb) <_ O.

Assume that n_ 1. Then condition (3) is equivalent to

0 A(int(U))+ q C_ B(n), and int(U) C_ S.

Assume that (5) holds. Fix SO,He x int(U). Then for any h e }n, t > 0
exists such that x / th int(U). Since Ax + q and Ax / tAh + q belong to the same
linear space B(n), Ah also belongs to this space. Hence A(n) c_ B(n). Now,
Ax + q B(n) and Ax B(n) together imply q B(n). It is then easy to
complete the proof. El

Since B 1/2(A + At), we have the following relationship between the inertias of
B and C.

LEMMA 2. /f A(n) C_ B(n), then

(6) In(C) (n+ + no r, n_ + no r, 2r no).

Hence it follows that

(7) O<_r-no <_n_.

Proof. (a) First we show that

0 A ) (n-r,n-r, 2r)(8) In At 0

To see this, let us consider the equation

0 x

Then Ay Ax, Atx Ay, and AtAy 2y. It is easy to see that if the vector ()Y
Xis an eigenvector for the eigenvalue then the vector (-y) is an eigenvector for the

eigenvalue -A.
(b) Next we prove that

In A 0
In A 0

This is a consequence of Lagrange-Sylvester’s law on inertia and the identity

A 0 0 I A 0 1/2I I
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(c) Since B is symmetric, there is an n n nonsingular matrix P and an (n-
no) (n- no) nonsingular diagonal matrix D such that

ptp=iandPBpt=(D O)0 0

Since A(n)c B(), no <_ r and there exists an (n- no) x n matrix R such
thatPAP

Then

In A AO In /t0 00 00 (0, 0, no) + In R 0

Hence by the inertia formula for the Schur complement

In ( A AO ) (0, O, no)+ In(D)+ In(-RtD-1R).

Now in(D)= (n+, n_, 0), and

pCp pAtPtpB*PtpAp RtD-*R,
from which the result follows in view of (8). El

Accordingly, (ii) in Proposition 2 reduces to two cses: r no + 1 and r no.
We now state the main theorem.

THEOREM 1. F is quasimonotone on U (and pseudomonotone on int(U))/f and
only if one of the following conditions holds:

(i) n_ 0; i.e., B is positive semidefinite and F is monotone on n;
(iil) n_ 1, r no + 1, -q A(int(U)), q e B(n) D A(.n), C is positive

semidefinite, S is a closed convex set, and U c S;
(ii2) n_ 1, r no, -q A(int(U)), q e B() A(), and T T+ U-T+

where T+ is a closed convex cone with nonempty interior; and if 5c is such that A2. q,
then either U + 2. c_ T+ or U + C -T+.

Proof. Let us consider case (ii) of Proposition 2. If r no 4- 1, then by (6) C is
positive semidefinite. Hence f is convex and S is convex set.

Assume now that r no. Then A() B(), so that 2 exists such that
AS: q. Hence f(x) IC(x + 2), x +

The case where n+ 0 deserves special attention. Then A has rank 1. It
follows that two nonzero vectors u and v exist such that A uvt. Since B also
has rank 1, u and v are collinear and k < 0 exists such that A B kuut. Take

T+ {x" In, x) >_ 0}. Since -q 9 A(int(U)), U + 2 is contained in either T+ or -T+.
Assume now that n+ #- 0. Then the discussion follows the lines developed for

generalized convex quadratic functions by Ferland [6] and Schaible [15, 16]. Since C
is symmetric, a diagonal matrix A (with entries 5i) and a nonsingular matrix Q exist
such that QtQ I, QtCQ A, and 51 < 0 < 52 _<... _< (in > O.

Then T has the following form"

T

where

T+ x .y yl >
-(52y 4-... + ny2ni
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It is easy to see that T+ is a closed convex cone and that int(T) int(T+) U

int(-T+) where

{ i’(52y+’’’+Sny2n) }int(T+) x Qy yl >
51

Since the open convex set int(U + 2) is contained in int(T), it is contained in
either int(T+) or int(-T+). Hence the result follows.

This theorem gives the maximal domain of quasimonotonicity of F: Nn in case.

(i), S in case (iil), and T+ -2 or -T+ -2 in case (ii2). It is worth noticing that
quasimonotonicity of the map F on U implies quasiconvexity of the associated function

f on this set.
Now we apply this theorem to the case where U is a cone.
THEOREM 2. Assume that U is a convez cone with nonernpty interior. Then F

is quasirnonotone on U (and pseudornonotone on int(U)) if and only if one of the
following conditions holds:

(i) n_ 0; i.e., B is positive sernidefinite and F is monotone on n;
(iil) n_ n+ 1, A has rank 1, q E B(n) D_ A(n), (q,Bq} <_ O, and

-AtBq U+;
(ii2) n_ 1, r no, q B() A(), and T T+ U-T+ where T+ is a

closed convex cone with nonernpty interior; and if 2 is such that A2- q, then either
(U c_ T+ and 2 T+) or (U C_ T+ and 2 T+)

Proof. Let us first consider case (iil). Let x U. Then for all t > 0

0 >_ f(tx) t2(Cx, x} + 2t(x, AtB*q} + (q,B*ql.

It follows that (Cx, x) <_ 0 and, since C is positive semidefinite, that (Cx, x) 0
and therefore Cx 0 for all x E U. Then C 0 since U has a nonempty interior.

Hence, by (6), n++n0-r 0; thus n+ 1, no n-2, and r n- 1.
Conversely, if n+ n_ 1 and r n- 1, then there are u and v noncollinear such
that A uvt. It is easy to see that then C 0.

The other results are immediate.
Now, case (ii2) is a direct consequence of Theorem 1 and the assumption that U

is a convex cone.
An important case is U N the nonnegative orthant In this setting, the last

theorem becomes Corollary 1.
COROLLARY 1 Assume that U Then F is quasimonotone on (and+o +

pseudornonotone on int(N_)) if and only if one of the following conditions holds:
(i) n_ 0; i.e., B is positive semidefinite, and F is monotone on Nn;

(iil) n_ n+ 1, A has rank 1, q B(Nn) D_ A(Nn), (q,B*q} <_ O, and
-AtB*q _;

(ii2) n- 1, r no, -C is copositive, q B(n) A(Nn), and T T+ -T+
where T+ is a closed convex cone with nonernpty interior; and if 2 is such that A2 q,

Nnthen either (’,, + C_ T+ and T+) or (_ C_ -T+ and -T+).
We now consider some special cases.
If A is symmetric, then C B A, case (iil) cannot occur since r no, and F is

the gradient of 5 f" Theorems 1 and 2 and their corollary recover the characterizations
of generalized convex quadratic functions [1, 4, 6, 13, 15, 16].

If A is invertible, then case (iil) in Theorem 1 (and a fortiori in Theorem 2 and
its corollary) cannot occur since no r- 1 -1, which is not possible.
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EVERY NORMAL TOEPLITZ MATRIX
IS EITHER OF TYPE I OR OF TYPE II*

TAKASHI ITO*

Abstract. In their 1995 manuscript, Farenick and Lee proved that every normal Toeplitz
matrix of order less than or equal to 5 is either of type or of type II and had left open the case of
higher order as a conjecture.

The author of this paper settled the conjecture affirmatively. Almost simultaneously, Farenick
and Lee themselves proved the conjecture in a work with Krupnik and Krupnik [SIAM J. Matrix
Anal. Appl., 17 (1996), pp. 1037-1043]. Since the idea of proof in the work just mentioned is
somewhat different from the one of this paper, the editor has recommended that the author publish
in a separate paper.

Key words, normal matrices, Toeplitz matrices

AMS subject classifications. 15A57, 47B15, 47B35

1. Introduction: Normal Toeplitz matrices. Toeplitz operators have been
studied in connection with many branches of mathematics. Our concern here is finite
dimensional Toeplitz operators, especially the normality of them. For the background
of the problem and for previously known results related to this problem, see [2].

Denote by [al, a2,..., aN; a_l, a_2,..., a-N] the Toeplitz matrix TN of order N+
1 generated by {aj -N _< j _< N}:

ao a-1 a-N
al a0 a-(N-l)

aN-1 aN-2 a-1
aN aN- ao

Here we always assume a0 0.

ThenConsider the self-commutator [TN, Tv] dcf TNTN TNTN =_ [am,n]N+m,n=l
we have

N-t-1 N+I

Om,n am-k’n-k "-(m-k)a-(n-k).
k--1 k--1

It is easy to see from this relation the skew-symmetry of the self-commutator with
respect to the second diagonal:

Om,n ----ON+2_n,N+2_m (1 _< m, n _< N + 1).
Therefore a necessary and sufficient condition for TN to be normal is that

Om+l,n+ --Om,n (1

_
m,n <_ N).

When expressed in terms of a,’s this shows that TN is normal if and only if

(1) am-n--’_ma_n+-N+l_maN+l_n--a_(N+l_m)-_(N+l_n) --0 (1 _< m,n <_ N).

Received by the editors October 12, 1995; accepted for publication by T. Ando December 1,
1995.

Department of Mathematics, Musashi Institute of Technology, Tamazutsumi 1, Setagaya-ku,
Tokyo 158, Japan (uafuruta@ipc.musashi-tech.ac.jp).
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Suppose that TN is normal; that is, (1) holds. If a subset {jl,j2,...,jM} of
{1, 2,..., N} with jl < j2 < < jM is closed under the mapping j N + 1 j,
that is,

jM+l-m N + 1 -jm (1 _< m _< M),

it is seen from (1) that the Toeplitz submatrix lay1, aj2,... aiM; a_jl, a_j.,..., a_yM]
becomes normal. Let us denote this Toeplitz matrix by [jl, j2,..., jM]"

[jl, j2,..., jM] de__ [ajl aj aiM a_j a_j2 a_jM ].

In particular, the Toeplitz matrices of order 5

N+I/(2) [m,n,N + 1- n,N + 1- m] 1 <_ m < n <
2

and those of order 4 or 3

N+I
N+l-m l<m<; Nodd

N+I/(2") [m,N + 1- m] 1 <_ m <
2

are normal.
As an important consequence of (1), we summarize the above-mentioned facts in

a proposition.
PROPOSITION 1. A Toeplitz matrix TN is normal if and only if all Toeplitz sub-

matrices with order less than or equal to 5 of the form (2), (2’), and (2") are normal.
Another consequence of (1) is the following proposition.
PROPOSITION 2. If for some 1 <_ m <_ N

aN+l-m a-(N+l-m) 0 0

then normality ofTN is equivalent to that of the Toeplitz submatrix generated {aj j
m,-m, N + 1 m,-(N + 1 m)} with a canonical indexing.

Therefore throughout this paper we shall assume

ag+l-m a-(g+l-m) 0 0

2. Type I and type II. Recall the definitions of types of normal Toeplitz
matrices in [1, 2]. A normal Toeplitz matrix TN [al,..., an; a_,... ,a-N] is said
to be of type I if it is of the form T aI + H for some scalars a and fl and for
Hermitian Toeplitz matrix H. It is said to be of type II if it is a generalized circulant
in the sense that there is 0 < w < 2r such that

a_ eiaN+l-j (j 1,2,...,N).

It is obvious that a normal Toeplitz matrix TN (with a0 0) is of type I if and only if

a-1 1
a-2 2

(4) ei for some 0 < < 2r

a-N "N
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whereas TN is of type II if and only if

a-1 aN
a-2 aN-

a-N al

for some 0 < w < 2r.

The following property was observed originally by Farenick and Lee [1]. This
property will be used later on.

PROPOSITION 3. Suppose that a Toeplitz matrix TN is normal. If

(6) [ akoa_ko ]=[0]0 and [ aN+l-kOa_(N+l_ko) ] . [0]0 for some l < ko <

then TN is of type I.
Proof. Since TN is normal, by putting m-- k0 in (1) we have

-N+l_koaN+l_n --a_(g+l_ko)-_(N+l_n) (1 _< n _< N).
By putting n ko it follows laN+l_kol la_(N+_ko)l. Then by assumption (6) we
have

las+ - ol > o.
Thus

eiOd_ a-(N+l-ko).aN+l-n (g+l-n) (1 <_ n <_ N) where ei

aN+l-ko

Corresponding to Proposition 3 we have the following for type II.
PROPOSITION 4. Suppose that a Toeplitz matrix TN is normal. If

(7) ako 0
and aN+l-ko ? 0a_(g+l_ko 0 a-ko

then TN is of type II.
Proof. By putting m k0 in (1) we have

---d_koa_n --dg+l_koaN+l_n --0 (1 <_ n _< N).
By putting n k0 in, it follows lakol laN+_kol. By (7) we have

Thus

lakoi laN+l_kol > O.

eia (1 <: n < N) where ei aN+-oa-n N+l-n
a-ko

l <_ko <_N,

3. Proof of theorems. Farenick and Lee [1] proved first that every normal
Toeplitz matrix of order less than or equal to 5 is either of type I or of type II. Based
on this result, we will show that the same statement holds for general orders. Since
Farenick et al. [2] does not contain explicitly the original argument of Farenick and
Lee [1], we first show their result with a simplified proof.

THEOREM 1 (see Farenick and Lee [1]). For 1 <_ N <_ 4 every normal Toeplitz
matrix TN [al,... ,aN; a-i,... ,a-N] is either of type I or of type II.

Proof. 1. Case of N 1. TN is normal if and only if lall la_l I- Thus TN is
trivially of type I (and also type II).
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(8)

and

2. Case of N 2. Normality of TN implies from (1) that

aid2 a-2a-1

By our assumption (3) and Proposition 3, if

a_ 0
or

a-2 0

then TN is of type I. Similarly, by (3) and Proposition 4, if

a_2 0
or

a-1 0

then TN is of type II. Thus we consider only the case in which none of a, a2, a_, a-2
is zero. Then la21 la_2_l and (9) imply that

lall la_l[ and la2] la_21 or lall--Is_21 and la_l Is21.
When lax] la-ll and la .l- is-21 holds, (8) shows

a __a- =e for some0<0<2r;
a-1 a2

thus TN is of type I. Similarly, if lal Is_21 and la_ll Is21 holds, then TN is of
type II.

3. Case of N 3. By Proposition 1, the Toeplitz submatrix of order 3 [a,a3;
a-l, a-3] is normal. Thus, the previous case of N 2 shows that

(10) Is-1 ] ei []a-33
Furthermore (1) implies

(11)

add

or for some 0 < 0 < 27r.
a_3 al

(12) al2 -P a23 -la-2 -4- -2a-3.

By our assumption (3) it follows that Is21 Is21 > 0.
We have to consider two cases separately.
(i) Suppose

holds. Set a_ eg. If co 0, it is clear that TN is of type I. Assume co 0. By
substituting

-1 ei-l, g-a ei-ga, and a-2 e a2

into (12), we have
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Hence we have al-52 a-3-5-2. Thus, by setting a-2 ei’a2, we have

and

a2
a-3 --al eal

a-2

Thus TN is of type II.
With a similar argument to that in case (i) we can see the following.
(ii) Suppose

[a-1]a_3 "-ei [ a3]al
holds. Then TN is either of type I or of type II.

Before going into the case of N 4, we formulate as a lemma the argument
which was used just above, because the same argument will be used later in different
situations several times.

LEMMA 1.

al-- a_3d, and Icl Idl > 0 imply

e_?"/ C

a-3 al

d
where e

,-51d a_5, and Icl Idl > 0 imply

d
where e

4. Case of N 4. By Proposition 1, the Toeplitz submatrices of order 3,
[a, ca; a_, a-4], and [a2, a3; a-2, a-3] are normal. The case of g 3 shows that
for some 0

and

Furthermore, (1) implies

(15)
and

or

al-52 + a3-54 a-2-5-1 + a-4-5-3

(16)
Here notice one remark. Under conditions (13) and (14), Propositions 3 and 4 show
that if one of the eight elements ai (-4 _< _< 4) is zero, then TN is either of type I
or of type II. Therefore we assume that none of ai is zero. There are four (essentially
two) cases to be considered.
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(i) Suppose

If 0 co, then TN is of type I. Assume 0 7 co. By substituting (17) into (lg) and (16)
we have

(1 ei(w-))(al-2 a-4-3) 0

and

(1 ei(-))(a-g3 a-4g-2) 0.

Since 0 w, we have alg2 a-4g-3 and alg3 a-4g-2. By multiplying these two
equalities, we have ala_aa.a_2 aa-4aaa-a. Thus aa_ aaa-a; hence we have
la_l la21- la31 la_31. By applying Lemma 1, we can see that

a-4 g2

aga a-ng-2, and [a2[ [a-al > 0 imply

a-l] a4 a-3
a-3 e* a2 where e

a-4 al
a2

Similarly by applying Lemma 1 again, we have

a-2 ei a3 where
a-4 al

a3

However it is clear from these two equations that

-1
e e

Thus TN is of type II.
Using arguments similar to those employed in case {i), we can deduce the %llow-

ing.
(ii) Suppose

[a-1la-4 =ei [a4la and [a-2Ja_3 =ei Ia3]"a2
Then TN is either of type I or of type II.

(iii) Suppose

(18) a-l]--ei-gl] and [a-2] =eu[a3]a 4 4 a-3 a2

By substituting the first equality of (18) into (15) and (16), we have

(19) al(g2 e-iOa-2) + g4(a3 ei-d-3) 0

and

(20) al (g3 e-a-3) + g4(a2 eig-2) 0.
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By multiplying these two, we have

al-d41a2
Thus we have

If

al-41a3

it is clear that TN is of type I. Suppose

la2 eio-21 la3 eO-31 > 0;

then we see lall la41 from (19) or (20). Set 4 eial, and substitute this into (19)
and (20). Then we have

-2 e-0a-2 + e(a3 eo-3) 0

a3 ei-3 + e (. e-a-2) 0.

By using the second equality of (18), furthermore, we have

(1 ei(+-)) (g2 ei(-)aa) 0.

Thus we have two possibilities: a + 0- w 0 (mod 2) or g. ei(-)aa.
If a + 0 w 0 (mod 2r), then

-4 eiaal e(-)al e(-)e-5-l--
hence

eiw eiOea-1 a4 and a-4 ei0-d4 (w-0)al eWal.

Thus TN is of type II.
If 2 e(W-0)a3, then

hence

-d2 ei(w-O)e-iwa-2 e-i0a-2;

a-2 i2 and a-3

Thus TN is of type I.
(iv) Suppose

[ a-1]a_4 e [ a4 and
a-3 3

In this case, by the same argument as in the previous case (iii) we can show that TN
is either of type I or of type II.

Before going into the general case, let us observe (Toeplitz) submatrices of TN of
order 5.

LEMMA 2. Suppose that 1 <_ m < n < -, 1 <_ k < < -, and
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If both [rn, n, N + 1 n, N + 1 rn] and [k, l, N + 1 l, N + 1 k] are simultaneously
of type I (or type II), so is 9, q, N + 1 p, N + 1 q].

Proof. Let us consider only the type II case. Supposing rn p, q l, n k r,
for instance, we see that both [p, r, N + 1 r, N + 1 p] and Jr, q, N + 1 q, N + 1 r]
are of type II. Then there are 0 _< , w < 2r such that

so that

and

Since

a_p

a-(N+l-r)
a-(N+l-p)

aN+l-r and a_q eiw aN+l-q
ar a-(N+l-q) aq
ap a-(N+l-r) ar

a-r aN+l-r and a-(N+l-r) ar

a-r iWaN+l-r and a_(N+l_r iWar"

ar a-r
aN+l-r a-(N+l-r) oo]

by assumption (3), we can conclude 0 w. Therefore we have

Since

a_p

1 aN+l-p
a_q eiO aN+l-q

a-(N+l-q) aq
a-(N+l-p) ap

and consequently [p, q, N + 1- q, N + 1- p] is of type II. [:]
THEOREM 2. Every normal Toeplitz matrix TN [al,..., aN; a-l, a-N] with

N >_ 5 is either of type I or of type II.
Proof. (a) Case of even N. Since all submatrices of order 5 [1, k, N+l-k, N] (1 <

k < -) are normal, by Theorem 1 it is of type I or type II. We claim that they are
of the same type. To prove this by contradiction, without loss of generality we may
assume that there are k0, kl such that 1 </co < kl < - and [1, k0, N + 1- ko, N] is
of type I but not of type II while [1, kl, N + 1 kl, N] is of type II but not of type I.

Again by Theorem I[ko, kl,N+l-kl,N+l k0] is either of type I or of type II. If
it is of type I, by applying Lemma 2 to [1, k0, N+ 1 k0, N] and [k0, kl, N+ 1 kl, N+
1 ko], we see that [1, kl, N + 1 kl, N] is of type I, which is a contradiction. In the
same way, assuming type II of [k0, kl, N + 1 kl, N + 1 k0] leads to a contradiction
again. Thus we have proved that all [1, k, N + 1 k, N] (1 < k < -) are of the
same type. Suppose, for instance, they are of type I. Then for 1 < k < rn < N+2

a-1 al a-1 al
a-k i0 ak and a-m eiw am

a-(N+l-k) aN+l-k a-(N+l-m) aN+l-m
a-N aN a-N aN

aN a-N 0 0

by assumption (3), this implies 0 , and consequently

a-k=eik (l_<k<_N).
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This proves that TN is of type I.
In a similar way we can treat the case of type II.
(b) Case of odd N. Since all submatrices of order 5 [1, k,N + 1 k,N] (1

k < ---) and the submatrix of order 4 [1,-, N] are normal, by Theorem 1 each of
them is either of type I or of type II. It is shown in case (a) that all such submatrices
of order 5 are of the same type. Suppose that they are of type I. In this case we
claim that the submatrix [1, ---, N] is of type I too. Suppose, by contradiction, that

[1, N-__A, N] is of type II but not of type I, while for some 1 < kl < N the submatrix

[1, kl,N + 1 kl,N] is of type I but not of type IX. Consider [kl,-, N + 1 kl].
This is either of type I or of type II by Theorem 1. Suppose that this is of type I. By
applying the same idea as in Lemma 2 to the two submatrices [kl, -, N+ 1 kl] and

[1, kl, N + 1 kl, N], we can see that [1, -, N] is of type I, which is a contradiction.
Suppose that [kl, -, N+ 1 kl] is of type II. Then, by applying the same idea as in

Lemma 2 again to [k, N-___A, N+l-k1] and [1, N-___._.j_I, N], we see that [1, kl, N+l-k1, N]
is of type tI, which is also a contradiction. Thus we have that all the submatrices of
order 5 [1, k, N + 1 k, N] (1 < k < -) and the submatrix of order 4 [1, N-___A, N]
are of the same type, say type I. Then we can see, as in case (a), that TN itself is of
type I.
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PRECONDITIONING STRATEGIES FOR HERMITIAN TOEPLITZ
SYSTEMS WITH NONDEFINITE GENERATING FUNCTIONS*

STEFANO SERRA?

Abstract. In this paper we present new preconditioning techniques for the solution by the
preconditioned conjugate gradient (PCG) method of Hermitian Toeplitz systems with real and non-
definite generating functions: actually we extend some results of Chan lIMA J. Numer. Anal., 11
(1991), pp. 333-345] and Di Benedetto, Fiorentino, and Serra [Comput. Math. Appl., 25 (1993), pp.
33-45] proved for positive definite Toeplitz systems.

Moreover we demonstrate some density properties of the spectra of the preconditioned matrices.
Finally, we show that the convergence speed of this PCG method is independent of the dimension of
the involved matrices.

Key words, linear system, Toeplitz matrix, conjugate gradient, preconditioner
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1. Introduction. We consider the problem of solving a linear system As(f)x
b where An(f) is an n n Hermitian Toeplitz [5] matrix; i.e., ai,j ai_j, ak 5-k for
any nonnegative integer k and the values ak are the Fourier coefficients of an assigned
continuous function f :I -, R, I I-r, r], that is

ak "r f(x)e-ikXdx’ 2 -1.

This kind of matrix arises in many applicative fields [5, 16], such as Markov
chains, differential and integral equations, time series analysis, etc., where the efficient
solution of very large Toeplitz systems of equations is frequently required.

In some of these applications the Toeplitz matrices are guaranteed to be positive
definite, but in other applications, such as eigenfilter problems, harmonic retrieval,
and linear prediction, the matrices may also be indefinite [10].

Extensive literature has been devoted to the study of resolution methods With
low arithmetic cost which exploit the specific structure of a Toeplitz matrix. So-called
"superfast" direct methods [1, 17, 20] compute the solution of a Toeplitz system in
O(nlog2(n)) operations (ops), but they are inherently sequential. In the parallel
random access machines (PRAM) model of parallel computation, where at each step
each processor can perform an arithmetic operation, O(n) steps with n processors are
required by these algorithms.

In the latest literature a certain attention has been devoted to the solution of
Toeplitz linear systems by means of iterative methods and, in particular, by means of
PCG methods and multigrid techniques [13, 14]. Many contributions have concerned
devising good preconditioners that allow the solution of the system in a number of
iterations independent of n [4], [6]-[9], [11, 12]. The case of f(x) > 0 is dealt with in

[4, 6, 8, 9]; the case where the function f(x) is nonnegative is analysed in [7, 11, 12, 21].
The algorithms devised in this way are very effective since they yield the solution,

within a given precision, by performing just a few fast Fourier transforms (FFTs)
[23]. In fact, the cost of a single iteration of the PCG method is determined by the
computation of a product of a Toeplitz matrix and a vector and by the inversion

Received by the editors July 20, 1994; accepted for publication (in revised form) by G. A.
Watson December 1, 1995.

Dipartimento di Informatica, Corso Italia 40, 56100 Pisa, Italy (serramorse.dm.unipi.it).
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of the preconditioner. The first computation can be performed by means of FFT
in O(n log n) ops and a parallel cost of O(logn) steps with O(n) processors in the
parallel PRAM model of computation. The second one has the same cost, provided
the preconditioner is chosen in some matrix algebra (such as the circulant, the Hartley,
or the tau class) or possesses a band Toeplitz structure.

In this paper we consider the important case where f(x) has a nondefinite sign.
It is worth pointing out that Ku and Kuo treated the non-Hermitian case [18, 19] and
also, consequently, the nondefinite case, obtaining superlinear methods in the class of
PCG methods. While they use the assumption that Ill > rn > 0 and An(f) belongs
to the Wiener class, however, in this paper we consider the more ill-conditioned case
of f E C[I] having zeros, and we prove good clustering properties comparable with
those of Ku and Kuo. The main idea is the following: by extending the techniques
of [7, 12], we transform the original nondefinite system (potentially singular) into
an equivalent positive definite (at least nonnegative definite) system whose matrix
is somehow related to the Toeplitz structure. We show that, for a wide class of
associated functions f(x), our PCG method performs the computation in a number
of iterations independent of n, and we prove that each iteration is reduced to perform
few FFTs for an overall cost of O(n log n) ops and O(log n) steps with O(n) processors
in the PRAM model of computation. Moreover, since the generating function f(x) has
nondefinite sign, it may occur that An(f) is singular for particular values of the size
n. Even in this case, however, by applying the CG method to the normal equations in
the preconditioned system of Stage 2 of our algorithm, we obtain an approximation,
with a preassigned accuracy, ofA(f)b, i.e., the least squares solution of the proposed
problem.

Let us assume that the entries of An(f) are given and that the function f(x) is
known, say, by means of its formal expression. Here and hereafter we assume that
f(x) has zeros Xl,... ,Xm e [--71", 71"].

Our method is outlined by the following stages"
Stage 1: Find g such that g(x) 0, g is positive elsewhere and the closed set

’z zi such that y=
9(z)

is contained in [c-,-]U[c+,+] where c- <_ - < 0 < o+ <_ +; for
instance, set

Stage : Compute he Toeplit matrix An(9), which is Hermitian and positive
definite [7], and consider he equivalent non-Hermitian system

Hnx=b

where l Al(g)b and Hn A(g)A,(f).
Stage 3: Consider the new equivalent system

/-/n2X

where the matrix H is associated with a symmetrizable positive definite form
and 1 HI. Solve it by means of the PCG method.

Actually, since Hn2 A’(g)An(f)A’(g)An(f), we can look at the coefficient
matrix H2 as the product of A(g), ,which is a Hermitian positive definite (HPD)
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matrix, and Tn An(f)Al(g)An(f), which is an HPD matrix if An(f) is nonsingular
and is nonnegative definite otherwise.

Therefore, in Stage 3, we may apply a PCG method in which Tn is the coefficient
matrix of a new equivalent system and An(g) is the preconditioner. Of course, the
convergence features of this PCG method, that is the number k of iterations needed to
reach the solution within a fixed accuracy, are determined by the spectral properties
of the matrix H or equivalently by the spectral behaviour of

The main goal of this paper is to prove that k is a constant independent of n.
More precisely, we arrive at this result by proving the following facts: the closure of
the union S UnC__ cr(H,.) of the spectra of the matrices Hn contains T(f/g), and S
is contained in (a-, +). In the case where f(x) and g(x) are rational even functions,
we demonstrate that there exists a constant q independent of n such that

where c- min(a+,1/-1}, c+ max{la-],/+), An) _< <_ A(n), and

,n),..., An) E [0, c-). Therefore, by applying the result of [2], we expect that the
conjugate gradient (CG) method, applied to the system Hx 1, converges to the
solution with a preassigned accuracy e in at most k + q iterations where

(1) k=[lg2/e+qlgc+/n) 1 x/-v/--
log 1/5

5-
v/- + x/"

If e is fixed and ,n) >_ 0 > 0 or goes to zero slowly, then the desired precision is
practically reached through a constant number of iterations. In the general case we
have q o(n), but we conjecture that the relation q O(1) holds for sufficiently
regular functions f(x) and g(x).

It is worth pointing out that the search of g in Stage 1 is easy: if f has only
zeros xl, ,Xr of even orders 2k, ,2kr, then we can choose gmin(:;C) I-Irnj=l(1
COS(X- Xj)) kj as the generating function of our preconditioner An (g).

In this case g is a nonnegative trigonometric polynomial, An(g) is an HPD band
Toeplitz matrix, and the function fig has a range contained in a set of the desired
form [c-, -] [.J[a+, +] with c- _</- < 0 < c+ <_ +. Then we may use a band
solver performing only O(n) arithmetic ops [3, 15] and O(log(n)) parallel steps [3].

In the general case it is. always possible to choose g(z) -If(x)l, but we lose the
band structure of the preconditioner. Therefore, in Stage 2, if the function g Ifl has
only zeros of even orders then the vector 1 can be calculated in O(n log n) arithmetic
ops by using any PCG method of [7, 11, 12]. We emphasize that the calculation of
the solution of a linear system whose coefficient matrix is An (g) is a very important
task of the proposed algorithm. Actually this kind oflinear system occurs in four
different computations:

the calculation of I from b,
the calculation of from I,
the preconditioning step in the PCG method used at Stage 3,
the multiplication of Tn with the search vector at each PCG iteration.

However, in the recent work [22] a simple linear algebra trick is introduced to
transform a system An(f)x b, where f also has zeros of odd orders, into a new

equivalent system An(f)x-- I in which the new generating function f has only zeros
of even orders. Consequently, our algorithm can be used to deal with the case of
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functions f having also zeros of odd orders: we stress that this case may frequently
occur when f has a nondefinite sign.

Finally, by using the fact that the product between a Toeplitz matrix and a vector
costs O(n log n) ops and O(log n) parallel steps with n processors in the PRAM model
of computation, it is easy to prove that Stage 2 costs O(n log n) ops, provided that
the entries of An (g) can be computed within this time. Concerning Stage 3 we recall
that its cost is O(kn log n) ops where k is the number of iterations required by our
PCG method to reach the solution with a preassigned accuracy.

The paper is organised as follows: in 2 we prove the theoretical results, and in

3 we perform some numerical experiments which confirm the analysis developed in
the other section.

2. Main results. Let An(f) be the Hermitian Toeplitz matrix associated with
the function f I --, R and denote IIAI[2 the Euclidean norm of A. The following
result holds as seen in Theorem 2.1.

THEOREM 2.1. If f(x) and g(x) are continuous functions such that f(x) has
nonconstant sign and g(x) is nonnegative, then we have the following:

(a) Zero is an accumulation point for UnC=l cr(An()).
(b) The condition number IIAII211A-1]]. of A An(f) tends to oc, as n tends to

oc, and An(f) can be singular for some values of n.

(c) An(g) is positive definite.
(d) A;(g)An(f) has eigenvalues in the open set (a-,Z+) where a- infxei fig

and + supxei fig.
Proof. Concerning parts (a) and (b) see the theorem on p. 64 in [16]. For the

rest of the theorem, compare Lemma 1 in [7] and Lemma 3.1 and Theorem 3.1 in
[12]. E!

If f(x) has zeros Xl,... ,Xm in the fundamental interval [-r, r then we choose
g(x) such that g(xi) O, g is positive elsewhere and

(2) 0 < lim inf _< lim sup
X’-X

In this case we have

(3) c z-] z+],

where a- <_ - supl{f(x)/g(x < 0} < 0 < a+ infi{f(x)/g(x) > 0} _< +.
Now we are ready for the main result.

THEOREM 2.2. Let f(x) and g(x) be two continuous functions; suppose that
/(x), g(x) satisfy condition (2) and consequently relation (3). Then we have the fol-
lowing:

(a) The closure of the union S UnC=l a(Al(g)An(f)) of the spectra of
A(g)An(f) contains (f/g).

(b) For any > O, # {a(A(g)A,(f))[a-, +r][a+ -/,+]} n
o(n); i.e., most of the eigenvalues of Al(g)An(f) belong to the image of
fig.

(c) If f(x) and g(x) are even rational functions with respect to eix we have that
for any > O, #{a(A(g)A(f))[[a-,-+]U[a+-,/+]}
n- O(1). El
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In order to prove this result we need some preliminary lemmas on the inertia of
Toeplitz matrices and on the sign of the ratio of the generating functions.

LEMMA 2.3. Let f(x),g(x) be two continuous functions which satisfy condition

(2); let c be a value in (-, c+) and ft(x) de__f f(x) tg(x) with t a real parameter.
Then there exists e min{Ic+ -al, I/- -cl} such that f(x) and f((x) have the
same sign for all la- (1 < .

Proof. Since a is in (-, c+) C R\(f/g), we find that f(x) 0 and f(x) 7 0
otherwise. Now let us consider c such that la- (1 < e; then we have

f (x) f.(x) +

Moreover sign(ft(x)) sign(ft(x)/g(x)) for any x # x and t e R. So we find

f (x) f (x) + c- (;
(x) (x)

but the closure of the image of f( (x)/g(x) is [a- c,/- c)] [.J[a+ (,/+ (] and
therefore by choosing such that

e=min{la+-al,l--al} ifae(-,a+),

it follows that fa(x)/g(x) has the same sign of fa(x)/g(x) for all x xi. Since g(x)
is positive for any x =fi x, the lemma is proved.

Now we are interested in the inertia of a Toeplitz matrix generated by a continuous
function f(x). In the following we denote with )j(X) an eigenvalue of the matrix X.

LEMMA 2.4. Let f(x) be such that m{x I: f(x) 0} 0 where rn(.) is the
Lebesgue measure in R; then we have the following.

(a) lim
/:{j’,kj(An(f)) < 0} m{x I’f(x) < 0}

n- rt 27

I(b) -/={j Aj(An(f)) < 0} n . + o(n).

Proof. It follows from the theorem on page 64 of [16].
In the following we prove a refinement of the former result; that is,

{j /j(An(f)) < 0} In rn{x I f(x) < 0}]1/2 -+-O(1)

in the case where f(x) is a symmetric trigonometric polynomial and subsequently in
the case where f(x) is a symmetric rational function.

For any nonnegative integer we define Tn [3] as the matrix algebra generated by

0 1 0 0

0 ". ". ". 0

0 0 1 0

i Let An(f) be the band symmetricwhose eigenvalues ,n) are 2 cos(xn)), x) n+l
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Toeplitz matrix

An(f)

/ ao al ak

al

ak ak

". ". al
ak al ao

kgenerated by the symmetric trigonometric polynomial f(x) ao + -.,j=l
aj cos(jz), z e [0, r], and let n(f) be the ’n matrix whose eigenvalues are n)

(n)
(x ), 1,...,n. Then we obtain that [3]

( b0 bl bk-2
bl

bk-2

bk-2

bl
bl bo

bi ai+2.

Therefore A,-2k(f) is a principal submatrix of (f), and setting 5 E {0,-1} we
have

[ m{x[O,r]’f(x)<O}]#{j. n) < 0} n + 5.

Now we characterize the eigenvalues of Toeplitz matrices generated by symmetric
trigonometric polynomials.

THEOREM 2.5. Let f(x) be a symmetric trigonometric polynomial and An(f) the

associated n x n Toeplitz matrix. If f(x) has degree and )j are the eigenvalues of
An(f) sorted in nondecreasing order, then we have

[ m{xE[O’r]’f(x)<O} 1:{j. )n) < O} n + 0(1).

Proof. Let us consider A+2g (f) -n+2g" By using the results in [31 it is known

that An(f) is a principal submatrix of +2(f) obtained by fi’n+2(f) deleting the
=n+2first and the last rows and columns. Now we call {j} the values

sorted in nondecreasing order; therefore, by using the Courant-Fischer minimax the-
orem [15] we have

(n) < 3y+2 j 1 n

Consequently, since

{j’j<0}= [(n + 2) m{x [O’ r] f(x) < O} +5,
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the theorem is proved.
Finally we generalize the preceding result to the case where f(x) is an even

trigonometric rational function.
THEOREM 2.6. Let An(f) be the n n Toeplitz matrix generated by the continu-

ous, even, and rational function f(x). Then we have

e [0, ] () < 0} 1 + O(1).#{j.@n) <0}’- n

Proof. Let f(x) (x)/[9(x), where (x) and b(x) are even trigonometric
polynomials and have degrees kl and k2. By the Dickinson characterization [18] there
exist polynomials A(z), B(z), C(z), D(z) such that

A(z-1) C(z)
f(x) ](z)

B(z_l + D(z)’

where z eix, A(z) C(z), B(z) D(z), and

ql q2

j=o j=o

Consequently we find that

E=0 cos(jz)
f(x) l(x)= kl

D(x) k22-0 co(jx)

with kl ql and k2 =max{q1, q2}. Moreover it is well known that [lS]

/I/n de2 An(B(z-1))An(f)An(B(z)) An((x)) + L

where L is a matrix of rank r and where r is constant independent of the dimension
n and with nonzero entries only in the northwest corner. Now we observe that n
has the same inertia as An(f(x)). Moreover, An(2(x)) verifies the hypotheses of the
preceding theorem, and therefore we find that

e [0,]: (x) < 0}]#{j. ,j(An((x))) < 0} n + O(1),

and the signs of f(x) and (x) are the same because 9(x) has no zeros and we can
(nWr)assume that it is positive. If we call j the eigenvalues of ln+r sorted in nonde-

and ) the eigenvalues of An((x)), then we verify that A,(1)(x)) iscreasing way
a principal submatrix of +r and by using the Courant-Fischer minimax theorem
we have

(nTr) < rh(n)) -< t9 y+

and the theorem is proved.
Now, before we prove Theorem 2.2 we need another subsidiary lemma.
LEMMA 2.7. The set {t E R such that rn{x I ft(x) 0} 0} is dense in R,

where the function ft(x) f(x) tg(x) is the function defined in Lemma 2.3.
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Proof. We define Zt {z E I: ft(z) =0} {z El: f/9 t}. ClearlyZt c I
and Vt s, and we have that Zt N Zs is an empty set. By contradiction we suppose
that there exists an open set (a,b) for which rn(Zt) > 0 for any t (a,b). Setting
Z Jte(a,b) Zt we find

tE(a,b)

as we perform a nondenumerable summation. But, since Zt C I for any value t, then
we have Z C I and, consequently, re(Z) <_ 2r, which is a contradiction. VI

Proof of Theorem 2.2. We want to prove that any a T4(f/9) is the limit of a

suitable sequence of eigenvalues of the matrices A-1(g)A(f). If e is fixed, then we
are looking for a size n and a real number such that

det(A (f) [An (g)) 0 and I al < e.

We want to study the spectra of (A(f)- tAn(g))nEN, when t lies in the interval
[a- e, a / el; observe that the associated function is ft(x) f(x)- tg(x). For any
x I, we have f_(x) >_ f+(x). Moreover, because of relation (3), there exists
2 - xi such that 9(2) > 0 and f(2) 0, so that

> 0 >

It follows that

(4) rn{x: f,_(x) < 0} < m{x: f,+(x) < 0}

where m(.) indicates the Lebesgue measure. Now we set

(5) C-(-e) #{(An(f)- (a- e)An(g)) < O, i= 1,..., n},
(6) Cg (e) #{)i(A,(f) (a + e)A(g)) < O, 1,..., n},

and we consider the following classical result of Grenander and Szeg6 [16]: if k(x)
is a continuous function defined in I and An(k) is the associated class of Hermitian
Toeplitz matrices, then if m{x e I: k(x)= 0} 0,

lim
{i(A(k)) < O, i= 1 n}

Therefore by recalling equation (4) we have

(7) lim Cg (e) Cg (-e) .
n

Notice that if m{x I: f_(x) 0} > 0 or m{x I: f+(x) 0} > 0 then the
former equation can be false. However, by using the last lemma we can always find a
value 0 < e* < e such that m{x I: f_. (x) 0} m{x I: f+. (x) 0} 0
and consequently (7) holds with e e*.

In particular, by a continuity argument it follows that for a suitable size n there
is an eigenvalue A(t) of An(f)- tan(9) that is negative for t a + e and positive
for t a e. Hence we find (a e, a + e) for which An (f) An (9) is singular.
Therefore part (a) is proved.

To prove the second and the third parts of Theorem 2.2, we take a (- +a+)/2,
so the function ft(x) vanishes if and only if x {x,... ,x} and for all t (-, a+).
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Moreover, by taking e (/-- a+)/2-U, ft(x) keeps the sign for all t E [a- e,a+e]
(see Lemma 2.3), and it follows that

(s) < 0) < 0).

It is worth pointing out that we can choose 0 if Z+ and Z- are zero-measure
sets; otherwise r] has to be positive but it can be as small as we like.

Therefore, by means of the results of the former lemmas we determine that the
inertia of An(f) (a )An(g) is almost the same as An(f) (a + )An(g); i.e.,

(9) #{(An(f)- (a-e)An(g)) < 0, i= 1,...,n}
#{(A,,(f) (a + e)An(g)) < 0, 1,..., n} + w,

where w O(1) if f(x) and g(x) are symmetric rational functions (see Theorem 2.6)
and w o(n) in the general case. But Al/2(g) is positive definite and therefore the
inertia of An(f) tAn(g) coincides with that of AI/2(g)An(f)A-/2(g) tI for any
t E R. The latter matrix is similar to A(g)An(f) tI, ad so using (9) we have

sign {A(An(f) (a )An(g))} sign {A(An(f) (a + e)An(g))}

for all e J where #J n w. Moreover, ,X(An(f) (a + e)An(g)) .X(An(f)
(oz e)An(g)) 2e. Consequently A-g(g)An(f) aI has at most only w eigenvalues
in (-, ); that is, A-(g)An(f) has at most only w eigenvalues in (a-e,a+). Since
(a- e, a + e) coincides with (fl- + r, a+- r) the theorem is proved with r 0
if ZZ- and Z+ are zero-measure sets and with r > 0 but as small as we like
otherwise. 71

3. Numerical experiments. In this section we present five examples of func-
tions f(x) with the associated functions g(x). In the first four cases we have chosen
functions having x0 0 as a unique zero in (-, ). When f has a unique zero in
I this choice has no loss of generality since it is possible to prove (see [7, Lem. 2])
that for all x0 I, n N we have that A(f(x)) is similar to An(f(x + xo)). More
precisely, we have

A,(f(x+xo))

Diag(1, eiX,..., ei(n-)X)An(f(x))Diag(1, e-ix e-i(n-)x)
In this way it is possible to consider only continuous functions f(x) such that f(0) 0
and f(-x)f(x) < 0 for all x (0, ]. For the last example, we have chosen a function
having two distinct zeros.

We considered matrices of size n 16 and n 64. From all the numerical exper-
iments performed with MATLAB we observe that the distribution of the eigenvalues
of the preconditioned matrices confirms the theoretical results of 2.

Example 1. Let

i(-1)kf(x) =_ x x.e z,
k

k=l

nd choose An(g) generated by

g(x)x=
r 1-(-1)k

+ x e
k2

k=l
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According to Theorem 2.2 we expect that the eigenvalues of Hn= A-(g)An(f)
form two clusters around -1 and 1 since fig =sign(x). For n 16 we have

(10) o’(Hn) {+/-1.000 (4 times), +/-0.9997, +/-0.9946, +/-0.9287, +/-0.4773}.

For n 64 we have

(11) cr(Hn) {+/-1.000 (27 times), +/-0.9995, +/-0.9963, +/-0.9737, +/-0.8470, +/-0.3830}.

Example 2. Let

f(x) ( 2 (k+l)/sign(x)x2 E (-1)kr2 + -ff(1 + (-1)
k=l

(eikx e-ikx), x E I.

We propose two different functions gl and 92"

71.2 cx (_1) k

eikx -ikx),g (x) _= x -3-+ + x+/-,
k--1

(x) e- e cos(x), x e .
According to the results of the previous section, we expect that a(Hn)

a(A-l(gl)An(f)) forms two clusters around -1 and 1 since f/gl sign(x). For
n 16 we have

(12) a(Hn) {+/-1.000 (4 times), +/-0.9998, +/-0.9961, +/-0.9412, +/-0.500}.

For n 64 we have

(13) o’(Hn) {+/-1.000 (27 times), +/-0.9997, +/-0.9972, +/-0.9787,

+/-0.8640, +/-0.4002}.

In the case of Hn A-(g)A(f) we expect (Theorem 2.2) that most of the eigen-
values belong to R (f/g2) -[-7r2/4,-1] [.J[1, 7r2/4]. For n- 16 we obtain

14
2

eigenvalues in [-r/4-1] [.J[1, r2/4],
eigenvalues +/-0.7078 in (- 1, 1).

For n 64 we have

60
2

eigenvalues in [-7r2/4,-1] [.J[1, 7r2/4],
eigenvalues +/-0.9938 in a small neighbourhood
of -1 and 1, respectively, and
eigenvalues -t-0.5698 in (-1, 1).

Example 3. Let

f(x)- ex- 1 E (-1)k(e e-r)

k=-
27r(1 + k)

(l+ik)eik -1, xEI,
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and

g(x) =_ ]e- 11
l+ikE tk+2(l+k21

((e"-e-)(-l)k-2)eikx, xeI,

where tk is 2i/k if k is odd and 0 elsewhere.
According to Theorem 2.2 we expect two clusters around -1 and 1 for the spec-

trum of Hn Al(g)An(f). For n 16 we have

(14) a(Hn) {+/-1.000 (4 times), 0.9950,-0.9987, 0.9741,
-0.9740, 0.6755,-0.6842, 0.3395,-0.3384}.

For n 64 we have

and

{1.000 (27 times),-1 (26 times), 0.9999,
-0.9998, 0.9993,-0.9978, 0.9950,-0.9824,
0.9710,-0.8764, 0.4212,-0.4076}.

Example 4. Let

f(x) =_ x3 E i(--1)k
k

7r
2 ---6 (eikx e_ikx)

k--1

g(x) Ixl(2-2cos(x)) Ckd

where co - 2al(]x]), cj 2aj(]x[)- aj_l([x])- aj+l([X]) c_j, and hi(Ix[) are
the Fourier coeificients of the function ]xl shown in the first example.

According to the theoretical results, we expect (Theorem 2.2) that most of the
eigenvalues H A(g)An(f) belong to [-w2/4,-1] [1, r/4], which is the closure
of the image of fig. For n 16 we obtain

14 eigenvalues in [-r2/4,-1] [.J[1, r2/4],
2 eigenvalues +/-0.7409 in (- 1, 1).

For n 64 we have

60
2

eigenvalues in [-r2/4,-1] U[1, s2/4],
eigenvalues +/-0.9980 in a small neighbourhood
of-1 and 1, respectively, and
eigenvalues +/-0.5937 in (-1, 1).

It is very interesting to remark that f/g2 in Example 2 coincides with f/g in this
example, and, as a consequence, we have that the behaviours of the spectra of the
related matrices Hn, n 16, 64 are practically the same.

Example 5. Let

f(x)
_

x x-- ak(f)eikx,

ak(f) ak(x2) --ak(X)
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be a function having two zeros in the fundamental interval I.
Let

where the values Ck are obtained by the Fourier coefficients of f in the following way:

177r2
CO 48

1( )7r ie_ikr/2 nu e_ikr/2rk 2- - -1 k-CO,

7r2o ikr/2 2
sk 4-le irk, k - 0,

1 1
--s+ r, kO.a(I)

According to Theorem 2.2, we expect two clusters around -1 and 1 for the spec-
trum of Hn Al(g)An(f). For n 16 we have

(16) a(Hn) {1.000 (3 times), 0.9999 (6 times), 0.9993, 0.9863,

O.7947, -0.9999, -0.9967, -0.9244, -0.2314}.

For n 64 we have

(7) a(Hn) {1.000 (35 times),-1 (4 times),
0.9999 (9 times),-0.9999 (7 times), 0.9992,
-0.9997, 0.9933,-0.9972, 0.9467,-0.9750,

0.6624, -0.8199, -0.1723}.

We remark that the interval where fig -1 is small with respect to I, and, in
fact, the number of the negative eigenvalues of Hn close to -1 is less than the number
of those close to 1. Moreover, it is worth pointing out that the presence of two zeros
causes a partial deterioration of the clustering property of the spectrum of Hn with
respect to the case where the generating function f has a unique zero.

In cases (10)-(15), fig is the function sign(x) (because g(x) If(x)l and f(0)
0), and it is interesting to compare these spectra with the spectrum of An(sign(x)).
The similarities are very deep: for n 16 we have

a(An(sign(x))) {+1.000 (4 times), +_0.9995, +0.9913, +/-0.9013, +0.4294}.

For n 64 we have

a(An(sign(x))) {+1.000 (26 times), :0.9999, :k0.9993, +/-0.9945,

0.9636, :i:0.8122, +/-0.3487}.
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INTERVAL P-MATRICES*

JIli ROHNf AND GEORG REX$

Abstract. A characterization of interval P-matrices is given. The result implies that a symmet-
ric interval matrix is a P-matrix if and only if it is positive definite (although nonsymmetric matrices
may be involved). As a consequence it is proved that the problem of checking whether a symmetric
interval matrix is a P-matrix is NP-hard.

Key words, interval matrix, P-matrix, positive definiteness, NP-hardness
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1. Introduction. As is well known, an n n matrix A is called a P-matrix if
all its principal minors are positive. P-matrices play an important role in several
areas, e.g., in the linear complementarity theory, since they guarantee existence and
uniqueness of the solution of a linear complementarity problem (see Murty [6]).

A basic characterization of P-matrices was given by Fiedler and Ptk [3]: A is a
P-matrix if and only if for each x E Rn, x : 0 there exists an such that xi(Ax)i > 0
holds. This result immediately implies that a symmetric matrix A is a P-matrix if
and only if it is positive definite (Wilkinson [13]). In fact, if A is positive definite, then
for each x 0, from xi(Ax) xTAx > 0 it follows that x(Ax) > 0 for some i;
hence A is a P-matrix. Conversely, if A is a P-matrix, then all of its leading principal
minors are positive; hence it is positive definite in view of the Sylvester determinant
criterion [6].

In this paper we focus our attention on interval P-matrices. An interval matrix

A+/-=[A,]={A; A<A_<},

where A and A are n n matrices satisfying A _< A (componentwise), is said to be a
P-matrix if each A E AI is a P-matrix. In 2 we introduce a finite set of matrices Az
in AI (whose cardinality is at most 2n-l) such that A is a P-matrix if and only if all
the matrices Az are P-matrices (Theorem 2.3). In view of a similar characterization
of positive definiteness of A via the matrices Az (Theorem 2.4), it is then proved
in 3 that a symmetric interval matrix A (i.e., with symmetric bounds A, ) is a
P-matrix if and only if it is positive definite (Theorem 3.2). This is a generalization
of the above result for real symmetric matrices, but it is not a simple consequence
of it since here nonsymmetric matrices may be involved. As a consequence of this
result we prove that the problem of checking whether a symmetric interval matrix is a
P-matrix is NP-hard (Theorem 3.4). This result shows that the exponential number
of test matrices Az used in the necessary and sufficient condition of Theorem 2.3 is
highly unlikely to be essentially reducible.
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Institute of Mathematics, University of Leipzig, Augustusplatz 10-11, D-04109 Leipzig, Germany
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2. Characterizations. Let us introduce an auxiliary set

Z {z e Rn; zj e {-1, 1} for j 1,...,n},

i.e., the set of all +/-l-vectors. The cardinality of Z is obviously 2n. For an interval
matrix

AI [A, ],

we define matrices Az, z E Z by

(Az)ij 1 (Aij + iy) 1/2 (ij _Aiy)zizy

(i,j 1,...,n). Clearly, (Az)ij Aij if zizy 1 and (Az)ij Aij if zizj -1.
Hence Az Ax for each z Z, and the number of mutually different matrices Az
is at most 2n-1 (since A-z Az for each z Z) and equal to 2-1 if A < . The
properties in question (P-property and positive definiteness) will be formulated below
in terms of the finite set of matrices Az, z Z. For a vector x R, let us define its
sign vector

Z sgn x

by

1 if xi _> O,
zi -1 if xi < 0

(i 1,..., n) so that sgnx E Z. For a matrix A (Aij) we introduce its absolute
value by [A (IAijl); a similar notation also applies to vectors.

The basic property of the matrices Az, z Z, is summed up in the following
auxiliary result; notice that no assumptions on Ax are made.

THEOREM 2.1. Let AI be an n x n interval matrix, x Rn, and let z sgnx.
Then for each A A and each {1,...,n} we have

(1) xi(Ax)i >_ xi(Azx)i.

Proof. Let A E A and {1,..., n}. Then

+Ix,(dx) xi((1/2(A / ))x), -Ix((d 5

(A + )1" Ixl) <<_ Ix, l(Id- -hence

x(Ax) >_ x((1/2(A + ))x)i -Ixl(

Since z sgnx, we have IXj[-- ZjXj for each j; hence

xi(Ax)i >_ E(I(Aiy + -’) 1/2(-iJ --AiY)zizJ)xixj
J

J
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which concludes the proof. [:1

As the first consequence of this result, we prove a Fiedler-Ptk type characteriza-
tion of interval P-matrices. Notice that the inequality holds "uniformly" in Theorem
2.2.

THEOREM 2.2. An interval matrix Ax is a P-matrix if and only if for each
x E Rn, x 0 there exists an E {1,...,n} such that

(2) x(Ax) > 0

holds for each A A.
Proof. If (2) holds, then each A A is a P-matrix by the Fiedler-Ptk theorem.

Conversely, let AI be a P-matrix and let x :/: 0. Put z sgnx; then Az is a P-
matrix. Hence by the Fiedler-Ptk theorem we have x(Azx) > 0 for some i. Then
(1) implies x(Ax) >_ x(Azx) > 0 for each A A, and we are done.

The characterization in Theorem 2.3, however, turns out to be much more useful.
THEOREM 2.3. AI is a P-matrix if and only if each Az, z Z, is a P-matrix.

Proof. If A is a P-matrix, then each Az A is obviously also a P-matrix.
Conversely, let each Az, z Z, be a P-matrix. Let x Rn, x O, and let z san x.
Since Az is a P-matrix, there exists an with x(Ax)i > 0. Then from Theorem
2.1 we obtain x(Ax) >_ x(Ax) > 0 for each A AX; hence AI is a P-matrix by
Theorem 2.2.

Another finite characterization of interval P-matrices, formulated in different
terms, was proved by Biatas and Garloff [1].

In keeping with the terminology introduced for P-matrices, an interval matrix
A is said to be positive definite if each A A is positive definite (i.e., satisfies
xTAx > 0 for each x =/= 0). The following theorem was proved in [9, Thm. 2]. We give
here another proof of this result to make the paper self-contained and to demonstrate
that it is a simple consequence of Theorem 2.1.

THEOREM 2.4. A is positive definite if and only if each Az, z Z, is positive

definite.
Proof. The "only if" part is obvious since Az A for each z Z. To prove the

"if" part, take A Ax and x Rn, x O. For z sgn x from Theorem 2.1 we have

x(Ax) >_ x(Azx)

for each i; hence

xTAx E x,(Ax) >_ E x,(Ax) xTAzx > 0

so that A is positive definite. Thus, by definition, AI is positive definite. [:]

The last two theorems reveal that both the P-property and the positive defi-
niteness of interval matrices are characterized by the same finite subset of matrices

Az AI, z Z. This relationship will become even more apparent in the case of
symmetric interval matrices, which we shall consider in the next section.

3. Symmetric interval matrices. For an interval matrix A [A, ], define
an associated interval matrix A by

A=[-(A+AT I(+T)]2 ’5
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AI is called symmetric if Ax A, which is clearly the case if and only if both A and
are symInetric. Hence, As is always a symInetric interval matrix. The relationship

between positive definiteness and P-property is provided by Theorem 3.1.
THEOREM 3.1. A is positive definite if and only if As is a P-matrix.

Proof. For each z E Z, let us denote by Az the matrix Az for As; i.e.,

(Az)j (Aj + A_j + Xj +-j)- 1/4(Xj +j- Ay -Ay)zzy

(i, j 1,..., n). Then A is symmetric and a direct computation shows that

(3) xTASzX XTAzx
holds for each x E Rn. Now, if A is positive definite, then each Az,z Z, is
positive definite. Therefore, each ASz is positive definite due to (3), so that A is a P-
matrix; hence A is a P-matrix by Theorem 2.3. Conversely, if A is a P-matrix, then
each A, z Z, is a P-matrix. Therefore, it is positive definite due to its symmetry;
hence each Az, z Z, is positive definite by (3) and A is positive definite by Theorem
2.4.

Our main result on symmetric interval matrices is now obtained as a simple
consequence of Theorem 3.1.

THEOREM 3.2. A symmetric interval matrix A is a P-matrix if and only if it is
positive definite.

Proof. The result follows immediately from Theorem 3.1 since a symmetric inter-
val matrix A satisfies Ax A/ by definition. [:]

At the beginning of the Introduction we showed that a real symmetric matrix is a
P-matrix if and only if it is positive definite. The result of Theorem 3.2 sounds alike,
but it is not a simple consequence of the real case since here nonsymmetric matrices
may be involved. In fact, it can be seen immediately that a symmetric interval matrix
A [__A, ] contains nonsymmetric matrices if and only if A < j holds for some
i#j.

An interval matrix AI is called regular (cf. Neumaier [7]) if each A A is
nonsingular. The following result shows that for symmetric interval matrices the P-
property is preserved by regularity. Several other results of this type are summed up
in [10].

THEOREM 3.3. A symmetric interval matrix AI is a P-matrix if and only if it is
regular and contains at least one symmetric P-matrix.

Proof. A symmetric interval P-matrix A is regular (each A E A has a positive
determinant) and contains a symmetric P-matrix A. If AI is regular and contains a
symmetric P-matrix A0, then A0 is positive definite; hence Ax is positive definite by
Theorem 3 in [9], which in light of Theorem 3.2 means that A is a P-matrix. [:]

Another relationship between regularity and the P-property of interval matrices
was established in [8, Thm. 5.1, assert. (B1)]" an interval matrix A [A,] is
regular if and only if (A+- S(- __A))-(_A++S(- A)) is a P-matrix for each
signature matrix S (i.e., a diagonal matrix with +/-1 diagonal elements). This topic
was recently studied by Johnson and Tsatsomeros [5].

The necessary and sufficient condition of Theorem 2.3 employs up to 2n- test
matrices Az, z Z. There is a natural question whether an essentially simpler crite-
rion can be found. Theorem 3.4 gives an indirect answer to this question: it implies
that an existence of a polynomial-time algorithm for checking the P-property of sym-
metric interval matrices would imply that the complexity classes P and NP are equal,
thereby running contrary to the current (unproved) conjecture that PCNP. We refer
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the reader to the classic book by Garey and Johnson [4] for a detailed discussion of
the problem "P NP" and related issues.

THEOREM 3.4. The following problem is NP-hard.
Instance. A symmetric interval matrix AI [A, ] with rational bounds A,-.
Question. Is A a P-matrix?
Proof. By Theorem 3.2, A is a P-matrix if and only if it is positive definite;

checking positive definiteness of symmetric interval matrices was proved to be NP-
hard in [II]. D

Coxson [2] proved that the P-matrix problem for real matrices is co-NP-complete.
His result concerns nonsymmetric matrices, since the symmetric case can be solved by
Sylvester determinant criterion, which can be performed in polynomial time (Schrijver
[12]). Theorem 3.4 shows that for interval matrices even the symmetric case is NP-
hard.

Acknowledgments. Correspondence with J. Garloff on the subject of this paper
is highly appreciated.
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INVERSES OF UNIPATHIC M-MATRICES*
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Abstract. In this paper we characterize all nonnegative matrices whose inverses are M-matrices
with unipathic digraphs. A digraph is called unipathic if there is at most one simple path from any
vertex j to any other vertex k. The set of unipathic digraphs on n vertices includes the simple n-cycle
and all digraphs whose underlying undirected graphs are trees (or forests). Our results facilitate the
construction of nonnegative matrices whose inverses are M-matrices with unipathic digraphs. We
highlight this procedure for inverses of tridiagonal M-matrices and of M-matrices whose digraphs are
simple n-cycles with loops.

Key words, unipathic digraph, M-matrix, inverse, principal minor
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1. Introduction. The inverse of an M-matrix is always a nonnegative matrix;
however, characterizing the nonnegative matrices whose inverses are M-matrices is a
long-standing open problem. In the present article we contribute to the solution of
the inverse M-matrix problem by identifying a subclass of the inverse M-matrices.
We provide necessary and sufficient conditions for a nonnegative matrix C to be the
inverse of an M-matrix whose digraph is unipathic. A digraph is called unipathic if
there is at most one simple path from any vertex j to any other vertex k.

Unipathic digraphs were introduced by Harary, Norman, and Cartwright [5], and
they were proposed as a new direction of research in combinatorial matrix analysis
by Maybee [II]. It is pointed out in [II] that unipathic digraphs can serve as a
generalization and a theoretic unification of digraphs whose underlying undirected
graphs are trees (or forests) and of directed simple cycles.

The conditions we obtain for a nonnegative matrix to be an inverse of an M-matrix
whose digraph is unipathic (see Theorem 3.2) involve positivity of the diagonal entries
and certain 2 x 2 principal minors as well as particular off-diagonal entries and 2 2
almost principal minors being zero. (An almost principal minor is the determinant
of a submatrix whose row and column index sets differ by only one element.) Our
proof is based on properties of unipathic digraphs (see Lemmas 2.1 and 2.2) and on a
key observation in [12] that connects zero 2 2 almost principal minors of an inverse
M-matrix to the digraph of the M-matrix (see Theorem 3.1).

Our results facilitate the construction of nonnegative matrices whose inverses
are M-matrices with unipathic digraphs. We illustrate this procedure for inverses of
tridiagonal M-matrices and of M-matrices whose digraphs are simple cycles with loops

For definitions, references, and background on M-matrices and the inverse M-
matrix problem the reader is referred to Berman and Plemmons [2] and Johnson [6].
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In the following section we introduce the notation necessary to describe our re-
sults, summarize the properties of unipathic digraphs, and present some definitions
and auxiliary results.

2. Notation and preliminaries. In this paper we let {n} {1, 2,..., n} and
F (V,E) be a digraph with vertex set Y {n and directed edge set E
{ (i, J) i, j E V}. A path from j to k in F is a sequence of vertices j rl, r2,..., rt k,
with (ri,r+l) E E for 1,...,t- 1. A path is simple if rl,r2,...,rt are distinct.
A path rl,..., rt,rl with t > 1 is called a cycle. It is called a simple cycle if the
intermediate vertices are distinct.

A digraph is called unipathic if there is at most one simple path from any vertex
j to any other vertex k.

We adopt the following notation to be used within proofs and in commentary:
j r k if there is a path from j to k in F ("j has access to k in F").
j ?r k if there is no path from j to k in F.
j -r k" if (j,k) E.
j /-*r k" if (j,k) E.
We denote by Fi the digraph obtained from F when vertex and any associated

edges are removed (i.e., the subgraph of F induced by {n} \ i). We denote by F the
digraph obtained from F by adding an edge from a vertex j to a vertex k whenever
j -r and --r k. The transitive closure of F, denoted by F, is obtained from F
by adding an edge (i,j) whenever r j. If F (V, E) and F’= (V, E’) are two
digraphs, we let F t2 F’ (V, E [2 E’).

The digraph of a matrix A (aj) e ]1an is denoted by :D(A) (V, E), with
Y {n} and E {(i, j) aij 0}. We say that A is irreducible if j ,Z(A) k for all
j, k V. The matrix A is called unipathic if T(A) is a unipathic digraph.

The underlying undirected graph (V, ,) of F (V, E) has a vertex set Y and
an edge set/ c_ {{i,j} i, j V}, where {i, j} E/ if and only if i # j and either
(i, j) E or (j, i) E. We define paths, cycles, and simple cycles of a graph to
correspond to the definitions for a digraph. A graph with no cycles is called a forest.
A connected forest is called a tree.

We continue with a summary of the characteristics of unipathic digraphs. Clearly
in any digraph, if there is a path from j to k, then there is a simple path from j to
k. By definition, if F is unipathic, then there may be several paths from j to k, but
there can only be one simple path. More precisely we have the following lemma.

LEMMA 2.1. Let F be a unipathic digraph. Let i, j, k be distinct vertices such
that j ...zr k. Then the following are equivalent:

(i) The vertex j does not have access to k in F.
(ii) Every path in F from j to k goes through i.

(iii) The simple path from j to k in F goes through i.

Proof. (i) implies (ii)" if j ?r k, then every path from j to k must go through i.

(ii) implies (iii): if every path in F from j to k goes through i, then the simple
path from j to k in F goes through i.

(iii) implies (i)" let be any vertex in the simple path from j to k. Sup-
pose j -r k. Then there is a simple path from j to k in Fi. But then we would
have two different simple paths from j to k in F. This is a contradiction. Hence

A unipathic digraph may have loops on its vertices and, unlike a digraph whose
underlying undirected graph is a tree, may have cycles of any length. However, no
two cycles can have a common edge. As explained in [11], every strongly connected
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unipathic digraph can be constructed from a tree (by adjoining chords and orienting
the resulting cycles and by replacing edges with directed simple paths). Notice that
if the digraph of a combinatorially symmetric matrix A (aij) (i.e., aj 0 implies
aj O) is strongly connected and unipathic, then its underlying undirected graph
must be a tree.

An important property of unipathic digraphs is given next. The indegree (resp.,
outdegree) of a vertex of a digraph is the number of edges entering (resp., issuing
from) vertex i.

LEMMA 2.2. Let F (V, E) be a unipathic digraph. Then there is a vertex with
indegree at most 1 and a vertex with outdegree at most 1.

Proof. Let rl,..., rt E V be a simple path in F of maximal length. Suppose rl
has indegree greater than 1. Then there exist two distinct edges ending in rl, and
they must be of the form (r, r) and (rj, r), with 1 < < j, by the maximality of
the simple path r,..., rt. But then there are two simple paths from r to rl, which
is a contradiction. Similarly we can show that rt has outdegree at most I.

We denote an entrywise nonnegative matrix C by C >_ O. If all the entries of C
are positive we write C >> 0. Let S, T C_ (n and C E ]lnn. We write C[S, T] for
the submatrix of C whose rows and columns are indexed by S and T, respectively, in
their natural order. If S or T is a singleton, e.g., T {}, we write C[S, g] instead
of C[S, {/)]. Let R c_ (n/. The Schur complement of C with respect to an invertible
principal submatrix C[R, R] is

C/C[R,R] C[Q, Q] C[Q,R](C[R,R])-C[R, Q],

where Q (n> \ R.
The following lemma will be used in the proof of Theorem 3.2. It can be obtained

by combining formulae from Brualdi and Schneider [3, (10), p. 773] and Watford [14,
p.
LEMMA 2.3. Let C ]nn and let R c_ (n), Q <n) \ R. If all the relevant

inverses in the following block matrix exist, then C is invertible and its inverse is
permutationally similar to

-(C[R, R])-C[R, Q](C/C[R, R])- (C/C[Q, Q])-I J
We close this section with a characterization for a nonnegative matrix to be an

inverse M-matrix. Owing to its generality, it gives less insight than one might wish.
However, it can be used to obtain some additional characterizations for inverses of
M-matrices.

LEMMA 2.4. Let A sI- P, P >_ O, be a nonsingular M-matrix. Then for all
>_ O, A(A + I)- is a nonsingular M-matrix which is given by

(1) A(A + 3I)- sI- PY
s+Z s+Z .=

Proof. The proof is essentially to be found in the proof of Theorem 3 of Johnson

Lemma 2.4 now yields the following characterization mentioned above.
THEOREM 2.5. Let C (cj) ]1nn be a nonnegative matrix. Then C is the

inverse of an M-matrix if and only if c > 0 for all 1 <_ <_ n, C + cI is invertible
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for all c >_ O, D(C) D(C), and

(2) )((C nt- oI) -1) )(C) for all c > O.

Proof. Assume first that C is the inverse of an M-matrix. Then it is well known
that c > 0, 1,..., n, C + I is invertible for all a 0, and D(C) D(C). Now
put A- C-1 and observe that

(3) (C + aI)- A(A + [)-1,
where := 1/a. Since A is a nonsingular M-mtrix, there exists P 0 such that
A sI- P and such that s > p(P) (the spectral radius of P). But then, by the
Neumann expansion,

(4) C I+-lPs s sJ"
j=l

The validity of (2) now follows by comparing, for a > 0, the expansion for the matrix
on the right-hand side of (3) which can be obtained via (1) and the expansion in (4).

Conversely, suppose that the equality in (2) holds for all a > 0. If ((C+aI) -1)j
0 for some a > 0, then by (2) it must hold for all a > 0 and hence, by continuity
arguments, (C-)iy 0. Similarly, if ((C+aI)-I)ij < 0 then, again by (2), this entry
must be negative for all a > 0 so that (C-)j 0. Suppose now that ((C+aI)-1)j >
0, j, for some a > 0 so that this entry is positive for all a > 0. Then, for sufficiently
large a > 0, the Neumann expansion gives us that

1 ((I+C) -1) 1 (I C C
((c +

In particular we see that as increases, it will attain a value such that beyond
this value the (i,j)th entry of (C + I)- will become negative, contradicting the
constancy of the sign implied by (2). Hence there cannot be a value of > 0 for
which ((C + i)-l)ij > 0 and our proof is done.

Our theorem has the following two corollaries.
CoaoAa 2.6. et C- (ci) Nnn be no,negative. Then necessar and

scient condition for C to be the iverse of an M-matriz is that cii > O, the matriz
C + I is invertible for all > O, (C) (C), ad that for each pair (i, j) the
minor of C + I obtained @er deletin9 the th row and jth colm has a constant
sign as a fctio of > O.

Coaoaa 2.7. If A Rnn is a nonsi9lar M-matriz, then for ae > O,
(- +- (.

The last corollary has the following implication. Suppose that A R is a
nonsingular irreducible M-matrix that has some off-diagonal entries equal to ero.
Invert A to obtain the positive matrix C. Now invert C + I. Then (C + I)- is an
M-matrix and, by the foregoing, all its entries are nonero.

g. he inverse of a unipathic M-matrix. We begin with a theorem on non-
singular M-matrices proved in McDonald, Neumann, Schneider, and satsomeros [12].
It represents a graph-theoretical refinement and generalization of a condition found
in Willoughby [1] that is necessary for a matrix to be an inverse M-matrix.

THgOREM g.1. et A R be a nonsin9lar M-matriz ad r (A). et also
C A-1 ad {i, j, } {) be distinct. The
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cjck whenever j does not have access to k in Fi,(i) cjk c
(ii) cjk > cJk whenever j has access to k in Fi.
Notice that Theorem 3.1 refers to the value (zero or positive) of the almost prin-

cipal minors of C formed from rows i, j and columns i, k.
In the next theorem, our main result, we provide necessary and sufficient condi-

tions for C _> 0 to be the inverse of a unipathic M-matrix. It is well known that if C is
an inverse M-matrix then its diagonal entries and 2 2 principal minors are positive,
the 2 2 almost principal minors satisfy Theorem 3.1, and (C) D(C) (C-1).
These conditions are not in general sufficient for C k 0 to be an inverse M-matrix.
However, as we will show in Theorem 3.2, a subset of these conditions, dictated by
unipathic digraph, is necessary and sufficient for C to be the inverse of a unipathic
M-matrix.

THEOREM 3.2. Let F be a unipathic digraph on n vertices and C n,. Then
the following are equivalent.

(i) C is nonsingular and C-1 is an M-matrix such that D(C-1) F.
(ii) C 0 and satisfies

(a) c > 0 for all (n},
(b) cjyca > cjackj for all distinct j and k such that there is an edge from

j to k in F,
(c) cjk 0 whenever there is no path from j to k in F,

for all distinct i, j, k such that there is a path from j to k(d) c ,
in F, but there is no path from j to k in Fi.

Proof. (i) implies (ii)" since C-1 is an M-matrix, C k 0 and (ii)(a),(b) follow from
well-known facts about M-matrices (see, e.g., [2]). Property (ii)(c) follows from the
fact that the digraph of an inverse M-matrix is the transitive closure of the digraph of
its inverse (see Lewin and Neumann [8] and Schneider [13]). Property (ii)(d) follows
from Theorem 3.1.

(ii) implies (i)" we proceed by induction on n. For n 1, the result follows
trivially. Assume n k 2 and that (ii) implies (i) for all (n- 1) x (n- 1) matrices.

Using the inductive hypothesis we will establish three claims which, combined
with Lemma 2.3, will allow us to show that C is invertible and that its inverse is
Z-matrix (i.e., it has nonpositive off-diagonal entries) with digraph F.

CLAIM 1. CjjCkk > CjkCkj for all distinct j, k
Proof of Claim 1. If j r k or kr j then by (ii)(c) of Theorem 3.2, cjkcaj O,

and the claim follows. Assume j r k and kr j. We use induction on the length r
of the simple path from j to k. If r 1, the claim follows from (ii)(b). Assume r > 1
and that the claim holds for any two vertices connected by a simple path with length
less than r. Either the simple path from j to k has no vertices, other than j and k,
in common with the simple path from k to j, or there is an additional vertex which
is common to both paths. In the latter case, by (ii)(d) of Theorem 3.2, Lemma 2.1,
and the induction hypothesis on the path length,

CjjCkk CjjCiiCkkCii CjjCii ] CkkCii

In the former case, for any in the simple path from j to k, there is a simple path
from to j through k. Hence by (ii)(d), Lemma 2.1, and the induction hypothesis on
the path length,

CjkCkj CjiCikCkj CjiCij 1
CjjCkk CjjCiiCkk CjjCii



1030 J. J. MCDONALD, M. NEUMANN, H. SCHNEIDER, AND M. J. TSATSOMEROS

This establishes Claim I.
CLAIM 2. For any

an M-matrix with (B
Proof of Claim 2. By the induction hypothesis, it is enough to show B satisfies

(ii) of Theorem 3.2 for the digraph Ft. For ease of notation, we will assume that the
indices of the entries of B correspond to those of C; i.e.,

bjk cjk

First we show that B is nonnegative. If bjk 0, we are done. So suppose that
bjk O. Then either Cjk 0 or CjCk O. If CjCik O, then bjk Cjk > O. If
cjck O, then by (ii)(c) j r g and g ’r k and the following cases have to be
considered.

If j /r k, then by (ii)(d)

bjk cjk Cjk Cjk O.
Cgg

If jr k, then joining the simple paths from j to g and from g to k forms a path
from j to k through g, which therefore cannot be simple. So let be the first vertex
in the simple path from j to which is also in the simple path from t to k. Then the
(sub)path from j to and then from to k forms a simple path from j to k. Hence
jr k, j ?t,r , and r k. By Theorem 3.1,

cyc cjccc
bjk cjk cjkce cccee

=Cjk--Cjk =Cj 1 >0 (by Claiml).
ciicee ciice

Hence B is a nonnegative matrix.
We now show that conditions (ii)(a)-(d), labeled here as (a’)-(d’), also hold for

the matrix B with the digraph
(a’) By Claim i,

CjgCgj > O.=c egg

(b’) Suppose j r k. If k ?t,r g, then either k ?tr j or j ?/zr t, so by (ii)(c),

(5) ce 0 cycye.
cyj

If k r t, then j -*r 6. It follows that either j is in the simple path from k to in F,
in which case, by (ii)(d) and Lemma 2.1, we have that

(6) c cc >_ O,
cjy

or the edge from j to k combined with the simple path from k to t forms a simple
path from j to g which includes k. In this case we have, again by (ii)(d) and Lemma
2.1, that

CjkCk(7)
Ckk
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If (5) or (6) holds, then by replacing ck in the following expression we get

(CjjCkk CjkCkj) CjjCkkCjCj CjkCkjCjiCj

CjjC

CkjCjCT.k CkjCjCk

(cjjckk CjaCky) (1 CjCj )’ > 0 (by Claim 1).
CjjC /

If equation (7) holds, then the above inequality follows in a similar manner by replac-
ing

(c’) If j /-*r k, then by (ii)(c)or (d),

byk Cjk Cjk Cjk O.

(d’) Let i, j, k E S be distinct. Assume j ’r k, but j /(r) k. Then j /r k.
Hence by (ii)(d),

(8) CjiCik

cii

If j --zr t and ,zr k, then by Lemma 2.1 is in either the simple path from j
to t or the simple path from g to k. Hence by (ii)(d) and Lemma 2.1,

(9)
cii

or

(10) cek
CgiCik

cii

If j /zr e, then ?Z,r e, and hence by (ii)(c), equation (9) is satisfied.
If /r k, then t /r i, and hence by (ii)(c), equation (10) is satisfied.
Hence either (9) holds or (10) holds. If (9) holds, then using (8) to replace cjt:

and (9) to replace cjt in the following expression we get

bjkbii bjibik (Cjk

CiiCjiCiCk CiiCiCkCji ) O.
ciicig

If (10) holds, then the above equality follows in a similar manner.
This establishes Claim 2. rl
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By Lemma 2.2, there is a vertex with indegree at most 1. Without loss of gen-
erality, we can assume this vertex is labeled by n (otherwise we can work with a
permutation similarity of C). Let T (n-

CLAIM 3. The matrix C[T, T] is invertible and its inverse is an M-matrix with
digraph Fn. Moreover, C/C[T, T] > O.

Proof Of Claim 3. Let i,j E T. Since urn j if and only if .zr j, (a), (c),
and (d) of (ii) must hold for C[T, T]. Also (ii)(b) follows from Claim 1. Hence, by
the induction hypothesis, C[T, T] is invertible and its inverse is an M-matrix with
digraph Fn. To show that C/C[T, T] > 0, if the indegree of n is 1 choose rn such that
m r n; otherwise choose any m e (n- 1). Then by (c) and (d)

(11) C[T,n]
C2n

Cn--l,n

Cram

Cn-- l,m Cran

Cmn

Clra

C2m

Cn--l,m

Cmm

Thus, letting era ]In-1 be the mth standard basis vector, by (11) we get

C/C[T, T] Cnn C[Tt, T](C[T, T]) -1C[T, n]

Cnn
Cmn C[n, T](C[T, T])-IC[T, m] Cnn
Cram

C[n, T]e. 

CmnCnmcnn- > 0 (by Claim 1).
Cram

This establishes Claim 3. D
Recall now that since by Claims 2 and 3 C/C[n, hi, C[T, T], and C/C[T, T] are

invertible, C has to be invertible and its inverse is, from Lemma 2.3 with R- (n}
and Q= T,

(C[n, n])-lC[n, T](C/C[n, n]) -1
-(C[T, T])-IC[T, n](C/C[T, T])- ]

(C/C[T,T]) -1 J
Moreover, by Claim 2, for all g e (n} and for S (n} \ g, C-I[S, SI (C/C[e,.]) -1
is an M-matrix with digraph Pe. It follows that C-1 is a Z-matrix with digraph F,
whose inverse is a nonnegative matrix. This implies that C-1 is an M-matrix with
digraph P. []

The contents of Claims 2 and 3 within the inductive proof of Theorem 3.2 can
now be stated separately.

COROLLARY 3.3. Let C ]lnn be the inverse of a unipathic M-matrix whose
digraph is F.

(i) For any g e (n} and S (n}\g, C/C[g,g] is the inverse of a unipathic
M-matrix whose digraph is Ft.
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(ii) For any e <n> of indegree at most 1 and T <n> \ t, C[T, T] is the inverse

of a unipathic M-matrix whose digraph is Ft. Moreover, C/C[T, T] > O.
Example 3.4. The assumption in Theorem 3.2 that the digraph F is unipathic is

critical for condition (ii) of the theorem to imply that the inverse of C is an M-matrix.
For example, consider

Notice that F is not unipathic (but if any edge is removed the digraph becomes
unipathic). The matrix

6’= 012
001

satisfies condition (ii) of Theorem 3.2 for the digraph 1-’, but its inverse

[1-2116’-1 0 1 -2
0 0 1

is not an M-matrix. In particular, this example shows that condition (ii) is not in
general sufficient to imply that C- is an M-matrix when I" belongs to the classes of
digraphs discussed in [4] and [9].

Remark 3.15. It follows by Corollary 2.6 that if C is a nonnegative matrix that
satisfies one and hence both of the equivalent conditions of Theorem 3.2, then for
each pair 1 _< i, j _< n, the minor of C + cI which is obtained by deleting the ith row
and jth column has a constant sign as a function of c > 0.

4. Construction of inverses of unipathic M-matrices. Theorem 3.2 enables
us to construct a matrix C which is the inverse of an M-matrix with a given unipathic
digraph. The process is as follows. Given a unipathic digraph F, first fill the diagonal
entries with positive values. Then, for any simple cycle rl --* rt rl, choose

Crir+l and crl so that they are positive and

Crr Cr2r2 Crtrt > 1.
Cr r2 (r2r3 Crtr.l

Since F is unipathic, no two simple cycles share a common edge, so making the above
choices can proceed without overlap. If there is an edge from j to k in F with j k,
but this edge is not part of any simple cycle, assign any positive value to cja. If j does
not have access to k in F, then set Cjk O. The remaining entries of C are uniquely
determined by Theorem 3.2 (ii)(d).

We highlight this procedure for the inverse of a tridiagonal M-matrix and of an
M-matrix whose digraph is the simple n-cycle with loops.

We begin with the inverse of a tridiagonal M-matrix. Conditions (ii)(c), (iii)(c),
and (iii)(d) of the following theorem also appear in Barrett [1], who characterizes
inverses of tridiagonal matrices in general.

THEOREM 4.1. The following are equivalent for C E ]t(nn.
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(i) C is nonsingular and C-1 is a tridiagonal M-matrix.
(ii) C >_ 0 and satisfies

(a) cii > 0 for all E
(b) ciici+l,i+l -ci+l,ici,i+l > 0 for all (n-

cck for all j > > k and for all k > > j.(c) c
(iii) C 0 and satisfies

() . > o fo a e
(b) ciici+,i+ -ci+,ici,i+ > 0 for all (n- 1},

,++,+....C-, for all j > + 1,(C) Cij- c+,+c+2,i+ .c_,_
,+1c+,+...-,. for all > j + 1.

(iv) C is a nonsingular matrix which is totally nonnegative (i.e., all the minors

of C are nonnegative) and whose inverse is an M-matrix.

Proof. The equivalence of (i) and (ii) follows directly from Theorem 3.2 applied
to the digraph of a tridiagonal matrix.

The equivalence of (ii) and (iii) is also straightforward.
The equivalence of (i) and (iv) is a result due to Lewin [7].
We remark that in [10] Markham introduces a class of matrices which he calls

type D. A real n n matrix C (cij) is of type D if

if/_<j,
cij

cj ifj<i,

and if cn > cn_l > > c. Markham shows that if cl > 0, then C is nonsingular
and C-1 is a tridiagonal M-matrix. It can be readily checked that if cll > 0 and C
is a matrix of type D, then its entries satisfy the conditions (ii)(a)-(c) stipulated in
Theorem 4.1. Thus the class of matrices characterized in Theorem 4.1 contains the
positive matrices of type D as a subclass.

Note that if the entries of the first superdiagonal, first subdiagonal, and the
diagonal of C (cij) satisfy (ii)(a) and (b) of Theorem 4.1, then (ii)(c) (or (iii)(c)
and (iii)(d)) uniquely determines the remaining entries of C. This is iilustrated in the
following example.

Example 4.2. We construct inverses of tridiagonal M-matrices as follows. Begin
by filling in the tridiagonal structure of C- (cij) so that (ii)(a) and (b) of Theorem
4.1 are satisfied. For example, let

4 2
2 2 2

1 2 6
0 1 1

1 3 4
2 4

Then use (ii)(c) (or (iii)(c) and (iii)(d)) to (uniquely) fill in the *’s, one (sub-) super-
diagonal at a time"

4 2 2 6 6 8
2 2 2 6 6 8
1 1 2 6 6 8
0 0 0 1 1 4/3
0 0 0 1 3 4
0 0 0 2/3 2 4
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Then

1/2 -1/2 0 0 0 0
-1/2 3/2 -1 0 0 0

0 -1/2 1 -3 0 0
0 0 0 3/2 -1/2 0
0 0 0 -1/2 7/6 -1
0 0 0 0 -1/2 3/4

Next we consider the case where the digraph is a simple cycle with loops.
THEOREM 4.3. The following are equivalent for C E Inn.
(i) The matrix C is nonsingular and C-1 is an M-matrix whose digraph is the

simple n-cycle 1 2 n 1 with loops.
(ii) C >> 0 and satisfies

() ’" > 1,
C12 C23 ...an--

for all > j > k, k > > j, and j > k > (i.e., for all(b) c
distinct vertices i, j, k such that lies on the path from j to k).

Example 4.4. We construct an inverse of an M-matrix whose digraph is a simple
cycle with loops as follows. Begin by filling in the cycle of D(C) so that Theorem 4.3
(ii)(a) is satisfied. For example, let

4 2
2 2

2 6
1 1

3 4
1 4

Then use (ii)(b)to (uniquely)fill in the *’s:

4 2 2 6 6 8
2 2 2 6 6 8
2 1 2 6 6 8
1/3 1/6 1/6 1 1 4/3
1 1/2 1/2 3/2 3 4
1 1/2 1/2 3/2 3/2 4

Then

1/2 -1/2 0 0 0 0
0 1 -1 0 0 0
0 0 1 -6 0 0
0 0 0 2 -2/3 0
0 0 0 0 2/3 -2/3

-1/8 0 0 0 0 1/2
Let Z denote the n n simple cycle permutation matrix. We can apply Theorem

4.3 to characterize all nonnegative matrices which are polynomials in Z and which
are inverses of M-matrices whose digraph is a simple n-cycle with loops.

COROLLARY 4.5. Let Z be the n n simple cycle permutation matrix. Let
k1,..., kn be nonnegative numbers and consider the matrix

C p(Z) klI A- k2Z -}-... knZn-1.
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Then necessary and sufficient conditions for C to be the inverse of an M-matrix whose
digraph is the simple cycle 1 2 -... -- n 1, with loops, are

(i) kl > k2 > 0,
(ii) (k.)- /(1)-, 3,..., .
Proof. Notice that

kl k2 kn-1
kn kl k2 kn-1

kn kl ".

k3 ". kl
k2 k3 kn

The result now follows by applying Theorem 4.3 to C.
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Abstract. It is well known from the work of Brown and Halmos [J. Reine Angew. Math., 213
(1963/1964), pp. 89-102] that an infinite Toeplitz matrix is normal if and only if it is a rotation and
translation of a Hermitian Toeplitz matrix. In the present article we prove that all finite normal
Toeplitz matrices are either generalised circulants or are obtained from Hermitian Toeplitz matrices
by rotation and translation.
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1. Introduction. The purpose of the present article is to describe fully the struc-
ture of all finite normal Toeplitz matrices.

The algebraic theory of Toeplitz matrices and Toeplitz operators is now extensive,
having been developed over many years. An overview of the theory for finite Toeplitz
matrices is given in the monograph [3] of Iohvidov, whereas the classic paper of Brown
and Halmos [1] contains many of the fundamental results on the algebraic properties
of Toeplitz operators. A well-known theorem from that paper states that an infinite
Toeplitz matrix (operator) is normal if and only if it is a rotation and translation of a
Hermitian Toeplitz matrix. This theorem does not, however, apply to finite matrices:
aI1 circulant matrices, for example, are normal Toeplitz matrices. To date very little
has been published about the general structure of a finite normal Toeplitz matrix. In
fact it appears that the most informative work on this question is a recent article of
Ikramov. In [2] Ikramov has shown that a normal Toeplitz matrix (of order at most 4)
over the real field must be of one of four types" symmetric Toeplitz, skew-symmetric
Toeplitz, circulant, or skew-circulant. A reading of Ikramov’s paper suggests that it
may be possible to characterise complex normal Toeplitz matrices of all orders, and
we do so here. We first identify the two types of normal Toeplitz matrices that arise.

Type I is a rotation and translation of a Hermitian Toeplitz matrix, that is T
aI +/H, for some complex a and/ and for some Hermitian Toeplitz matrix H.

Type II is a generalised circulant, which is to mean a Toeplitz matrix of the form

ao aNi ""
al ao

aN al

alio
".

aNio

ao
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for some fixed real 0.
The main result of this paper is the following theorem.
THEOREM 1.1. Every finite complex normal Toeplitz matrix is a generalised

circulant or is a rotation and translation of a Hermitian Toeplitz matrix. In partic-
ular, every finite real normal Toeplitz matrix is symmetric Toeplitz, skew-symmetric
Toeplitz, circulant, or skew-circulant.

This paper consists of four sections. In 2 we give criteria for a Toeplitz matrix to
be normal. The main result is proved in 3. Within the proof we use several technical
lemmas, which are described in 4.

2. Key equalities. Let T be a Toeplitz (N + 1) (N + 1) matrix

ao a-1

al ao

alv o

a-1

al a0

Throughout the paper we use the following notation: bi := a_i for 1,..., N. Note
that neither the normality nor the form (I) or (II) of a Toeplitz matrix depends on
the value of its diagonal entry; therefore we may assume that a0 0.

THEOREM 2.1. A Toeplitz matrix T of the form

0 bl ".

al 0 ".

aN " al

bN

51

is normal if and only if for each p and q the following equalities hold:

-qap -[- aN-q+l-N-p+l bqbp -t- bN-q+lbN-p+l

Pro@ The matrix r is normal if and only if R TT*-T*T O. Let R {ri,j }oN.
Let us write down the condition rp,q 0 for some p _> O, q _> 0 in terms of the

entries of the matrix T. Suppose first that p _< q. Then

(2) [ap-q + ap-l-q-1 +." + al-q-p+l] -+- (bl-q-p-1 +...-+- bq-p-l-l)

+bq_p+ bl +... -k- bN-pbN-q [bpbq +... -1- bl bq_p+

-t-(bl-q-p-1 +""-t- bq-p-l-l -t- al-q-p+l +’" q- aN-q-N-p.

(We suppose here that the expressions in ring brackets equal 0 for p q- 1 and p q
and that the expressions in square brackets equal 0 when p 0.)

Let p _< N q; then after the simplification we obtain

ap+1-q+ + + aN-q-N-p bp+ bq+ zr- + bN-pbN-q.
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Now the condition rp-l,q-1-rp,q 0 applied to the previous equalities with 1 <_ p _< q
gives

(4) ap-dq + aN-q+l-dN-p+ bqbp - bN-p+ bN-q+1.

It remains to show that these equalities hold for all p and q, without the restrictions
p<_ q andp+q < N+ l.

1. If p > q, it is enough to interchange in (4) p and q and consider conjugated
equalities.

2. Ifp+q > N+I, then denote s := N-q+l, r := N-p+l, and we come to the
same equalities with respect to r and s, with the conditions s + r 2N + 2-p-q <
2N+2-N-1 =N+I.

3. If, finally, N q p 1, then from (2) it follows that ap-dq bqbp, which is a
particular case of (1), corresponding to the choice q + p N + 1.

The proof that equation (1) implies normality will not be given, for it is a con-
sequence of our main theorem on the structure of normal Toeplitz matrices. All
subsequent work requires only the implication that normal Toeplitz matrices satisfy
equation (1). V1

REMARK 2.2. If we consider (1) with N-q+1, p, N-/5+1 q, N-+1
N-p + 1, we obtain that for each , (t the following equalities hold:

"N-+ a4 + a-N-4+ bN-+ b4 + bbN_4+

The following observation will be put to use in the proof of the main theoreIn.
REMARK 2.3. If N 2n- 1 and an bn O, then using the notation tp

ap, p bp for p < n and p ap+, Dp bp+ for p > n, we again come to the
equalities of the form (1) for 4(n- 1) variables p and bp.

3. Main result. Let

0 b ". bN

a 0 ". ".

aN ". a 0

be a normal Toeplitz matrix and let {m} C_ {1,... ,N} be a set of positive integers
We say that a set of pairs of diagonals of the matrix T with the indices mi is co-
connected (with argument ) if b, mee and contraconnected (with argument )
if bm aN_m+eie. Now using these definitions, we cast the statement of the main
theorem in the following equivalent form.

THEOREM 3.1. If a finite complex Toeplitz matrix T of trace zero is normal, then
there exists a single argument 0 <_ 0 <_ 2 such that with respect to either all pairs
of diagonals of T are coconnected or all pairs of diagonals of T are contraconnected.

The proof is based on the following principal idea: we prove first that each two
pairs of diagonals with the indices p and 2n + 1 -p, 1 _< p _< n (in case N 2n)
or each three pairs of diagonals with the indices n- k, n, n + k, 1 <_ k <_ n (in the
case N 2n- 1) are either coconnected or contraconnected or are simultaneously co-
and contraconnected. Then we show that for all sets of pairs of diagonals there is a
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unique common argument 0, such that all pairs of diagonals are either coconnected or
contraconnected or simultaneously co- and contraconnected with the same argument.

Proof. We split the proof of this theorem into three parts.
Part I. N 2n- 1 with an 7 O. Take two natural numbers m and k such that

0 _< rn, k _< n- 1 and apply Theorem 2.1 with p n- k and q n+m. The equalities

(6) an-m-n+k + an-k-n+m b+,bn_k + bn+kbn-m

hold for two arbitrary pairs of diagonals with indices [n- rn, n + m] and [n + k, n- k].
Consider then the following system of equalities"

(7) an-gn+ + ar-- bnb-k + bn+kbr (rn 0),

(8) an-k-gn+k bn+br-k (rn k 7 0),

(9) lanl Ibl (m k O)

for the three pairs of diagonals with the indices n- k, n, n + k.
Taking into account (9), one can suppose, without loss of generality, that an

lanl, bn anei; then from (7) it follows that

eio -io
an+k nt- an-k n-k + bn+ke

and from (8) it follows that

"n+kan-k (--kei)(br+ke-iO).

Therefore at least one of the following two pairs of equations holds for all k"

eiO,(10) a+ a_ b+e io

or

(11) g+k bn+ke- an-k --e
Validity of (10) implies

eiO bn aneiO bn+k an-keiO(12) b-k an+k

which means that pairs of diagonals In-k,n, n+ k] are contraconnected. If (11) holds,
then

bn-k -dn-keiO bn ’dneiO bn+k n+keiO

and these diagonals are coconnected.
If it happens that both (12) and (13) hold for all k I,..., n- i, then the proof

of Part I of the theorem is complete. Otherwise let us suppose that for some k only
one of (12) or (13) holds, say (12); i.e. -gn- 7 an+k. We will show that the equalities
(12) hold for all rn. Assume that for some rn (13) holds; we show that (12) is valid
too. Substitute (13)in (6); then

(-g+m a-m)(an- -g+k) O.
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This means that gn+. an_., and therefore

eiObn-m an+meiO bn aneiO bn+m an--m

(4)

Part II. N 2n. Set N 2n and q p in equation (1). We obtain

lapl 2 / la.-p+ll 2 -Ibl / Ib-p+ll

If we set q- 2n + 1 -p in (1), we will have

(5) ap-2n+l-p b2n+l-pbp.

The system of equations (14) and (15), as in Part I, possesses two representations,
namely

(16) bp gpeip eiOpb2n+ 1--p a2n+1--p

which means that the pairs of diagonals [p, N-p + 1] are coconnected, or

ei’)’p b2n+l apei’/p(17) bp a+1-p -p

these pairs of diagonals are contraconnected. In other words, for each p- 1,..., n at
least one of the two equations above holds.

Now we consider two possibilities.
1. ap - 0 for each p. We have to consider three cases.
Case 1. All pairs of diagonals are coconnected; i.e., bp -peip If all/p are

equal, then we have finished the proof. Let /1 -/:/. By Lemma 4.1 there exists c

such that bl a.nei, b2n alei, b2 a-lei, b-i aei.
Now take arbitrary p > 2. Hence bp apei/, b2n-p+l g2n-p+leiZ. It is

important here that fiB for either k- 1 or k- 2 (because/1 /). Applying
Lemma 4.3 for [bp, b2n-p+l,bk, b2n-k+l], we obtain bp a2_p+le

i and b2-p+l
apeic

Case 2. Assume now that all pairs of diagonals are contraconnected; i.e., bp
a2n-p+lei’ for all p. Using the same arguments as in Case 1, we conclude that either
all 3’p are equal to each other or for some /, bp -dpev for all p.

Case 3. Now let some pairs of diagonals be coconnected and some pairs of di-
agonals be contraconnected but not all of them be coconnected. Without loss of
generality, we can assume that

i01 b2n al ei01(18) bl a2n

and [bl, b.n, al, a2] are not coconnected. Take arbitrary p. Then

iOp(19) bp gpeiE bn-p+l a2-p+l

According to Lemma 4.3 either all pairs of diagonals

[bl, b2n, al, a, bp, b-p+l, ap, a2n-p+l]

are coconnected or contraconnected with the same argument. But because
are not coconnected, then

[bl, b, al, an, bp, b2n_p+l, ap, a2_p+
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are contraconnected. We have thus reduced this case to Case 2.
2. ap 0 for some p. Consider again three cases.
Case 1.

(20)

Then bp

but ap

a2n-p+l 0, b2n-p+ 2n-p+ei, bp -pe.
0 and for each q, substituting (20) in (5), we obtain

dN-q+lap + aq-dN-p+l bN-q+lbp + bN-p+lbq,

0 and a2n-p+l 0, so aq qe or b e for each q.

Case 2.

(21) a ei0a2n-p+ O, b2n-p+ ape bp 2n-p+

In this case b2n-p/l 0 and using the same arguments as in Case 1, we obtain
aq b2n-q+le-i0 or b2n-q+l aqiO for each q; i.e., bm a2n-m+le

iO for each m.
Case 3. ap a2n-p+ bp b2n-p+ O. In this case we reduce the order by

2 and consider the Toeplitz matrix of order N- 2 without these four zero diagonals.
To this normal Toeplitz matrix the results of the previous cases apply and yield the
desired conclusion.

Part III. N 2n 1, an 0 (and so bn 0 by (9)). In light of Remark 2.3 of
Theorem 2.1, equalities (1) hold for an even number of diagonals. This part of the
proof, therefore, can be reduced to Part II.

4. The technical lemmas. This section contains the technical lemmas used in
the proof of Theorem 3.1. Throughout this section we assume that N 2n and that
TN is normal.

LEMMA 4.1. If there exist p, q, , /, 7 such that

e(22) bp -ripeiO b2n-p+l 2n-p+l

and

(23) bq qeW/ b2n-q+l a2n-q+le’

eaformE{p,q,2n p+l 2n q+l}then there exists a such that bm a2n-m+l
Proof. Substitute (22) and (23)into (1) to obtain

--i"aqap a2n-q+ a2n-p+ ’qei"/ape-iO -- 2n-p+ e*Oa2n-q+ e

but 0 -’, so

(24) -qap 2n-p+ a2n-q+ e O-’

Analogously, substitute (22) and (23) into (5) to get

(25) 2n-p+aq ap-2n-q+ e-(-)

Consider now a product of (24) and (25). We obtain

(26) -52n_p+ laq12ap -d2n_p+l la2n_q+ l2ap
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1. If ap a2n-p+l 0, then we take a 7-
2. If ap 0, a2n-p+l 0, then (25) implies aq 0 and (24) implies a2n-q+l 0.

In this case we take a 0.
3. The case ap O, a2n-p+ 0 is the same as 2.
4. Let apa2n-p+ O. Then (26) implies lal la2_+l. Then if a 0, let

a . Ifa =fi 0, there are s > 0 and 0 _< 5, < 2 such that aq se and

a2-+ se. Now substituting these into (24) we have

a2n-p+ -pei(0+5+[-)

or

(o++Z-)ap (t2n_p+

We come to such a system of equalities as follows:

bp a2n_pTle-i(oTh+-)ei0
a2n_p+le-i(5+-’)

b2n-p+l ape-i(+5+-’)eiO ape-i(5+[-),

e-(+Z-)bq 8e-isei9/
a2n-q+

b2n-q+l se-i[ei’ aqe-i(5+-).

Denoting 5 + / -a, we obtain bm a2n-m+leia for rn E {p, 2n p + 1,
q, 2n-q+ 1}.

The proofs of the next two lemmas use the same ideas as Lemma 4.1.
LEMMA 4.2. If there exist p, q, O, /, 0 / such that

bp a2n-p+l ei, b2n-p+l apeio

and

bq a2n_q+leZ b2n-q+l aqeW/

then there exists a such that bm -5mei for rn {p, q, 2n p + 1, 2n q + 1}:
LEMMA 4.3. If there exist p, q, O, /, 0 / such that

bp a2n_p+ b2n-p+l apeiO

and

bq qeZ b2n-q+l

then there exists such that one of the equalities holds for all m {p, q, 2n-p +
1, 2n q + 1}" bm -me or b, a2n_m+lei.
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